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abstract

PURPOSE Patients with neuroblastoma in molecular remission remain at considerable risk for disease re-
currence. Studies have found that neuroblastoma tissue contains adrenergic (ADRN) and mesenchymal (MES)
cells; the latter express low levels of commonly used markers for minimal residual disease (MRD). We identified
MES-specific MRD markers and studied the dynamics of these markers during treatment.

PATIENTS AND METHODSMicroarray data were used to identify genes differentially expressed between ADRN
and MES cell lines. Candidate genes were then studied using real-time quantitative polymerase chain re-
action in cell lines and control bone marrow and peripheral blood samples. After selecting a panel of markers,
serial bone marrow, peripheral blood, and peripheral blood stem cell samples were obtained from patients
with high-risk neuroblastoma and tested for marker expression; survival analyses were also performed.

RESULTS PRRX1,POSTN, and FMO3mRNAswere used as a panel for specifically detectingMESmRNA in patient
samples. MES mRNA was detected only rarely in peripheral blood; moreover, the presence of MES mRNA in
peripheral blood stem cell samples was associated with low event-free survival and overall survival. Of note, during
treatment, serial bone marrow samples obtained from 29 patients revealed a difference in dynamics between MES
mRNA markers and ADRN mRNA markers. Furthermore, MES mRNA was detected in a higher percentage of
patients with recurrent disease than in those who remained disease free (53% v 32%, respectively; P = .03).

CONCLUSIONWe propose that themarkers POSTN and PRRX1, in combination with FMO3, be used for real-time
quantitative polymerase chain reaction–based detection of MES neuroblastoma mRNA in patient samples
because these markers have a unique pattern during treatment and are more prevalent in patients with poor
outcome. Together with existing markers of MRD, these new markers should be investigated further in large
prospective studies.
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INTRODUCTION

Despite intensive multimodality therapy, patients with
high-risk neuroblastoma often experience a relapse.1-7

Because the bone marrow (BM) is a common site of
recurrence, residual neuroblastoma cells are believed
to be the major cause of relapse.8

Real-time quantitative polymerase chain reaction (RT-
qPCR) provides a highly sensitive means of detecting
minimal residual disease (MRD) in peripheral blood
(PB), BM, and peripheral blood stem cells (PBSCs).9,10

Although the detection of MRD markers in high-
risk neuroblastoma has been correlated with poor
outcome,11-19 many patients who become negative for
these markers still experience relapse.11

Epithelial-to-mesenchymal transition (EMT)—the pro-
cess by which epithelial cells transform to a mesen-
chymal (MES) phenotype—is associated with tumor
progression, metastasis, and therapy resistance in
several cancer types.20-23 For example, in patients with
breast cancer, the presence of circulating MES tumor
cells is associated with disease progression and poor
outcome22; moreover, MES neuroblastoma cells are
enriched in post-treatment and recurrent tumors and
are relatively chemoresistant in vitro.24-27 Of note, these
cells do not express the commonly used neuroblas-
toma markers PHOX2B or DBH.24

MRD marker selection often is primarily based on
expression levels in adrenergic (ADRN) cell lines
and primary neuroblastoma tumors.10,15,28,29 We
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identified neuroblastoma-specific MES mRNA markers
for detecting MES neuroblastoma cells and then ex-
amined the dynamics of these MES markers in samples
obtained from patients with high-risk neuroblastoma.

PATIENTS AND METHODS

Cell Lines and Cell Culture

SH-EP2, SH-SY5Y, IMR-32, 691-MES, and 691-ADRN
cells were cultured as previously described.30,31

Microarray Analysis

Gene expression analysis to detect MES-specific and
mesenchymal stromal cell (MSC)–discriminating candidate
markers can be found in the Appendix.

Patients and Samples

We analyzed samples (stored remains) obtained from 38
patients with high-risk neuroblastoma treated in accordance
with the German NB2004 or Dutch NBL2009 trial32,33 (Data
Supplement). Written informed consent was provided by the
patients’ parents or guardians. The study was approved by
the medical ethics committees (Academic Medical Center,
Amsterdam, the Netherlands; MEC07/219#08.17.0836)
and the University of Cologne. Clinical samples were col-
lected in EDTA tubes, processed within 24 hours, transferred
to PAXgene Blood RNA Tubes (QIAGEN, Venlo, the Neth-
erlands), and stored at −20 °C. DNA was isolated from
mononuclear cells stored in 10%dimethylsulfoxide at−180 °C,
and hypermethylated RASSF1A RT-qPCR was performed
as described previously.34

Control Samples and Isolation of Nonpathologic

Cell Subsets

To assess expression patterns of candidate markers in
control tissue, pediatric BM samples of patients with leu-
kemia in molecular remission (at least 3 months after

therapy; n = 48), PB samples from healthy volunteers (n =
104), and PBSC samples from children treated for a disease
other than neuroblastoma (n = 29) were tested as described
previously.28 Different PB populations were isolated as de-
scribed previously.10 Cultured MSCs35 were provided by
Carlijn Voermans, PhD, at the Department of Hematopoiesis,
Sanquin Blood Supply Foundation (Amsterdam, the Neth-
erlands). All samples were obtained with informed consent.

RNA Extraction and RT-qPCR

RNA was isolated from clinical and control samples using
the PAXgene Blood RNA Kit (QIAGEN). RNA was isolated
from cell lines using TRIzol (Invitrogen, Carlsbad, CA)
according to the manufacturer’s instructions. Methods for
cDNA synthesis and RT-qPCR can be found in the Ap-
pendix. Expression was normalized to GUSB expression
using the following equation: normalized threshold cycle
(dCt) = (CtGUSB − Ctmarker).

Data Analysis

For the newly identified MES markers, a threshold for pos-
itivity in control BM, PB, and PBSC samples was determined
on the basis of their expression in each sample (see Results).
In the PBSC cohort, survival was analyzed using the Kaplan-
Meier method, and significant differences between the es-
timated survival curves were analyzed using the log-rank test.
Fisher’s exact test was used to analyze the differences inMES
marker positivity between the relapse and survivor groups. All
statistical analyses were performed using SPSS version 23
software (IBM Corporation, Chicago, IL).

RESULTS

Expression of Commonly Used MRD Markers in a Panel of

Neuroblastoma Cell Lines

The expression of commonly used MRD markers
(PHOX2B, TH, DDC, DBH, GAP43, CHRNA3, and

CONTEXT
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GD2S)10,36,37 was measured in two isogenic neuroblastoma
cell line pairs (691-MES/691-ADRN and SH-EP2/SH-SY5Y)
and in one ADRN cell line (IMR-32). Compared with the
corresponding ADRN cell lines, the MES cell lines had
significantly lower, albeit variable, expression of six
markers; in contrast, GD2S was expressed at high levels in
both the MES and the ADRN cell lines (Fig 1).

Identification of Candidate MES Markers for MRD Testing

To detect MES cells in the context of MRD, we compared
the gene expression data between pairs of isogenic cell
lines and then selected the genes that were significantly
upregulated in the MES cell lines compared with the
corresponding ADRN cell line and expressed at high levels
in MES cells (defined as . 400 units). Subsequently, we
filtered for genes with a minimal expression level in PB data
sets, which resulted in an initial list of 14 candidate genes
(Fig 2A). All 14 of these genes were included in the MES
gene signature reported recently by van Groningen et al24

(Fig 2B). Although PRRX1was not included in this initial list
because its expression in 700-MES cells was less than 400,
we included this gene in our additional analyses because
PRRX1 was reported as an immunohistochemistry marker
for MES neuroblastoma.24

Validation of Candidate Markers

Using RT-qPCR with SYBR Green I dye (Applied Bio-
systems, Foster City, CA), we examined the expression of all
15 candidate markers in MES cells (691-MES and SH-
EP2), ADRN cells (691-ADRN, SH-SY5Y, and IMR-32),
and a control PB sample (Data Supplement). As a result of
culture problems, 700-ADRN/700-MES was not used for
RT-qPCR testing. Our analysis revealed three genes with
high expression in MES cells, a significant difference in
expression between the MES and ADRN cell lines, and
either low or no measurable expression in the control PB
sample; these three genes were POSTN, PRRX1, and
COL3A1, which encode the proteins periostin, paired re-
lated homeobox 1, and collagen type III α1, respectively.

RT-qPCR using TaqMan probes validated expression of
these markers, which demonstrated high POSTN, PRRX1,
and COL3A1 expression in 691-MES and SH-EP2 and low
expression in 691-ADRN, SH-SY5Y, and IMR-32 (Fig 3A).
COL3A1 was then excluded because it did not adequately
discriminate between ADRN and MES cell lines and was
detected in the control PB samples.

Next, to set thresholds for defining positivity, we measured
the expression of POSTN and PRRX1 in normal hemato-
logic cells: control BM samples (n = 48), PB samples
(n = 104), and PBSCs (n = 29). We measured extremely
low expression (or no expression) of both genes in
control PBSCs. However, because both POSTN and
PRRX1 were expressed at variable levels in the control BM
and PB samples (Fig 3B), we examined their expression
levels in several subsets of hematologic cells and in MSCs
(Fig 3C). We found that both POSTN and PRRX1 were

robustly expressed in MSCs and, to a lesser extent, in
T cells; in contrast, POSTN was expressed at extremely low
levels in B cells. Taken together, these results suggest that
the presence of both POSTN and PRRX1 in control BM and
PB samples is likely the result of their expression in MSCs.

Identification of an MSC-Discriminating Marker

Next, we searched for a marker that can be used to dis-
criminate between MSCs and MES mRNA. Microarray
analysis identified 14 candidate genes that were highly
expressed in MSCs but poorly expressed both in MES cell
lines and in hematologic cells (not containingMSCs; Fig 4A;
Data Supplement). The specificity of these markers was
then tested using MSCs obtained from healthy individuals
(n = 2), neuroblastoma cell lines (n = 5), and control PB
samples (n = 2) using SYBRGreen I dye (Data Supplement).
Our analysis revealed that the FMO3 gene (encoding flavin-
containing monooxygenase 3) was the most promising
marker for discriminating between MSCs and MES cells.
Subsequent testing using an FMO3-specific TaqMan
probe confirmed high expression in MSCs (comparable to
the expression levels of PRRX1 and POSTN), low ex-
pression (or no expression) in all neuroblastoma cell lines
(Fig 4B), and no expression in hematologic subsets that
lacked MSCs.

Threshold for Positivity in BM, PB, and PBSCs

Because MSCs, and to a lesser extent, B cells and T cells,
express low levels of POSTN and PRRX1, we established
a threshold for positivity for MES mRNA detection in control
BM, PB, and PBSC samples. Forty-eight control BM
samples were analyzed for PRRX1, POSTN, and FMO3
expression (Data Supplement). In 77% of the control BM
samples (37 of 48), FMO3 expression was similar to or
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FIG 1. Summary of normalized expression levels of commonly used
minimal residual disease markers in a panel of neuroblastoma cell
lines. Normalized expression (dCt = CtGUSB − Ctmarker) is shown.
Mesenchymal (MES) cell lines are indicated in blue. Adrenergic
(ADRN) cell lines are indicated in red. Blue circles, SH-EP2; blue
squares, 691-MES; red squares, 691-ADRN; red circles, SH-SY5Y;
red diamonds, IMR-32.
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higher than POSTN and PRRX1; in contrast, POSTN and
PRRX1 expression levels were higher than FMO3 in the
remaining 11 control samples (. 1 dCt between FMO3 and
POSTN/PRRX1). On the basis of these results, the positivity
threshold for POSTN and PRRX1 was set to a dCt value
greater than −9 between POSTN/PRRX1 and GUSB and
a dCt value greater than 3 between POSTN/PRRX1 and

FMO3 (Fig 4C). The threshold for positivity for PB was
determined using 104 control PB samples (Data Supple-
ment) and was set to a dCt value greater than −12 for
PRRX1 and a dCt value greater than 10 for POSTN, with no
measurable expression of FMO3. Because the background
expression of both POSTN and PRRX1was extremely low in
control PBSC samples, each PBSC sample was scored as

N
or

m
al

ize
d 

Ex
pr

es
si

on
 (d

Ct
)

BM PB
PBSC

BM PB
PBSC

–10

–5

0

Negative

PRRX1POSTN

Pos NQR

B

N
or

m
al

ize
d 

Ex
pr

es
si

on
 (d

Ct
)

T ce
lls

M
onocy

te
s

B ce
lls

NK ce
lls

Gra
nulo

cy
te

s

M
SCs

–15

–10

–5

0

5

Negative

C

POSTN

PRRX1

COL3
A1

–20

–10

0

10

N
or

m
al

ize
d 

Ex
pr

es
si

on
 (d

Ct
)

Negative

A

FIG 3. Real-time quantitative polymerase chain reaction analysis of three putative mesenchymal (MES) markers in cell lines and control samples. (A) The
indicated genes were measured in MES cell lines (shown in blue) and adrenergic (ADRN) cell lines (shown in red). Blue squares, 691-MES; blue circles,
SH-EP2; red circles, SH-SY5Y; red squares, 691-ADRN; red diamonds, IMR-32. Normalized expression (dCt = CtGUSB − Ctmarker) is shown. (B) Normalized
expression (dCt = CtGUSB − Ctmarker) of POSTN and PRRX1measured in control bone marrow (BM), peripheral blood (PB), and peripheral blood stem cell
(PBSC) samples. Pos NQR indicates samples that were positive but not within the quantifiable range. (C) Normalized expression of POSTN (circles) and
PRRX1 (triangles) measured in the indicated hematologic cell types in control blood. MSC, mesenchymal stromal cell; NK, natural killer.

A

FMO3 POSTN PRRX1 PHOX2B

–15

–10

–5

0

5

N
or

m
al

ize
d 

Ex
pr

es
si

on
 (d

Ct
)

Negative

B

C POSTN PRRX1

BM
CtGUSB – CtPOSTN > –9 and
CtFMO3 – CtPOSTN > 3

CtGUSB – CtPRRX1 > –9 and
CtFMO3 – CtPOSTN > 3

PB
CtGUSB – CtPOSTN > –10 and
FMO3 negative

CtGUSB – CtPRRX1 > –12 and
FMO3 negative

PBSC Quantifiable range and FMO3 negative Quantifiable range and FMO3 negative

Candidate
MSC marker

74 genes

14 genes

R2 and HaemAtlas

No or low expression in
   Whole blood
   Hematologic subgroups

R2 microarray

 MSCs
Neuroblastoma MES cell
lines

FIG 4. Identification of mesenchymal stromal cell (MSC)–specific markers. (A) Flowchart that shows the strategy used to identify MSC markers. (B)
Normalized expression (dCt = CtGUSB — Ctmarker) of FMO3, POSTN, PRRX1, and PHOX2B in MSCs and neuroblastoma cell lines. Mesenchymal (MES) and
adrenergic (ADRN) neuroblastoma cell lines are shown in blue and red, respectively. Blue squares, 691-MES; blue circles, SH-EP2; red circles, SH-SY5Y; red
squares, 691-ADRN; red diamonds, IMR-32; red triangles, MSC. (C) Thresholds for positivity in bone marrow (BM), peripheral blood (PB), and peripheral
blood stem cell (PBSC) samples.

Mesenchymal Minimal Residual Disease Panel in Neuroblastoma

JCO Precision Oncology 5



positive for MES mRNA if the Ct value was within the
quantitative range,38 with no measurable expression of
FMO3 (Fig 4C). We therefore tested whether these three
molecular markers combined with these established
thresholds can be used to detect neuroblastoma-derived
MES mRNA in patient samples.

Testing of the MES MRD Panel in Serial PB and PBSC

Samples From Patients With High-Risk Neuroblastoma

In 67 serial PB and 15 PBSC samples obtained from 12
patients with high-risk neuroblastoma, we measured
PHOX2B and MES mRNA (Data Supplement). PHOX2B
mRNA was detected in all diagnostic samples; this ex-
pression decreased to undetectable levels in most patients
during induction chemotherapy (IC) and was detected
again at relapse. In contrast, MES mRNA was detected in
only six samples; five of these samples were PBSCs, and of
note, these PBSC samples were negative for PHOX2B
mRNA.

Next, we examined PBSC samples obtained from 53 pa-
tients with high-risk neuroblastoma who were previously
studied using ADRN mRNA39 (Data Supplement). MES
mRNA and ADRN mRNA were detected in 15 (28%) and
six (11%) of 53 samples, respectively, with little overlap
(both MES and ADRN mRNA were detected in only one
sample). We previously reported that ADRN mRNA posi-
tivity is not correlated with outcome.39 However, here we
found that the presence of POSTN and/or PRRX1mRNA in
PBSC samples was significantly associated with low event-
free survival (P = .045) and low overall survival (P = .047;
Fig 5; Data Supplement). Moreover, consistent with our
previous findings, we found no correlation between ADRN
mRNA and outcome (Data Supplement).

Testing of the MES MRD Panel in BM From Patients With

High-Risk Neuroblastoma

We then examined the feasibility of using these RT-
qPCR–based markers to study response kinetics in BM
samples obtained from patients with high-risk neuroblas-
toma who experienced recurrent disease (n = 16) and from
those with high-risk neuroblastoma who remained in
complete remission (n = 13). Specifically, we compared
PHOX2B mRNA with MES mRNA measured in 95 serial
BM samples collected at diagnosis, during therapy, during
follow-up, and (where applicable) during relapse (Fig 6;
Data Supplement). PHOX2B mRNA was detected in all 27
diagnostic BM samples; this expression decreased during
IC treatment and was undetectable by the end of IC in most
patients (nine of 10 patients with complete remission and
10 of 15 patients who experienced relapse). In the patients
with recurrent disease, PHOX2B mRNA was detected
again in 75% (nine of 12 patients) with systemic relapse
(three of the 15 patients with recurrent disease had a local
relapse). In contrast, MESmRNAwas detected in only 14 of
27 patients at diagnosis, and this number increased to 18
during IC treatment. In analyzing the entire patient group,
we found that the prevalence of MES mRNA was signifi-
cantly higher in the patients who experienced relapse (29 of
54 samples; 53%) compared with the patients with com-
plete remission (13 of 41 samples; 32%; P = .03). Finally,
we identified two BM samples and one PBSC sample that
were negative for all ADRN mRNA markers but were
positive for MES mRNA. Moreover, we detected hyper-
methylated RASSF1A DNA, a marker for neuroblastoma,34

in these samples (Fig 6D). We conclude that the kinetics
differ between MES mRNA and ADRN mRNA, and MES
positivity is significantly higher in the BM of patients with
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recurrent disease. Finally, using the tumor-specific DNA
marker hypermethylated RASSF1A,34 we found that BM
samples that are both ADRN negative and MES positive
contain neuroblastoma cells.

DISCUSSION

RT-qPCR–based testing of BM of patients with neuro-
blastoma is a robust, highly sensitive, and clinically im-
portant method for detecting residual disease.19 However,
even high-risk patients who have low or undetectable post-
therapy mRNA levels can experience a relapse (48% to
60%).11,18

Cellular heterogeneity is a key feature of many cancer types
and is caused in part by EMT. We found that the commonly
used neuroblastoma MRD markers are expressed pre-
dominantly in ADRN cell lines but are rarely expressed in
MES cell lines. Thus, neuroblastoma cells that undergo
EMT may not be detected using the current MRD marker
panel. Ideally, an effective MRD marker should detect the
full spectrum of neuroblastoma cell types, including ADRN
and MES cells. We found that GD2S is expressed at high
levels in both MES and ADRN cell lines; however, its

specificity is limited because of its relatively high expression
in normal hematologic cells.10

To study the expression of MES-specificmarkers at the time
of diagnosis as well as the dynamic expression pattern
during follow-up, we identified a panel of markers that
includes POSTN and PRRX1, which have been linked to
EMT in several cancer types.24,40-44 An MRD marker ideally
should be expressed at extremely low levels in normal
hematologic cells. In our search for MES MRD markers, we
performed gene expression analysis. However, a possible
limitation of this approach is that dependent on the platform
used, the actual gene expression levels can be under-
estimated, for example, as in the case of PRRX1 expression
in one cell line used in our study. Moreover, genes that have
not been reported to be expressed in PB data sets may
indeed be expressed on the basis of RT-qPCR analysis. For
example, RT-qPCR analysis revealed that both POSTN and
PRRX1 are expressed at relatively weak levels in control BM
samples, whereas these genes are expressed at barely
detectable levels in control PB samples and control PBSCs.
A subset analysis revealed that the expression was primarily
the result of expression in MSCs; therefore, we added the
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discriminative marker FMO3 to our panel, as this gene is
expressed by MSCs but not by neuroblastoma cells. Of note,
although we ascribed the expression of POSTN and PRRX1
in control BM samples to MSCs, we cannot rule out the
possibility that other cell types, such as osteoblasts, may
also contribute to this expression. Nevertheless, because we
established strict thresholds for defining positivity, we be-
lieve that we avoided detection of normal stromal cells as
well as other cell types.

Because MES mRNA was rarely detected in PB samples
obtained from patients with high-risk neuroblastoma, its
clinical relevance remains unclear, and these results need
to be confirmed using a larger cohort. In contrast, MES
mRNA was detected in 28% of the PBSC samples obtained
from 53 patients and was significantly associated with low
event-free survival and overall survival. Of note, we pre-
viously reported a relatively low prevalence (9%) of ADRN
mRNA in PBSCs obtained from this cohort, and the
presence of ADRN mRNA was not associated with either
low event-free survival or low overall survival.39 Therefore,
we speculate that the MES cells that reside in the BM
circulate during stem-cell mobilization.

By focusing on serial BM samples in high-risk patients, we
found that MES mRNA and ADRN mRNA have distinct
temporal dynamics. Specifically, ADRN mRNA levels were
high at diagnosis and during relapse but decreased during
treatment, whereas MES mRNA levels increased during
treatment and were associated with patients who ultimately
had a relapse. This finding suggests that MES cells may
respond differently to therapy compared with ADRN neu-
roblastoma cells and may play an important role in disease
progression and/or recurrence; this notion is consistent
with reports that demonstrated the importance of EMT in

disease progression and treatment resistance.24,45 More-
over, our finding that MESmRNAwas detected in only 14 of
27 patients at diagnosis (and only rarely at relapse) is
consistent with the hypothesis that metastatic cells can
undergo an MES-to-epithelial conversion and thus revert to
an ADRN phenotype.46 The relatively small size of our
patient cohorts precluded extensive multivariable analyses
of survival; however, these exploratory findings suggest that
detection of MES markers in the BM and PBSCs during
treatment may have prognostic value.

DNA markers for MRD (and recently, circulating cell-free
DNA markers) have been shown to provide added value
when combined with RNA-based methods for monitor-
ing MRD and for measuring tumor-derived genetic
aberrations.34,47-49 On the other hand, we previously re-
ported discrepancies between RNA-based and DNA-based
markers using either methylated RASSF1A or patient-
specific DNA markers.34,47 We hypothesize that these
discrepancies reflect MES neuroblastoma cells that express
reduced levels of ADRN markers but can still be detected
using DNA markers.

In conclusion, we report that POSTN, PRRX1, and FMO3
mRNA can be used to detect MES neuroblastoma cells in
BM and PBSCs in patients with high-risk neuroblastoma. Of
note, we also found that MES-based markers have a dif-
ferent expression pattern during treatment than ADRN-
based markers. Moreover, although the MES markers
are more prevalent in the BM of patients who will ultimately
experience relapse, they are rarely present at the actual
time of relapse. To study the clinical implications and sig-
nificance of these finding, this new panel of MES markers
should be tested together with currently used MRD markers
in a large prospective study.
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APPENDIX

Microarray Analysis

Mesenchymal (MES)-specific candidate markers were identified by
comparing gene expression profiles (Human Genome U133 Plus 2.0
Array; Affymetrix, Santa Clara, CA) among the following isogenic pairs
of adrenergic (ADRN) and MES cell lines: 691-MES/691B-ADRN,
SH-EP2 (MES)/SH-SY5Y (ADRN), 700-MES/700-ADRN.24 Specifi-
cally, we screened for genes with a 1 log-fold or more difference in
expression (within each isogenic pair) and an expression level greater
than400 units, thereby selecting only highly expressedmarker genes. To
identify discriminating markers for normal mesenchymal stromal cells
(MSCs), the top 300 genes with the highest expression were used (Gene
Expression Omnibus: GSE68374); the genes with the highest fold dif-
ference between MSCs and MES neuroblastoma cell lines were then
selected. For each analysis, each gene’s expression was compared with
its corresponding expression level in reference blood samples obtained
from five different data sets (GSE13159, GSE17186, GSE10715,
GSE8121, and GSE6575); only genes that are not expressed in he-
matologic cell types (using HaemAtlas; Watkins et al: Blood 113:e1-e9,
2009)were selected. All gene expression analyseswere performed in the
genomics analysis and visualization platform R2 (http://r2.amc.nl).

RNA Extraction and Real-Time Quantitative Polymerase

Chain Reaction

cDNA was synthesized using 2 to 3 μg RNA, random hexamers
(25 μM; Invitrogen, Carlsbad, CA), deoxynucleotide triphosphates
(1 mM; Promega, Madison, WI), and Moloney murine leukemia virus
reverse transcriptase (100 U; Invitrogen) in a total reaction volume of
40 to 60 μL. The reverse transcription was then heat inactivated, and
the reaction volume was increased to 100 to 150 μL.

Primers and probes were designed using Primer Express version 1.5
software (Applied Biosystems, Foster City, CA) or Oligo 6 (Molecu-
lar Biology Insights, Colorado Springs, CO) and synthesized by
Eurogentec (Liège, Belgium; Data Supplement). The primer/
probe combinations for glucuronidase-β (GUSB), β-1,4-N-acetyl-
galactosaminyltransferase 1 (B4GALNT1, also known as GD2S),
paired-like homeobox 2B (PHOX2B), tyrosine hydroxylase (TH), dopa
decarboxylase (DDC), growth-associated protein 43 (GAP43), cho-
linergic receptor nicotinic α3 (CHRNA3), and dopamine β-hydroxylase
(DBH) have been published previously10,36,37 (Beillard et al: Leukemia
17:2474-2486, 2003). Real-time quantitative polymerase chain re-
action (RT-qPCR; maximum, 50 cycles) was performed using Step-
OnePlus (Applied Biosystems). The initial screening for candidate
molecular markers was performed using SYBR Green I dye (Applied
Biosystems) combined with a melting curve analysis followed by
specific TaqMan probes (Eurogentec). Expression was normalized to
GUSB expression using the following equation: normalized threshold
cycle (dCt) = (CtGUSB − Ctmarker). All RT-qPCR reactions were per-
formed in triplicate (except GUSB, which was performed in dupli-
cate), and mean values were used for analysis. A given sample was
scored as follows: positive if all three replicates were positive; positive
not quantifiable if amplification was observed in only one or two
replicates; and negative if the Ct value was 40 or greater (with the
exception of PHOX2B [Ct ≥ 50]).10,28 Samples with an insufficient
CtGUSB value (Ct . 25, corresponding to , 500 copies) were
excluded28,38 (Beillard et al: Leukemia 17:2474-2486, 2003). The
sensitivity and quantitative range of each RT-qPCR assay were
assessed using cDNA prepared from 691-MES cells and serially
diluted in water.
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