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Abstract: Acute myeloid leukemia (AML) is a hematological malignancy originating from defective
hematopoietic stem cells in the bone marrow. In spite of the recent approval of several molecular
targeted therapies for AML treatment, disease recurrence remains an issue. Interestingly, increasing
evidence has pointed out the relevance of bone marrow (BM) niche remodeling during leukemia
onset and progression. Complex crosstalk between AML cells and microenvironment components
shapes the leukemic BM niche, consequently affecting therapy responsiveness. Notably, circular
RNAs are a new class of RNAs found to be relevant in AML progression and chemoresistance. In this
review, we provided an overview of AML-driven niche remodeling. In particular, we analyzed the
role of circRNAs and their possible contribution to cell–cell communication within the leukemic BM
microenvironment. Understanding these mechanisms will help develop a more effective treatment
for AML.

Keywords: circRNA; acute myeloid leukemia; bone marrow niche; tumor microenvironment;
non-coding RNA; hematopoietic stem cell; therapy resistance

1. Introduction

Acute myeloid leukemia (AML) is the most common form of acute leukemia in adults.
It is aggressive cancer characterized by clonal expansion and progressive accumulation of
incompletely differentiated myeloid cells within the bone marrow. AML is a heterogeneous
disease because of the plethora of mutations responsible for its development. Thus it is
defined by diverse symptoms, prognosis and treatment responsiveness [1]. In most patients,
etiology remains unknown, with the exception of therapy-related leukemias due to the
previous exposure to chemotherapy and/or radiation administered for a primary condition.
Incidence is higher in elderly people than in younger, and males are 1.2–1.6 times more
likely to develop AML than females. Furthermore, conventional frontline treatments such
as intensive chemotherapy and allogeneic stem cell transplantation are reliable and more
effective in young and fit patients than in old/unfit ones [1–3]. Treatment is mostly based
on conventional chemotherapy with a generally dismal outcome, especially in the elderly,
with a 5-year survival of 30–35% in younger patients (age < 60 years) and 10–15% in older
ones (age ≥ 60 years) [4]. This large gap in therapy efficacy is beginning to close thanks
to the approval of nine new drugs for targeted therapy of AML within just three years
(2017–2020). An enormous effort in better understanding of AML genomic and molecular
landscape has made this possible [5]. Although these different compounds are promising
targeted therapies for many distinct AML subtypes [6,7], still primary and secondary resis-
tance remains an issue [8]. Therefore, there is an extreme need to explore the mechanisms
of resistance to treatments. In the last few years, many new evidences stressed the role of
the bone marrow niche in sustaining leukemic cells’ survival, progression and resistance to
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chemotherapy. The maintenance of this integrated system occurs through the exchange of
factors and signals, generating intense cell–cell crosstalk. Numerous studies found several
non-coding RNAs (ncRNAs), such as long non-coding RNAs, microRNAs and circular
RNAs, playing a prominent role in both AML leukemogenesis and chemoresistance [9–12].
In this review, we aimed to report new insights into the interplay between AML cells and
the microenvironment in order to provide a comprehensive view of the role of niche compo-
nents during leukemic progression. Moreover, since the clinical significance of microRNA
and long non-coding RNA has been investigated for several years, we highlighted the very
last insights on the role of circular RNAs (circRNAs) in AML pathogenesis, with a particular
focus on their function as potential mediators of crosstalk within the bone marrow niche.

2. Hematopoietic Stem Cells and Their Niche

Hematopoiesis is a process starting from a small group of Hematopoietic Stem Cells
(HSCs) which are multipotent precursors endowed with self-renewal capacity and the
ability to generate all types of mature blood cells through multi-lineage differentiation
programs [13]. HSCs are identified on the basis of the expression of specific surface mark-
ers. Indeed, murine HSCs are identified by a marker combination Linneg/low, Thy1.1low,
c-Kithigh, Sca-1+], and a similar combination is detected in human HSCs Lin−, Thy1+,
CD34+, CD38neg/low] [14]. Moreover, HSCs can be divided on the basis of their differentia-
tion potential. Long-term HSCs (LT-HSCs) have an indefinite self-renewal capacity, while
their short-term derivative HSCs (ST-HSCs) maintain self-renewal property for eight weeks,
then giving rise to multipotent progenitors (MMPs). HSCs are rare cells located in a com-
plex and heterogeneous bone marrow microenvironment composed of both hematopoietic
and non-hematopoietic cells surrounded by an extracellular matrix, in a ratio of 1:5000 for
LT-HSC and 1:1000 for ST-HSC and multipotent progenitors in the murine bone marrow.
Other components of the bone marrow are mesenchymal stem and progenitor cells, os-
teoprogenitor cells, perivascular stromal cells, endothelial cells, adipocytes, unmyelinated
Schwann cells and cells of the immune system. The spatial organization and composition of
these populations play a pivotal role in the regulation of HSCs’ maintenance and fate deci-
sions. Although the specific location of HSCs still remains not fully clear, they preferentially
localize in perisinusoidal areas [15,16]. Indeed, bone marrow is highly vascular, with arteri-
oles close to the endosteum and sinusoids winding through a network of reticular stromal
cells. Especially endothelial cells and perivascular stromal cells support HSCs maintenance
and long-term repopulating activity by producing factors such as chemokine CXCL12,
angiopoietin and stem cell factor (SCF) [17–19]. Additionally, HSC niche maintenance relies
on osteolineage, adipocytes and macrophages [20–22]. A detailed characterization of the
other bone marrow niche components can be found in dedicated reviews [23,24].

3. Circular RNAs and Their Role in Hematopoiesis

The hematopoietic process is tightly regulated through gene expression modulation in
HSCs and progenitor cells. It is well known that diverse differentiation programs are trig-
gered by both specific transcription factors and non-coding RNAs, such as long non-coding
RNAs (lncRNAs) and microRNAs (miRNAs) [25–27]. However, there is a need to better
understand the roles played by circular RNAs (circRNAs) in hematopoiesis. circRNAs are
covalently closed single-stranded molecules derived from back-splicing, non-canonical
splicing in which flanking regions of one or multiple exons are joined together. Previously
thought to result from random splicing errors, circRNAs were proven to be conserved
and associated with inverted repeated Alu sequences within the flanking introns [28].
RNA splicing occurs within the nucleus. During back splicing, the canonical spliceosomal
machinery recognizes the splice sites, and circularization can be direct or preceded by
the production of a long lariat. The entire process is usually regulated by RNA-binding
proteins. For instance, during epithelial to mesenchymal transition, the RNA-binding
protein Quaking induces the formation of numerous circRNAs [29]. Human circRNAs are
co-transcriptionally or post-transcriptionally produced, most of them containing two or
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three exons. The vast majority of circRNAs have no introns and undergo nuclear export
(Figure 1A). Notably, circularization competes with linear splicing, strongly suggesting
that circRNAs have a role in gene regulation [30]. Indeed, several biological functions
of circRNAs have been identified so far: they can act as “sponges” for miRNA or RNA-
binding proteins, activate gene transcription and, in some cases, they are also translated
into proteins in a N 6-methyladenosine (m6A)-dependent manner (Figure 1B) [31]. An
interesting work by Pengyan Xia and colleagues showed that maintenance of LT-HSCs
homeostasis is regulated by a circRNA named cia-cGAS. It binds the DNA sensor cGAS in
the nucleus, thus blocking its synthase activity. Indeed, circRNA cia-cGAS deficiency leads
to increased levels of type I IFNs and LT-HSCs cycling. Therefore, since cia-cGAS is highly
expressed in dormant HSCs and protects them from c-GAS-mediated exhaustion, it is a key
factor in keeping the balance between HSCs’ quiescent and cycling state [32]. Nicolet and
colleagues identified more than 59,000 circRNAs in hematopoietic cells, providing the first
comprehensive analysis of circRNAs expression in these cells [33]. Importantly, they found
that circRNAs are cell-type specific, and their expression levels are altered during terminal
hematopoietic differentiation. Differentiated cells, especially erythrocytes and platelets,
produce more circRNAs than progenitor cells. Just recently, this group also showed that
there is limited correspondence between circRNAs expressed in mature cells and those
found in their progenitor cells, suggesting that differential expression of circRNAs is a
regulated process rather than mere accumulation. Importantly, by comparing the expres-
sion of circRNAs with the translation efficiency of the counterpart mRNA, they found a
correlation only in a small percentage (0.04%) of cases. Hence, the ways through which
these molecules are regulated still need to be elucidated [34]. Nevertheless, these findings
indicate a remarkable role for circRNAs in the modulation of hematopoietic differentiation.Non-Coding RNA 2022, 8, x FOR PEER REVIEW 4 of 16 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. A. circRNAs biogenesis. circRNAs are generated by unconventional splicing, named 
back-splicing, in which the 3’ end of an exon binds the 5’ end of an upstream exon, forming a co-
valently closed molecule. circRNAs can be divided into three main classes: single or multi-exonic 
circRNAs (on the left), which can translocate in the cytoplasm; exonic-intronic circRNAs (in the 
middle) and intronic-circRNAs (on the right), which are retained in the nucleus. B. circRNAs func-
tions. CircRNAs can regulate transcription, interacting with Polymerase-II (Pol II) in the nucleus. 
In the cytoplasm, they can act as microRNA sponges or RBP sponges, and they can also be trans-
lated thanks to the presence of an IRES or m6A modification. C. circRNAs in AML. Representation 
of some circRNAs involved in AML progression: circNPM1 acts as miR-345–5p sponge, increasing 
FZD5 expression, a well-known oncogene; circPAN3, sponging miR-153-5p and miR-183-5p, leads 
to increased autophagy and inhibits apoptosis; circRNF220 induces MYSM1 and IER2, affecting 
hematopoiesis and promoting cancer progression and metastasis; circMYBL2 favors mRNA FLT3 
translation by binding PTBP1. 
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Figure 1. (A) circRNAs biogenesis. circRNAs are generated by unconventional splicing, named
back-splicing, in which the 3’ end of an exon binds the 5’ end of an upstream exon, forming a
covalently closed molecule. circRNAs can be divided into three main classes: single or multi-exonic
circRNAs (on the left), which can translocate in the cytoplasm; exonic-intronic circRNAs (in the
middle) and intronic-circRNAs (on the right), which are retained in the nucleus. (B) circRNAs
functions. CircRNAs can regulate transcription, interacting with Polymerase-II (Pol II) in the nucleus.
In the cytoplasm, they can act as microRNA sponges or RBP sponges, and they can also be translated
thanks to the presence of an IRES or m6A modification. (C) circRNAs in AML. Representation of
some circRNAs involved in AML progression: circNPM1 acts as miR-345–5p sponge, increasing
FZD5 expression, a well-known oncogene; circPAN3, sponging miR-153-5p and miR-183-5p, leads
to increased autophagy and inhibits apoptosis; circRNF220 induces MYSM1 and IER2, affecting
hematopoiesis and promoting cancer progression and metastasis; circMYBL2 favors mRNA FLT3
translation by binding PTBP1.

4. AML and the Leukemic BM Niche

The starting point of AML onset is the progressive addition of several leukemia-
associated mutations in HSCs, which become pre-leukemic HSCs (pre-LSCs) [35]. The
conversion from pre-LSCs to fully transformed leukemic stem cells (LSCs) or leukemia-
initiating cells (LICs) is a multistep process in which sequential aberrations in transcription,
epigenetic regulation and expression of metabolic factors are acquired over the years [36].
While both pre-LSCs and LSCs maintain their self-renewal capacity, they also generate
leukemic blasts, which form the bulk of the tumor [37]. In addition to the study of genetic al-
terations in HSCs resulting in leukemogenesis, a new perspective focusing on alterations of
the bone marrow niche has been emerging in the last few years. Indeed, germline mutations
in stromal cells can promote dysregulated hematopoiesis, and they are sufficient for the
development of AML [38]. Although niche genetic alterations that predispose to hematolog-
ical malignancies were identified, these studies have been held in mouse models, and the
mechanisms occurring in patients need to be elucidated. On the other hand, both leukemia
progression and development of therapy resistance occur through a deep remodeling of
the bone marrow microenvironment (Figure 2). For instance, neo-angiogenesis is driven by
enhanced expression of vascular endothelial growth factor (VEGF) and angiopoietin in both
leukemic and bone marrow stromal cells [39,40]. Moreover, patient-derived xenografts
(PDX) have a remarkable vascular leakiness, and this abnormal permeability strongly
affects drug delivery, proving to be associated with poor prognosis in AML patients [41].
Another strategy used by leukemic cells to invade the bone marrow microenvironment is
the disruption of healthy hematopoietic stem and progenitor cells reservoir [42]. Moreover,
immune escape is a critical point for leukemia progression and therapy resistance. To this
aim, AML blasts implement several strategies: they downregulate surface membrane MHC
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class I and II molecules to avoid immune recognition, induce NK and T cells dysfunction,
favor immunosuppressive Treg cells and alter cytokine milieu in a pro-leukemic way. Of
note, mesenchymal stem cells secrete factors so as to foster immunosuppression and recruit
Treg and M2 macrophages [43,44]. Compared to their normal counterpart, leukemic cells
have an altered energy metabolism, with higher mitochondrial mass and oxygen consump-
tion but no concomitant increase in respiratory chain complex activity. Since AML blasts
strongly rely on fatty acid oxidation (FAO) and oxidative phosphorylation (OXPHOS), they
are susceptible to oxidative metabolic stress [45,46]. Likewise, some solid tumors and AML
cells exploit adipocytes as a source of fatty acids (FA) [47]. Moreover, it was demonstrated
that an increase in AML mitochondrial mass is due to the direct uptake of functional
mitochondria from bone marrow stromal cells. This mitochondria transfer, which increases
ATP production in leukemic blasts, is remarkably enhanced during chemotherapy and
confers chemoresistance [48–50]. Within the bone marrow, exosomes play a critical role
in cell-to-cell communication and in AML-mediated microenvironment remodeling in
order to create a self-strengthening leukemic niche [51,52]. These vesicles transfer different
bioactive molecules such as proteins, lipids, DNA and RNA. Since hypoxia, nutrients
deprivation and acidosis render bone marrow an extremely hostile environment even for
leukemic blasts, they cope with ER stress conditions by activating the unfolded protein
response (UPR) [53] and it was shown that AML extracellular vesicles (AML-EVs) transfer
ER stress to bone marrow mesenchymal stem cells, thus creating a leukemia permissive
microenvironment [54]. Ultimately, the anchorage of leukemic stem cells to the niche also
plays an essential role in AML pathogenesis [55,56].
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Figure 2. Interaction between AML cells and the bone marrow microenvironment. Within the niche,
AML cells communicate with mesenchymal stem cells and endothelial cells in order to increase
bone marrow vascularization and alter vascular permeability (yellow panel); Moreover, AML cells
strongly reprogram MSCs, leading to a self-reinforcing niche at the expense of normal hematopoiesis
(pink panel); Leukemic cells escape the immune system and recruit anti-inflammatory components
such as Treg and M2 macrophages (light blue panel); AML cells exploit stromal cells to enhance their
antioxidant defenses and adipocytes as a source of cellular energy (green panel).

5. circRNA in AML Pathogenesis

Several circRNAs were found to play oncogenic or tumor-suppressive roles, and aber-
rant expression was detected in both solid and hematopoietic cancers [57], even though, in
many cases, the underlying mechanisms and regulatory networks are still to be clarified.
For example, it was shown that N6-methyladenosine (m6A) modification has an important
regulatory function for circRNAs in AML [58]. Table 1 shows the annotated circRNAs im-
plicated in AML so far. The vast majority of these circRNAs act as miRNA sponges; they are
defined as competing for endogenous RNAs (ceRNAs) that, by binding miRNAs, compete
for their binding with the target mRNAs and hinder their regulatory function. Therefore,
circRNAs can alter gene expression regulation, hence contributing to AML pathogenesis.

Table 1. Updated list of circRNAs involved in AML onset, progression and therapy resistance.
Arrows ↑ and ↓ stand for upregulation and downregulation respectively.

Name Gene of Origin Levels Pathway Targeted/
Mode of Action Impact Ref.

f-circPR PML-RARA de novo in AML AKT signaling Increased cell proliferation and
chemotherapy resistance [59]

f-circM9 MLL-AF9 de novo in AML MAPK and AKT signalling Increased cell proliferation and
chemotherapy resistance [59]

circ ANAPC7
hsa_circ_101141 ANAPC7 ↑ in AML miR181 Prognostic biomarker [60]

circNPM1
hsa_circ_0075001 NPM1 ↑ in AML mir181 and TLR signalling

miR-345-5p/FZD5
Hematopoietic differentiation

Chemotherapy resistance [61,62]

circDLEU
hsa_circ_0000488 DLEU ↑ in AML miR496/PRKACB Increased cell proliferation and

apoptosis inhibition [63]

circANXA2
hsa_circ_0035559 Annexin A2 ↑ in AML miR-23a-5p and

miR-503-3p
Prognostic biomarker and
chemotherapy resistance [64]

circVIM Vimentin ↑ in AML Unknown Diagnostic and
prognostic biomarker [65]

circHIPK2 HIPK2 ↓ in AML (APL) miR-124-3p/CEBPA Prognostic biomarker and
ATRA-induced differentiation [66]

circPAN3
hsa_circ_0100181 PAN3 ↑ in AML ADM resistant AMPK/mTOR

miR-153-5p/XIAP Chemotherapy resistance [67,68]

hsa_circ_0004277 WDR7 ↓ in AML miR-134-5p/SSBP2 Diagnostic and
prognostic biomarker [69,70]

hsa_circ_0003602 SMARCC1 ↑ in AML miR-502-5p/IGF1R Increased cell proliferation and
apoptosis inhibition [71]
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Table 1. Cont.

Name Gene of Origin Levels Pathway Targeted/
Mode of Action Impact Ref.

circMYBL2
hsa_circ_0006332 MYBL2 ↑ in AML FLT3-ITD+ PTPB1/FLT3 translation Increased cell proliferation and

resistance to quizartinib [72]

hsa_circ_0009910 MFN2 ↑ in AML and
AML exosomes

miR-5195-3p/GRB10
miR-20a-5p

Increased cell proliferation and
apoptosis inhibition [73,74]

hsa_circ_0121582 GSK3beta ↓ in AML miR-224/GSK3β/Wnt/βcatenin Inhibited cell proliferation [75]

circFOXO3 FOXO3 ↓ in AML Apoptotic pathways
Increased apoptosis

Diagnostic and
prognostic biomarker

[76]

circRNF220
hsa_circ_0012152 RNF220 ↑ in AML relapse miR30a/MYSM1-IER2

Increased cell proliferation and
apoptosis inhibition, biomarker to

predict relapse
[77]

hsa_circ_100290 SLC30A7 ↑ in AML miR-203/Rab10 Increased cell proliferation and
apoptosis inhibition [78]

circRNF13
hsa_circ_0001346 RNF13 ↑ in AML miR-1224-5p Increased cell proliferation and

apoptosis inhibition [79]

hsa_circ_104700 PTK2 ↑ in AML miR-330-5p/FOXM1 Increased cell proliferation and
apoptosis inhibition [80]

hsa_circ_002483 PTK2 ↑ in AML miR-758-3p/MYC Increased cell proliferation and
apoptosis inhibition [81]

hsa_circ_0005774 CDK1 ↑ in AML miR192-5p/ULK1 Increased cell proliferation and
apoptosis inhibition [82]

circCRKL CRKL ↓ in AML miR-196a-5p/p27
miR-196b-5p/p27 Inhibited cell proliferation [83]

circPOLA2 POLA2 ↑ in AML miR-34a Increased cell proliferation [84]

hsa_circ_0079480 ISPD ↑ in AML miR-654-3p/HDGF
Increased cell proliferation and

apoptosis inhibition
Prognostic biomarker

[85,86]

circKLHL8 KLHL8 Associated with outcome miR-155/CDKN1-CDKN2-BCL6-
TLR4-CEBPD-CEBPB Prognostic biomarker [87]

circFBXW7 FBXW7 ↓ in AML Signal transduction Leukocyte
differentiation Tumor suppressor [87]

circ_KCNQ5
hsa_circ_0004136 KCNQ5 ↑ in AML miR-142

miR-622/RAB10
Increased cell proliferation and

apoptosis inhibition [88,89]

hsa_circ_0004520 VAV2 ↑ in AML PLXNB2, VEGFA Angiogenesis
Prognostic biomarker for EMI [90]

hsa_circ_0000370 FLI-1 ↑ in AML FLT3-ITD+ miR-1299/S100A7A Prognostic biomarker [91]

circ_0040823 BANP ↓ in AML miR-516b/PTEN Inhibited cell proliferation and
increased apoptosis [92]

circPLXNB2 PLXNB2 ↑ in AML PLXNB2
Increased cell proliferation and
migration, apoptosis inhibition
Prognostic biomarker for EMI

[93]

circ_0002232 PTEN ↓ in AML miR-92a-3p/PTEN Diagnostic and
prognostic biomarker [94]

circ_0012152 RNF220 ↑ in AML miR-625-5p/SOX12 Increased cell proliferation and
apoptosis inhibition [95]

circ_SFMBT2
hsa_circ_0017639 SFMBT2 ↑ in AML miR-582-3p/ZBTB20 Increased cell proliferation,

migration and invasion [96]

circ-PVT1 PVT1 ↑ in AML c-Myc and BCL-2? Prognostic biomarker [97]

hsa_circ_0001947 AFF2 ↓ in AML miR-329-5p/CREBRF Inhibited cell proliferation
Prognostic biomarker [98]

hsa_circ_0075451 GMDS ↑ in AML miR-330-5p/PRDM16
miR-326/PRDM16 Prognostic biomarker [99]

AML is characterized by both chromosomal rearrangements and gene mutations [100].
Translocations are very often present, leading to the production of mutant fusion pro-
teins. An intriguing work by Guarnerio et al. showed that the well-established transloca-
tions forming the oncoproteins PML-RARA and MLL-AF9 also produce fusion circRNAs
(f-circRNAs), named f-circPR and f-circM9, respectively [59]. These f-circRNAs, derived
from the aberrant conjunction of exons from different genes, contribute to HSCs trans-
formation, leukemia progression and therapy resistance. Regarding genetic mutations,
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the most common genetic lesion in AML affects the gene encoding for nucleophosmin-1
(NPM1). Mutated NPM1 protein loses its nucleolar localization, and it is delocalized in the
cytoplasm, where it is responsible for the block of myeloid cell differentiation [101]. There
is a circRNA encoded by the NPM1 gene, circNPM1, that is highly expressed by AML
patients and cell lines and is associated with lower expression of members of the Toll-Like
Receptors family, which are involved in normal hematopoietic differentiation. The effects
of circNPM1 on TLR pathway genes could be mediated through miR181 [61]. Moreover,
another study showed that circNPM1 silencing counteracted AML chemoresistance to
Adriamycin. circNPM1 is a ceRNA for miR-345-5p, leading to increased expression of
the miR-345-5p target gene FZD. Notably, FZD5 is an oncogene in various cancers. Since
circNPM1 serum levels are high in AML patients, it might be a potential biomarker for
drug resistance in AML [62]. Another protein frequently mutated in AML is the tyrosine
kinase receptor FLTInternal Tandem Duplications of its juxtamembrane domain generate
the oncoprotein FLT3-ITD, which is associated with very poor prognosis [102]. It was
demonstrated that circMYBL2—derived from cell cycle checkpoint gene MYBL2—is upreg-
ulated in AML patients carrying FLT3-ITD mutation. This circRNA is crucial in promoting
FLT3 mRNA translation by recruiting the RNA binding protein PTBP. Moreover, circMYBL2
silencing impairs leukemic cells proliferation in vivo and overcomes acquired resistance to
quizartinib. Therefore, circMYBL2 may be a potential therapeutic target for FLT3-ITD AML
patients [72]. Another interesting example is circPAN3, deriving from the gene encoding
for PAN3 exonuclease. This circRNA is highly expressed in both AML cell lines and pri-
mary blasts resistant to doxorubicin. It promotes autophagy through the AMPK/mTOR
pathway, thus conferring drug resistance [67]. Autophagy was found to be a mechanism for
resistance in a range of solid tumors. Indeed, circPAN3 silencing can reduce autophagy and
restore drug sensitivity. Moreover, an additional study showed that circPAN3 action might
depend on miR-153-5p/miR-183-5p-XIAP axis [68]. XIAP is an anti-apoptotic protein that
binds caspases 3, 7 and 9, leading them to proteasome-mediated degradation. However,
circPAN3 downregulation decreases XIAP levels, and this could be due to sponging activity
on miR-153-5p and miR-183-5p. These findings confirm that circPAN3 could be a predictor
for treatment efficacy and also a therapeutic target in chemoresistance. Another circRNA
related to AML originates from the gene RNF220, encoding for a RING domain E3 ubiquitin
ligase that mediates ubiquitination of multiple targets. circRNF220 is especially expressed
in pediatric AML, and it is a predictor of relapse. It acts as a sponge for miR-30a, thus
increasing levels of its target mRNAs, including MYSM1 and IER. Interestingly, MYSM1
is a key transcription factor in hematopoiesis, while IER2 is upregulated in many tumors
and is associated with cancer progression and metastasis. Therefore, circRNF220 could be
useful as a prognostic marker, particularly in terms of relapse prediction [77] (Figure 1C).

6. circRNA in Leukemic Bone Marrow Niche

Although some circRNAs identified so far definitely lack a full description of the
molecular mechanisms that render them pro-oncogenic or tumor-suppressive molecules,
their association with AML development, progression and relapse has been proven (see
Table 1). It is currently not clear whether these circRNAs are directly involved in the
interplay between AML and the bone marrow microenvironment, but since leukemic blasts
deeply change the composition of the niche to their advantage, the idea that circRNAs
may be a part of this cell–cell communication is definitely intriguing. In support of this,
enrichment of circRNAs in exosomes was reported in various diseases, including can-
cer [103]. In different types of solid tumors, it was demonstrated that circRNAs have a
prominent role in regulating cancer cell metabolism, in particular, glycolysis, fatty acid
oxidation, oxidative respiration and glutamine production [104]. Moreover, it is known that
some circRNAs strongly interact with the tumor microenvironment in order to promote
different steps of metastasis, including cancer cell migration, invasion, intravasation and
neo-angiogenesis [105]. There is a reason to think that circRNAs involved in these processes
may be packaged in exosomes. In regard to AML, the key role of extracellular vesicles
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in implementing bone marrow niche remodeling is well-established. It was shown that
levels of plasma-derived exosomes were higher in newly diagnosed AML patients and
that they contained a different cargo compared to normal cell-derived exosomes. No-
tably, the exosome amount was decreased during remission [106]. It is noteworthy that
hsa_circ_0009910 was found upregulated in AML cells and especially in AML-derived
exosomes. This circRNA exerts an oncogenic role by acting as a miRNA sponge in the
miR-5195-3p-GRB10 axis, in which GRB10 is an adapter protein that is involved in aberrant
proliferation in FLT3-ITD positive AML. The authors proposed that hsa_circ_0009910 may
be shuttled via exosomes to surrounding AML cells in order to promote their malignant
properties [73]. In view of the evidence concerning AML resistance mechanisms uncov-
ered so far, the role of circRNAs in intercellular communication within the leukemic bone
marrow niche needs to be further investigated. These studies could provide insights into
new therapeutic opportunities aimed at avoiding relapse of the disease. Moreover, in
addition to the accumulation within the bone marrow, in some cases, leukemic cells can
infiltrate other organs. This phenomenon is called Extramedullary Infiltration (EMI), and
it is quite common, with myeloid sarcoma and leukemia cutis appearing in 1.4–9% and
15% of AML patients, respectively [107]. It is known that EMI is often associated with
poor prognosis and relapse/refractory AML. An interesting paper shows that EMI and
non-EMI AML samples have a different circRNA/miRNA/gene regulatory network, with
circRNAs in EMI involved in cell adhesion, migration, signal transduction and cell–cell
communication [90]. In particular, hsa_circ_0004520, which increases PLXNB and VEGFA
levels, could promote angiogenesis.

7. Conclusions

The list of circRNAs involved in AML has been increasing fast in the very last few years.
This is promising in the view of new therapeutic approaches, but it is essential to deal with
some critical limitations. A complete and updated database and a unified nomenclature
for circRNAs should be generated to avoid confusion in their classification. CircBase is a
useful tool in which merged data sets of circRNAs are freely accessible [108]. Other strong
bioinformatics tools are circIMPACT and CRAFT, which are able to identify regulatory
networks governed by circRNAs and produce functional predictions [109,110]. From
present studies, several circRNAs could be potential diagnostic or prognostic biomarkers
for AML. Their particular structure renders them much more stable than their linear cognate
RNA. Their presence both in the bone marrow and in body fluids, such as blood and urine,
is also a remarkable point, supporting their use as biomarkers. Regarding circRNAs
mechanisms of action, the vast majority of them have been shown to act as miRNA sponges.
However, the assessment of copy number and of the number of miRNA binding sites
is essential for carrying out these functional studies. Indeed, a rare circRNA with many
miRNA binding sites could be equally effective as miRNA sponges as an abundant one
with few miRNA binding sites. In order to measure the copy number of circRNAs with
high accuracy, quantitative PCR or digital PCR should be used. Moreover, the assessment
of diagnostic potential through specific tests is another important point [111]. Regarding
upregulated circRNAs in AML and their application as therapeutic targets, the use of
antisense oligomers (ASOs) is a valuable option. However, ASOs need to target the junction
sequence, specific for circRNA; otherwise, parental linear RNA silencing occurs as a side
effect. An interesting alternative to avoid off-target effects could be the use of circular
siRNAs [112]. For downregulated circRNAs, overexpression could be obtained through
exogenous delivery methods such as nanocarriers and nanoparticles. A novel method
based on ferritin nanoparticles, which deliver nucleic acids specifically into AML cells, was
recently developed [113].

The study of pro-survival strategies implemented by AML during both progression
and development of therapy resistance is tangled. Scientists have only recently approached
the investigation of altered AML niche as a mine of information about leukemia necessities
and vulnerabilities. Crosstalk between AML and the bone marrow microenvironment
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occurs through a complex mutual exchange of molecular signals, hence establishing a
symbiotic relationship that allows disease progression and chemoresistance. circRNAs are
likely to be involved in this process. Deep knowledge of circRNAs transport within and
outside the cell is necessary in order to clarify their involvement in cell–cell communication.
Future evaluation of circRNAs biological mechanisms will shed light on new promising
strategies for AML treatment.
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