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Electrooculogram (EOG) is one of common artifacts in recorded electroencephalogram
(EEG) signals. Many existing methods including independent component analysis (ICA)
and wavelet transform were applied to eliminate EOG artifacts but ignored the possible
impact of the nature of EEG signal. Therefore, the removal of EOG artifacts still
faces a major challenge in EEG research. In this paper, the ensemble empirical mode
decomposition (EEMD) and ICA algorithms were combined to propose a novel EEMD-
based ICA method (EICA) for removing EOG artifacts from multichannel EEG signals.
First, the ICA method was used to decompose original EEG signals into multiple
independent components (ICs), and the EOG-related ICs were automatically identified
through the kurtosis method. Then, by performing the EEMD algorithm on EOG-related
ICs, the intrinsic mode functions (IMFs) linked to EOG were discriminated and eliminated.
Finally, artifact-free IMFs were projected to obtain the ICs without EOG artifacts, and
the clean EEG signals were ultimately reconstructed by the inversion of ICA. Both
EOGs correction from simulated EEG signals and real EEG data were studied, which
verified that the proposed method could achieve an improved performance in EOG
artifacts rejection. By comparing with other existing approaches, the EICA obtained the
optimal performance with the highest increase in signal-to-noise ratio and decrease in
root mean square error and correlation coefficient after EOG artifacts removal, which
demonstrated that the proposed method could more effectively eliminate blink artifacts
from multichannel EEG signals with less error influence. This study provided a novel
promising method to eliminate EOG artifacts with high performance, which is of great
importance for EEG signals processing and analysis.

Keywords: electrooculogram (EOG), artifacts, electroencephalogram (EEG), ensemble empirical mode
decomposition (EEMD), independent component analysis (ICA)
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INTRODUCTION

Electroencephalogram (EEG) can be measured from electrodes
placed on the human scalp and directly reflects electrical activity
linked to the central nervous system. As a convenient non-
invasive neuroimaging technology, EEG has been extensively
applied to the diagnosis or prediction of mental disorders (Rojas
et al., 2018; Wang et al., 2020), the evaluation of drug actions
(Cornelissen et al., 2015; Li et al., 2020), patient health monitoring
(Sivathamboo et al., 2019), the research of artificial intelligence
(Gandhi et al., 2014) and rehabilitation engineering (Kranczioch
et al., 2014), and so on. Unfortunately, recorded EEG signals
may be severely contaminated by power line interferences and
different types of artifacts, such as electrooculogram (EOG),
electromyogram (EMG), and electrocardiogram (ECG). Among
these artifact signals, EOG produced by eye blinks is the
most common artifact. The amplitude of EOG signal is much
higher than that of EEG. Besides, the energy of EOG is mainly
concentrated in the low frequency band, which overlaps the EEG
basic rhythm waves. EOG artifacts could lead to incorrect results
and bias in subsequent EEG analysis. Therefore, the removal of
EOG artifacts is a very essential and important preprocess step
for EEG signals.

A well-known adaptive filtering (ADF) approach based on
regression is applied to remove blink artifacts (He et al., 2004;
Wallstrom et al., 2004). It is assumed that the measured EEG
signals are composed by mixing true EEG and EOG linearly.
Once the proportion of EOG in the recorded EEG is estimated,
the EOG signals multiplied by the proportion are subtracted
from the raw EEG signals to obtain corrected EEG data.
But in fact, this method does not take into account a cross-
contamination between EEG and EOG signals. Another most
classic method based on the independent component analysis
(ICA) algorithm has been widely employed for artifacts rejection
in EEG signals. Many researches showed that EOG-related and
EOG-free independent components (ICs) could be successfully
separated from the contaminated EEG signals by using ICA
methods, respectively (Iriarte et al., 2003; Flexer et al., 2005; Li
et al., 2006). Thus, ICs associated with EOG artifacts could be
removed or replaced with zeros by manual or automatic ways
according to EEG waveforms, typical morphology, topographical
map, the methods of artifact detection, etc. On the one hand,
manual intervention to reject the artifactual ICs is a tedious
and time-consuming process; on the other hand, because artifact
components still contain some brain electrical activity of interest,
a straightforward elimination of these artifact components
implies the considerable loss of some important EEG data.
Besides, other blind source separation (BSS) techniques, such
as second-order blind identification (SOBI), stationary subspace
analysis (SSA), and canonical correlation analysis (CCA), have
also been used for artifacts removal (Ng and Raveendran, 2009;
Zeng et al., 2013; Janani et al., 2018). Moreover, wavelet transform
is also a common artifact removal technique that relies on
predefined mother wavelet and decomposition level (Krishnaveni
et al., 2006; Rajesh et al., 2012). After decomposing signal into
approximate and detail coefficients, an appropriate threshold is
then used on the coefficients to identify and eliminate artifacts.

However, the choices of the mother wavelet and the threshold
are empirical, especially for the threshold, which have a great
influence on the denoising result.

Additionally, because of its data-driven, adaptive, and no prior
knowledge, empirical mode decomposition (EMD) is considered
as an ideal tool for non-stationary EEG signals analysis and
process (Huang et al., 1998). Recently, the EMD method was
successfully applied in the field of the suppression of blink
artifacts (Rashed-Al-Mahfuz et al., 2013). However, the EMD
method is highly sensitive to noise and faces a problem of the
mode mixing, which will make extracted intrinsic mode functions
(IMFs) inaccurate. To overcome this dilemma, the noise-assisted
version of the EMD algorithm called ensemble EMD (EEMD) was
proposed by Wu and Huang (2009). Nevertheless, both EMD and
EEMD approaches directly remove artifact-linked IMFs while
losing much useful cerebral activities.

To further improve the performance of artifacts removal,
many attempts have been made to propose a new technique for
artifacts rejection based on the above methods. Castellanos and
Makarov presented a novel wavelet-enhanced ICA methodology
(wICA) to eliminate artifacts in EEG signals by implementing
a wavelet thresholding on the decomposed ICs not the original
signals as an intermediate process (Castellanos and Makarov,
2006). In addition, Mammone et al. (2012) developed an
approach based on discrete wavelet transform (DWT) and
ICA, termed as AWICA, to automatically detect and reject
artifacts. For EOG artifacts suppression, the AWICA method
outperformed the wICA technique. Subsequently, another new
technique was introduced by Klados et al. (2011) for rejecting
the artifacts of eye blink by combining blind source separation
and regression-based adaptive filtering. The experimental results
revealed that the proposed methodology could successfully
remove EOG artifacts. Zhao et al. (2014) combined DWT and
an adaptive predictor filter for blink artifacts rejection from the
raw EEG signals. For simulated and collected data, the proposed
method was proved that it was capable of removing EOG artifacts
without using EOG signal. In recent years, Mowla et al. (2015)
reported artifacts elimination using a new technique combined
of SOBI and stationary wavelet transform (SWT) (SOBI-SWT).
Comparative results showed that the proposed method was more
effective than other techniques. Wang et al. (2016) combined
ICA and multivariate empirical mode decomposition (MEMD)
to propose a new automatic EOG artifacts removal method
(IMEMD), whose advantages were tested by simulated EEG data
with comparisons of several methods. Very recently, by a joint
use of EEMD and CCA, a novel EEMD-CCA approach was
proposed by Chen et al. (2019) for removing artifacts. Generally,
it was demonstrated that those different combined methods
can evidently enhance the performance of artifacts removal.
However, there still existed drawbacks of those methods. For
instance, the selection of optimal mother wavelets for wavelet
transform is practically difficult, and the cross-contamination
between EEG and EOG affects the performance of regression-
based methods for artifacts removal.

In this study, by combining the EEMD and ICA algorithms,
we proposed a novel EEMD-based ICA (EICA) method to
remove blink artifacts from multichannel contaminated EEG
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signals. Both simulation and real EOG artifacts correction were
studied to verify the effectiveness of the new approach. Moreover,
some existing artifact removal approaches were employed in
comparison with the proposed method.

The paper is organized as follows: section “Materials
and Methods” briefly described experimental data including
simulated and actual EEG data and then introduced the
methodologies presented in this study; in section “Results”
of EOG artifacts rejection using the proposed method was
presented, and other artifact removal algorithms were used for
comparison; and section “Discussion” of results and a summary
conclusion was drawn in the final section.

MATERIALS AND METHODS

Electroencephalogram Data
Two different types of EEG datasets were used to test the validity
of the proposed artifact rejection algorithm in this study. The
first dataset was simulated EEG data with EOG artifacts produced
by mixing real EOG with pure EEG signals. The second dataset
was real EEG data acquired from 10 healthy subjects, which was
contaminated by blink artifacts. The description of two EEG
datasets was shown as follows.

Generation of Simulated Data
Simulated EEG data with a sampling frequency of 1,000 Hz
was artificially generated by MATLAB function developed by
the authors of Yeung et al. (2007). The noise.m function was
employed to produce pure EEG signals, which were constructed
by summing four phase- and frequency-randomized sinusoids.
The phases were chosen randomly varying between 0 and 2π,
and the frequencies spanned the range from 0.5 to 35 Hz. In
our simulation, 160 datasets of 16-channel pure EEG signals
were generated, which were denoted by the matrix A (size,
16 × 5,120). A segment of real EOG signal was selected from
the EOG recordings with a sampling rate of 1,000 Hz and a
band-pass filter of 0.5–5 Hz, which was denoted by the matrix
B (size, 1 × 5,120). Simulated EEG signals and a real EOG signal
are shown in Figures 1A,B. The artificially EOG-contaminated
EEG signals were then created by mixing matrix B into matrix A
with different weighted amplitude for each channel, which were
expressed in the following formula (Gao et al., 2010):

C (i, :) = A (i, :)+ λi ∗ B, i ∈ {1, 2, ..., 16} (1)

where matrix C and λi are the mixed EEG signals with EOG
artifacts and the adjusted parameter, respectively. By changing
the value of λi, signal-to-noise ratio (SNR) values were set from
−15 to 0 dB with a 1 dB step to mimic distribution of eye blinks
on the scalp. Thus, each SNR value corresponded to one EEG
channel. An example of simulated mixed signals is displayed in
Figure 1C. It is clearly observed that the pure EEG signals are
severely contaminated by EOG artifacts at 0.6–1.1 s and 3.2–3.7
s. Finally, 160 datasets of EEG signals with EOG artifacts were
generated for each SNR in the simulation.

Acquisition of Real Electroencephalogram Data
The real EEG signals were collected from 32 scalp electrodes
using the Neuroscan EEG acquisition system (Neuroscan Inc.,
Charlotte, NC, United States). The positions of all electrodes
(Ag/AgCl) conformed to the standard international 10–20
system. Two linked electrodes on the left and right mastoids
were used as reference, and a ground electrode was placed
on the forehead. In addition, the horizontal electrooculogram
(HEOG) and vertical electrooculogram (VEOG) were recorded
using two pairs of bipolar electrodes in both horizontal and
vertical directions. Electrode impedance was maintained below
5 k�. EEG and EOG were recorded continuously at a sampling
rate of 1,000 Hz under emotional faces recognition task. Stimuli
contained target stimuli (presented by positive and negative
faces) and non-target stimuli (presented by neutral faces) with
a probability of 0.5 and 0.5, respectively. When stimuli were
presented on a standard LCD monitor with a black background,
subjects were instructed to respond to target stimuli as accurately
as possible and ignore non-target stimuli. While responding to
target stimuli, subjects were asked to remain quiet at the same
time and only move their right index finger to press a button.
Besides, we also recorded the signals under resting state with
eyes open. In this study, our main purpose was to verify that
the proposed method could successfully remove blink artifacts
from contaminated EEG signals. Therefore, 18 channels of EEG
with eye blinks were picked out for artifacts elimination study:
Fp1, Fp2, F7, F3, Fz, F4, F8, FT7, FC3, FCz, FC4, FT8, C3, C4,
P3, P4, O1, and O2. The data are preprocessed by a 0.5–35 Hz
band-pass filter. Ten healthy subjects (male/female = 4/6; mean
age, 25.80 ± 5.71 years) were involved in the study. An average
of 23.3 EEG segments (SD = 1.6) were obtained from resting
state and 23.1 segments (SD = 1.6) from task state. The length
of EEG segments ranged from 2 to 8 s. All participants were in
good physical condition and given to sign the informed written
consent. The study was reviewed and approved by the local Ethics
Committee of Xi’an Jiaotong University.

Methodology
In the study, ICA and EEMD were combined to use for
EOG artifacts correction. The proposed EOG artifacts removal
algorithm flowchart is shown in Figure 2. There were five steps
included. First, multichannel EEG signals were separated into
multiple ICs by means of ICA method. Second, EOG-related
ICs were automatically identified by the kurtosis value, while
the rest of ICs were retained. Third, the EEMD method
was applied to decompose EOG-related ICs into a set of
IMFs. Fourth, IMFs linked to EOG artifacts were automatically
recognized by correlation coefficient and eliminated. Finally,
the clean EEG signals without blink artifacts were ultimately
reconstructed by projecting IMFs and using the inverse transform
of ICA sequentially.

Independent Component Analysis
As one kind of common BSS techniques, ICA is extensively
used in artifacts detection and removal from EEG signals. The
basic idea underlying the ICA method is to extract statistically
independent sources called ICs from the observed signals using
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FIGURE 1 | Typical examples of signals in simulation. (A) Pure EEG signals, (B) real EOG signal, and (C) mixed EEG signals.

higher-order statistic (Comon, 1994). The aim of ICA attempts
to determine a demixing matrix W and estimate unknown
independent source signals s (t) = [s1 (t) , s2 (t) , , sn (t)]T . Thus,

the ICA problem can be expressed by the following equation:
s(t) = wx(t). In this study, x(t) = [x1 (t) , x2 (t) , , xn (t)]T

denotes n channels raw EEG signals containing EOG artifacts.
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FIGURE 2 | Algorithm block diagram for EOG artifacts removal. The rectangles filled with gray denote artifact-linked components, and the IC4 is decomposed by
EEMD.

Since EOG and EEG are produced by different independent
sources, EOG can be separated from EEG signals. The original
signals were then decomposed by the ICA algorithm to acquire
multiple ICs. In this study, the information-maximization
algorithm of ICA was employed (Bell and Sejnowski, 1995).

Electrooculogram-Related Independent Components
Identification
After EOG-contaminated EEG signals were decomposed into
EOG-related ICs sEOG (t) = [s1 (t) , s2 (t) , , sm (t)]T and artifact-
free ICs sEEG (t) = [sm+1 (t) , sm+2 (t) , , sn (t)]T , ICs linked to
EOG artifacts needed to be distinguished. The simple threshold
method may have difficulty to detect artifacts generated by small
eye blinks. However, high-order statistics of signals can reflect
more information about EOG artifacts that low-order statistics
does not have. The fourth-order cumulant, termed as kurtosis,
was regarded as the evaluation criterion for differentiating the
EOG-related ICs (Delorme et al., 2007; Mammone et al., 2012).
Moreover, kurtosis is a measure of signal peaks that has simple
computation and theory. Given that x is a scalar random variable,
the kurtosis can be represented as the following expression:

k = m4 − 3m2
2 (2)

where mn= E{(x−m1)
n
}is the nth order central moment of the

variable, and m1 is the mean value of random variable. Generally,
kurtosis is zero for a Gaussian signal and negative for “flat”
activity distributions (such as sub-Gaussian). On the other hand,
kurtosis is positive for super-Gaussian distributions with “peak”
activities, typical artifacts such as ECG and EOG (Delorme et al.,
2007; Mammone et al., 2012). Thus, ICs related to blink artifacts
could be discriminated by measuring kurtosis value for each
component. The selection of the practical threshold is determined
by experimental data, which is the result of trials and errors. In
this study, the critical threshold value was set at 1.5 (Mammone
et al., 2012; Wang et al., 2016). Then, the ICs whose kurtosis
values exceeded the threshold value were automatically specified
as EOG-related components. According to the above-mentioned
artifactual components, each IC in sEOG (t) was served as the
input of EEMD analysis and further was separated into multiple
IMFs including cerebral activity and eye blink artifacts.

Ensemble Empirical Mode Decomposition
The EMD method, first pioneered in 1998 by Huang et al. (1998)
can adaptively decompose a multicomponent signal into a finite
set of band-limited intrinsic oscillatory modes called IMFs by the
local characteristic time scales of the signal. For EMD algorithm,
each IMF should satisfy two properties: (1) in the whole data set,
the number of local extrema and the number of zero crossings
must be equal or differ at most by one, and (2) the mean value
of envelops defined by local maxima and minima is zero at any
point. In addition, the frequency bands of these IMF components
vary from high to low frequencies. While EEMD is an extension
of EMD method, it not only has advantages of the EMD but also
solves the mixing mode problem. Thus, EEMD has been widely
applied to the processing of electrophysiological signals (Chen
et al., 2010; Hassan and Bhuiyan, 2017). For EEMD algorithm,
it defines the IMF components by averaging the ensemble of the
corresponding IMFs obtained by employing EMD to the analyzed
signal with the addition of independent, identically distributed
white noise of the same standard deviation (Wu and Huang,
2009). Referring to previous research (Chen et al., 2019), the
ensemble number (i.e., trials of running EMD) was set to 10
in this work. In other words, the EEMD algorithm repeatedly
decomposes the raw signal with added white noise by the EMD
algorithm in many trials, which results in an ensemble of IMFs.
Finally, the IMFs are achieved by the mean of corresponding
IMF sets. Let si (t) (i = 1, 2, ,m) be a single channel signal. The
EEMD algorithm can be presented as follows:

1. Generate the data by adding a white noise series to the
targeted signal: xhi (t) = si(t)+ wh(t), where wh(t) denotes
the white noise series.

2. Decompose the data xhi (t) into IMFs by using
EMD: xhi (t) =

∑K
j=1 d

h
i,j (t)

(
j = 1, 2, ...,K

)
, where j

denotes the mode.
3. The IMFs can be obtained by averaging the corresponding

modes: IMFij (t) = 1/p
∑p

h=1 d
h
i,j (t), where IMFij (t)

represents the jth mode of si(t), and p is the
ensemble number.
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Since the added white noise is different in each trial,
it would be encountered by averaging the ensemble
of IMFs. Thus, the signal si(t) can be decomposed as
si(t) =

∑K
j=1 IMFij (t)

(
i = 1, 2, ...,m; j = 1.2, ...,K

)
.

Therefore, the original signal can be considered as the sum
of all mode components ranked according to their local
characteristics in time–frequency domain.

Electrooculogram-Related Intrinsic Mode Functions
Identification and Rejection
In order to eliminate the EOG-related IMFs, the
correlation coefficients between IMFs and EOG signal
were used to distinguish EOG-related IMFs with a
high degree of correlation between them. Here, given

zi (t) =
[∑K

j=1 IMFij (t) ,
∑K

j=2 IMFij (t), ...,
∑K

j=K IMFij (t)
]T

is a K-channel signal, which is reconstructed by various
combinations of IMFs from si (t) (i = 1, 2, ...,m). Then, the
correlation coefficients between each channel signal of zi (t) and
EOG were calculated. It is worth noting that the energy of EOG
artifacts mainly focuses in low frequency. Since the frequency
bands of IMFs were ordered from high to low according to
characteristic of signal oscillators, correlation coefficients initially
increased and then gradually decreased. As a result, the largest
correlation coefficient could be determined as a critical value. If
the pth correlation coefficient qualified the maximum value, the
pth IMF to the last IMF were marked as EOG artifacts, which
was defined as ui (t) =

∑K
j=p IMFij (t). Meanwhile, the remaining

IMFs without EOG artifacts were reserved, which were presented
as vi (t) =

∑p−1
j=1 IMFij (t). Afterward, IMFs linked to EOG were

removed by setting all their values to zero.

Signal Reconstruction
The signal reconstruction process involved two parts:
IMFs projection and ICA inverse transform. The first
transform was to transform IMFs to obtain EOG-free ICs
sEOG−free (t) = [v1 (t) , v2 (t) , ..., vm (t)]T . Subsequently, artifact-
free ICs sEOG−free (t) and undecomposed ICs sEEG (t) were all
projected into the original space to obtain clean EEG signals.

Quantitative Measures
The performance of EOG artifacts elimination was quantitatively
evaluated by three most popular ways, i.e., signal-noise-ratio
(SNR), root mean square error (RMSE), and cross-correlation
coefficient (CRC). SNR and RMSE were employed for study
based on simulated EEG data, while CRC was for study based on
real EEG data. Moreover, the objective assessment criteria were
also applied for performance comparisons between the proposed
algorithm and other existing artifact rejection techniques.

The value of SNR shows the ratio of signal to noise. The
larger the SNR value is, the more the noise rejected in the mixed
signal is. Here, SNR of EEG is employed to quantify the degree
of the removal of blink artifact from EEG signal, which is given
as SNR = 10 ∗ lg(

∑n
i=1 x

2(i)/
∑n

i=1 (y(i)− x(i))2), where x(i) is
the pure EEG signal, y(i) represents the clean EEG after removing
EOG artifact, and n is the total number of sample points.

The RMSE is defined as RMSE =
√

1/n
∑n

i=1 (y(i)− x(i))2,
where x(i) denotes the clear EEG signal without EOG artifact,
y(i) represents the reconstructed EEG signal after the elimination
of blink artifact, and n is the total number of sample points in
each channel signal. The RMSE can evaluate the preserved degree
of useful EEG information in the reconstructed EEG signal after
EOG artifact removal. Therefore, the smaller the RMSE value is,
the more useful EEG data will be retained.

The CRC between two signals can be calculated by
CRC = Cov(X,Y)

√
Var(X)∗Var(Y)

, where X and Y represent two types of
signals,Cov andVar denote covariance and variance, respectively.
The absolute value of CRC is used in this study, and it ranges from
0 to 1. The large values denote two signals with high degree of
linear correlation. Specially, CRC = 1 indicates linear correlation
between two signals. Therefore, the CRC between removed
artifact of eye blink and EOG could be used to determine whether
EOG artifact is removed or not.

Statistical Analysis
The statistical analysis was performed on the MATLAB platform.
If two groups of data satisfied normal distribution checked
by Kolmogorov–Smirnov test, performance comparisons
were analyzed using independent sample t-test, otherwise
using Mann–Whitney U-test. The value of p < 0.05 (two
sided) was considered to be statistically significant. In
addition, false discovery rate (FDR) was used for multiple
comparison correction.

RESULTS

Eliminating Electrooculogram Artifacts
From Simulated Signals
One hundred sixty datasets of EOG-contaminated EEG signals at
each SNR value were involved in the study. SNR and RMSE were
both used to evaluate the denoising performance of algorithms.
In order to find the advantage and disadvantage of the proposed
method, other artifact removal algorithms (i.e., ADF, Inf-ICA,
CCA, SSA, AWICA, IMEMD, EEMD-CCA, and SOBI-SWT)
were employed in this comparison task. In addition, the method
based on the combination of EEMD and ICA (EEMD-ICA),
first introduced by Mijovic et al. (2010) for source extraction
in single-channel EEG signal, was also compared against the
proposed method in case of SNRs with−15,−8, and 0 dB. These
competitor algorithms are presented in Table 1.

An example of EOG artifacts removal from mixed EEG signals
by different methods is shown in Supplementary Figure 1. By
observing the corrected signals, it could be clearly seen that
EICA, SOBI-SWT, Inf-ICA, SSA, and CCA effectively eliminated
EOG artifacts compared to the other methods (Supplementary
Figures 1C,E,M,O,Q). Although EOG artifacts were also
removed by EEMD-CCA and ADF, the reconstructed EEG
signals showed serious distortion of waveforms (Supplementary
Figures 1I,S). It was also obvious that both IMEMD and AWICA
methods did not thoroughly remove EOG artifacts for the
first few channels (Supplementary Figures 1G,K). In addition,
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TABLE 1 | The artifact removal algorithms employed for comparison with the
proposed method.

Algorithm Abbreviation Article

Adaptive filtering approach based on
regression

ADF He et al., 2004;
Wallstrom et al.,
2004

Independent component analysis
based on information-maximization
algorithm

Inf-ICA Bell and Sejnowski,
1995

Canonical correlation analysis CCA De Clercq et al.,
2006

Stationary subspace analysis SSA Zeng et al., 2013

Automatic wavelet independent
component analysis

AWICA Mammone et al.,
2012

Combination of independent
component analysis and multivariate
empirical mode decomposition

IMEMD Wang et al., 2016

An approach based on ensemble
empirical mode decomposition and
canonical correlation analysis

EEMD-CCA Chen et al., 2019

By combining second-order blind
identification and stationary wavelet
transform

SOBI-SWT Mowla et al., 2015

Combination of ensemble empirical
mode decomposition and independent
component analysis

EEMD-ICA Mijovic et al., 2010

Supplementary Figure 1 shows the extracted signals obtained
by subtracting the corrected EEG from pure EEG signals, and
we found that the lost EEG information of the proposed EICA
method was less than that of other methods. The comparative
results of SNRs and RMSEs after suppressing EOG artifacts
are presented in Figure 3. The mean and standard deviation
values of SNRs and RMSEs were computed for 160 denoising
simulated EEG datasets. Apparently, the performance of EICA,
SOBI-SWT, SSA, and CCA methods was much better than the
other approaches at each SNR condition in terms of SNRs in
Figure 3A and RMSEs Figure 3B after EOG artifacts rejection.
The proposed algorithm performed the best in the whole SNR
range among all the algorithms. Furthermore, the IMEMD
method had the worst performance in the low SNR values
while the EEMD-CCA approach performed the worst in the
high SNR values. Therefore, we further investigated whether the
performance of the four algorithms (EICA, SOBI-SWT, SSA, and
CCA) had a statistically significant difference. For the whole SNR
range, the statistical results showed that SNR values obtained by
EICA were significantly higher than that by SOBI-SWT (p < 0.05
at SNR = 0 dB, p < 0.01 at other SNR values), and the EICA
method achieved much lower RMSE values than SOBI-SWT
(p < 0.05 at SNR = 0 dB, p < 0.01 at other SNR values). The
SNR and RMSE performance of the EICA method had also
statistically significant differences for all SNR values compared
to that of the other approaches (p < 0.01). Therefore, the
simulation results indicated that the proposed method rejected
EOG artifacts from contaminated EEG more effectively than
the other methods. The results also indicated that SOBI-SWT
performed better than CCA under each SNR condition with

regard to the performance of SNR and RMSE, and the differences
were statistically significant (p < 0.01). Besides, when SNR was
less than −9 dB, SSA had a better performace of SNR and RMSE
than CCA (p < 0.01).

Additionally, Table 2 shows the SNR and RMSE results
after EOG artifacts removal by the EEMD-ICA and EICA
methods. For each case of SNR, the performance of EICA
outperformed EEMD-ICA.

Electrooculogram Artifacts Rejection of
Real Electroencephalogram Data
EOG artifacts rejection from real EEG signals could further
verify the effectiveness of the proposed algorithm. Furthermore,
the SOBI-SWT and SSA methods were employed to these data
as benchmark. Figure 4 displays an example of raw real EEG
signals with eye blinks under resting state and the corrected
EEG signals by the EICA, SOBI-SWT, and SSA methods. As
shown in Figure 4A, a segment of EEG was contaminated by
eye blinks before eliminating EOG artifacts. Note that blink
artifacts with large amplitude were obviously visible in frontal
channels. Figures 4B–D show the clean EEG signals after
performing artifacts removal methods. With a comparison of
the EEG waves, it could be clearly seen that the EICA and
SSA methods removed EOG artifacts more thoroughly than the
SOBI-SWT method. Apparently, the corrected EEG signals by
SOBI-SWT contained EOG components, especially in prefrontal
region. During emotional faces recognition task, a segment
of original EOG-contaminated EEG signals is demonstrated
in Figures 5A,B–D show the denoising waveforms by using
the approaches. From Figures 5B,D, artifacts of eye blink
were successfully eliminated by the proposed method and SSA.
However, the corrected EEG signals by means of SOBI-SWT still
contained residual eye activity in Figure 5C, which was mainly
presented in Fp1 and Fp2. To check the waveforms carefully, we
can observe in Figures 4B,D that the proposed EICA approach
preserved more EEG details than SSA, such as channels Fp1, Fp2,
and F7. Besides, although the EOG artifacts were eliminated by
SSA, there still existed artifact components contaminating some
channels in Figure 5D, such as Fp1 and Fp2.

The average CRC values between removed EOG artifacts and
EOG reference for 10 subjects are shown in Table 3. The higher

TABLE 2 | Performance of SNR(dB) and RMSE(µV) values after EOG artifacts
removal using EEMD-ICA and the proposed method.

SNR(dB) Algorithm

EEMD-ICA Proposed

−15 −6.48 ± 2.83 7.24 ± 0.93

25.33 ± 8.82 4.95 ± 0.51

−8 −1.54 ± 2.14 14.02 ± 1.00

13.90 ± 3.36 2.26 ± 0.27

0 4.57 ± 2.38 20.96 ± 1.88

6.93 ± 1.88 1.04 ± 0.26

For each SNR, the upper and lower rows correspond to SNR and RMSE values
after EOG artifacts removal, respectively.
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FIGURE 3 | The simulated study: the performance comparisons between the proposed method and other compared methods after removing EOG artifacts from
mixed EEG signals in terms of (A) SNR and (B) RMSE. The circles and error bars represented the mean and standard deviation of SNR in (A) and RMSE in (B) for
160 denoising simulated EEG datasets.

the CRC value is, the more thoroughly the artifact of eye blink
is removed. It can be seen that the CRC values by using the
proposed approach were higher than that by the other methods
under two conditions, which meant that the proposed algorithm
performed better than SOBI-SWT and SSA.

DISCUSSION

It is an unavoidable fact that there exist numerous blink artifacts
in the recorded EEG signals. The presence of EOG strongly
obscures the quality of EEG signals, which increases the difficulty
in further EEG analysis and can mislead to the interpretation
of results. For this reason, it is necessary and important to
design a method to decrease such artifacts in EEG recordings.
In this paper, the EICA method, which combined EEMD and
ICA, was proposed to automatically remove the EOG artifacts
from multichannel EEG signals. First, the EOG-contaminated
EEG signals were decomposed by ICA into multi-ICs. Then, the
EOG-related ICs were automatically distinguished by kurtosis,
while the other ICs were preserved. Next, EOG-related ICs
were separated into a set of IMFs by using the EEMD method,
and the EOG-related IMFs were automatically identified by
correlation coefficient and rejected. Finally, the clean EEG signals
without EOG artifacts were reconstructed by projecting IMFs and
performing the inverse transform of ICA sequentially. The results
of removing EOG artifacts from simulated EEG signals and real
EEG signals both demonstrated that the proposed approach was
capable of removing EOG artifacts and retaining the majority of
EEG information.

In order to further investigate the effectiveness of the proposed
EICA method, it was compared to other existing artifact rejection
methods by using the same simulated datasets. Compared

to these methods, the proposed method obtained the biggest
increase in SNR and decrease in RMSE after EOG artifacts
rejection, which indicated that EICA got the best performance
of EOG artifacts elimination. Furthermore, the SOBI-SWT
and SSA algorithms were employed to the real EEG data in
comparison. The results demonstrated that the performance of
the proposed method was also better than other two approaches
in terms of CRC.

ADF based on regression approach (He et al., 2004; Wallstrom
et al., 2004) was employed to eliminate EOG artifacts from mixed
EEG signals. For the reconstructed signals (Supplementary
Figure 1S), however, ADF seriously distorted the EEG signals.
Meanwhile, the ADF method also lost much EEG information
after the rejection of EOG artifacts (Supplementary Figure 1T).
As we know, the ADF algorithm for artifact rejection is the
process that adjusts weights constantly to obtain the optimal
weights. Because of the non-deterministic and non-stationary
characteristics of EEG signals, it is impossible to estimate such
optimal weights. Consequently, relevant cerebral information
can also be eliminated when removing EOG artifacts by ADF.
Another class of artifact correction methods are based on BSS
techniques such as ICA, SSA, and CCA (Iriarte et al., 2003;
Flexer et al., 2005; Li et al., 2006; Gao et al., 2010; Zeng et al.,
2013). In simulation, the corrected EEG signals by these BSS
techniques indicated that EOG artifacts were removed from
mixed EEG signals (Supplementary Figures 1M,O,Q). It is to
be note that the artifact-related components decomposed by BSS
contained neural activity. Hence, artifactual components were
directly rejected, which may result in the loss of EEG information
(Supplementary Figures 1N,P,R). Instead, the proposed method
served components related to artifacts of eye blink as the
input of EEMD. Thus, neural activity leaked to artifact-related
components were extracted and recovered when the EEMD was
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FIGURE 4 | (A) A segment of real EEG signals with obvious blink artifacts under eyes-open state and the reconstructed EEG after artifacts removal by using
(B) EICA, (C) SOBI-SWT, and (D) SSA.

used to remove EOG artifacts. Therefore, the performace of the
proposed EICA technique was better than the ADF and BSS
methods for EOG artifacts removal. Furthermore, the simulated
results also indicated that the BSS approaches removed EOG
artifacts from raw EEG signals more effectively in contrast to
the ADF method, which was consistent with a previous study
(Hoffmann and Falkenstein, 2008).

In this study, the AWICA and SOBI-SWT algorithms based
on wavelet transform were applied for comparison to verify
the performance of the proposed EICA approach. For AWICA
(Mammone et al., 2012), each channel EEG of the mixed

signals was first decomposed by DWT into four basic EEG
rhythms or wavelet components (WCs). Subsequently, artifact-
related WCs were identified and disentangled into a number
of wavelet ICs by performing ICA. Finally, the artifact-related
wavelet ICs were eliminated. Although WCs associated with low
frequency contained most information of EOG, it implied that
artifacts cannot be completely extracted. Thus, the EOG artifacts
cannot be effectively removed (Supplementary Figure 1K). For
SOBI-SWT (Mowla et al., 2015), first, the mixed signals were
divided into a number of sources by applying SOBI. Then,
the sources recognized as EOG artifacts were carried out by
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FIGURE 5 | (A) A segment of EOG-contaminated EEG signals during emotional faces recognition task and the reconstructed EEG after artifacts removal by using
(B) EICA, (C) SOBI-SWT, and (D) SSA. The arrow in (A) denotes the appearance of a stimulus.

wavelet decomposition technique. Thus, the level-dependent
fixed form threshold method of wavelet transform was used to
detect and eliminate EOG artifacts. Generally speaking, both the
mother wavelet and decomposition levels need to be manually
chosen for SWT, which has a significant effect on the results.
Compared to most other methods, no visible EOG artifacts
can be observed in the clean EEG signals corrected by SOBI-
SWT (Supplementary Figure 1E). In contrast to the AWICA
and SOBI-SWT methods, the EICA algorithm decomposed the
original signals into multi-ICs by using ICA, and EOG-linked ICs

included almost all EOG components. By EEMD, EOG-linked
ICs were further disentangled into EOG-related IMFs and EEG-
related IMFs. Only the EOG-related IMFs were eliminated, and
hence, some desired EEG information was retained. By visually
comparing the waveforms of Supplementary Figures 1D,F, we
found that EOG contents in the clean EEG signals by EICA
were less than that by SOBI-SWT. EEMD is superior to other
signal decomposition techniques such as wavelet transform for
two main reasons: first, the EEMD algorithm is a completely
data-driven signal decomposition method without a predefined
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TABLE 3 | The average CRC values between removed EOG artifacts and EOG
reference after EOG artifacts elimination by performing compared methods
for 10 subjects.

EICA SOBI-SWT SSA

Subject1 0.949 0.842 0.744

0.957 0.922 0.805

Subject2 0.953 0.825 0.559

0.960 0.928 0.721

Subject3 0.948 0.897 0.828

0.950 0.937 0.740

Subject4 0.960 0.919 0.889

0.970 0.942 0.572

Subject5 0.960 0.909 0.553

0.957 0.885 0.598

Subject6 0.930 0.881 0.870

0.957 0.922 0.966

Subject7 0.947 0.884 0.862

0.964 0.940 0.846

Subject8 0.955 0.911 0.658

0.955 0.928 0.798

Subject9 0.955 0.855 0.458

0.953 0.878 0.444

Subject10 0.929 0.885 0.526

0.925 0.878 0.690

For each subject, the upper and lower rows correspond to values from resting state
with eyes-open and emotional faces recognition task, respectively.

basis function, and second, the decomposed oscillatory modes
from the raw signal can well reflect the local characteristics of the
signal. Thus, the EEMD method is preferable to other methods
for analyzing non-stationary and non-linear electrophysiological
signals (Wu and Huang, 2009). Therefore, the ability of removing
EOG artifacts of the EICA method was superior to the AWICA
and SOBI-SWT approaches.

We also compared the EICA method against the IMEMD
approach (Wang et al., 2016). For IMEMD, first, the original
EEG signals were decomposed into multiple multivariate IMFs
(MIMFs) by using MEMD method. Second, EOG-related signals
were extracted by reconstructing the MIMFs linked to EOG
artifacts. Third, ICA was used to decompose EOG-related signals
into multiple ICs. Fourth, artifact-linked ICs were automatically
recognized by kurtosis and eliminated. Finally, the clean EEG
signals without blink artifacts were reconstructed by performing
the inverse transform of ICA and MEMD in sequence. From the
denoising results, the EICA approach can effectively eliminate
blink artifacts from the mixed signals with higher SNRs, since
the majority of useful EEG information was preserved with lower
RMSEs compared to IMEMD. The main distinction between the
proposed method and the IMEMD approach is the information
extraction of EOG artifacts. It is explained by the fact that
the latter selects EOG-related MIMFs based on the way of
averaging correlation coefficients between each MIMF and EOG
reference and the former chooses EOG-related ICs by kurtosis.
Thus, EOG information contained in EOG-related MIMFs is
not as complete as that in EOG-linked ICs. Supplementary
Figure 1G also confirmed that there were visibly residual EOG

artifacts contaminating the first few channels. Therefore, the
EICA method obtained a better performance than the IMEMD
approach for the removal of EOG artifacts.

Furthermore, the combination methods of the EEMD
algorithm and a BSS technique have been used for artifact
removal, which perform EEMD first then the BSS algorithm
second. However, both the EEMD-CCA (Chen et al., 2019)
and EEMD-ICA (Mijovic et al., 2010) methods had a poor
performance in comparison with the proposed method. Since
the EOG-contaminated EEG signals were decomposed into a set
of IMFs by EEMD, EOG-linked components were contained in
multiple IMFs. It is difficult to ensure that the BSS algorithm
was able to separate EOG artifacts from the IMFs unless there
was a mutually linear relationship between the original sources
and the IMFs (Mijovic et al., 2010). Even if BSS decomposed the
IMFs into multiple components, EOG-linked components also
contained much EEG information. Consequently, the rejection of
artifactual components can lead to the loss of EEG information
(Supplementary Figure 1J). Another disadvantage of EEMD-
CCA for EOG artifacts removal is that the EOG artifacts and EEG
activity both had high autocorrelation values where estimated
sources were very difficulty to be distinguished with respect to the
autocorrelation values after using CCA. Due to relatively lower
autocorrelation values of muscle signals, in fact, the CCA-based
algorithms are more suitable for muscle artifacts removal than the
BSS-based methods (De Clercq et al., 2006; Gao et al., 2010; Chen
et al., 2019). In addition, the desired source in the original signal
was successfully extracted by applying EEMD-ICA (Mijovic et al.,
2010). An important reason is that the oscillation-type signal was
modeled as a sinusoidal waveform in simulation, which can be
extracted from the original signal by EEMD. Thus, it was no
surprise that the EEMD-ICA method did not work well when
using the real EOG signal for simulation.

LIMITATION

Although both the vertical electrooculogram (VEOG) and
horizontal electrooculogram (HEOG) signals were collected, only
the VEOG signal was employed for the simulation study. Thus, a
limitation of the study is that the study did not test the ability to
remove HEOG artifacts.

CONCLUSION

In this study, a novel EICA method combining EEMD
and ICA was proposed to remove EOG artifacts from
contaminated EEG signals. It was intended to overcome
the deficiency of eliminating artifact components directly
by selecting artifact-related ICs as the input of EEMD,
further improving the performance of the artifacts removal.
The effectiveness of the proposed method was both verified
by simulated and real EEG data. The results of study of
simulated signals demonstrated that the proposed approach
could successfully suppress EOG artifacts from simulated EEG
signals and mostly maintain the brain activity with little
distortion. For study based on real EEG signals, the results

Frontiers in Neuroscience | www.frontiersin.org 11 October 2021 | Volume 15 | Article 729403

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-729403 October 6, 2021 Time: 15:49 # 12

Teng et al. EICA for Removing EOG Artifacts

displayed that the CRC values obtained by the proposed
approach were the highest among the compared methods.
Thus, it was concluded that the proposed approach could
also eliminate the blink artifacts in real EEG signals very
well. The strengths of the EICA method used for rejecting
EOG artifacts lied in the complete extraction of EOG-
linked ICs and the removal of EOG-related IMFs while
preserving the useful EEG information to the greatest extent.
Furthermore, the experimental results illustrated that the
proposed method had the best performance compared to other
existing approaches.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and
approved by the local Ethics Committee of Xi’an Jiaotong
University. The patients/participants provided their written
informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

C-LT took charge of analyzing EEG data and drafting the
manuscript. Y-YZ took charge of experiment design and EEG
recording. WW and Y-YL took charge of subjects recruitment
and EEG recording. GW took charge of algorithm programming.
JX took charge of the project research, experiment design, and
manuscript preparation. All authors contributed to the article
and approved the submitted version.

FUNDING

This work was supported in part by the National Key Research
and Development Program of China under (Grant Nos.
2018YFC2002601 and 2017YFB1300303), in part by the Natural
Science Basic Research Plan in Shaanxi Province of China (Grant
No. 2019JM-293), and in part by the National Natural Science
Foundation of China under (Grant No. 31271061).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fnins.
2021.729403/full#supplementary-material

REFERENCES
Bell, A. J., and Sejnowski, T. J. (1995). An information-maximization approach

to blind separation and blind deconvolution. Neural. Comput. 7, 1129–1159.
doi: 10.1162/neco.1995.7.6.1129

Castellanos, N. P., and Makarov, V. A. (2006). Recovering EEG brain signals:
artifact suppression with wavelet enhanced independent component analysis.
J. Neurosci. Methods 158, 300–312. doi: 10.1016/j.jneumeth.2006.05.033

Chen, D., Li, D., Xiong, M. Z., Bao, H., and Li, X. L. (2010). GPGPU-aided ensemble
empirical mode decomposition for EEG analysis during anesthesia. IEEE Trans.
Inform. Technol. Biomed. 14, 1417–1427. doi: 10.1109/TITB.2010.2072963

Chen, X., Chen, Q., Zhang, Y., and Wang, Z. J. (2019). A novel EEMD-CCA
approach to removing muscle artifacts for pervasive EEG. IEEE Sens. J. 19,
8420–8431. doi: 10.1109/jsen.2018.2872623

Comon, P. (1994). Independent component analysis, a new concept? Signal Process.
36, 287–314. doi: 10.1016/0165-1684(94)90029-9

Cornelissen, L., Kim, S. E., Purdon, P. L., Brown, E. N., and Berde, C. B. (2015).
Age-dependent electroencephalogram (EEG) patterns during sevoflurane
general anesthesia in infants. eLife 4:e06513. doi: 10.7554/eLife.06513

De Clercq, W., Vergult, A., Vanrumste, B., Van Paesschen, W., and Van Huffel,
S. (2006). Canonical correlation analysis applied to remove muscle artifacts
from the electroencephalogram. IEEE Trans. Biomed. Eng. 53, 2583–2587. doi:
10.1109/TBME.2006.879459

Delorme, A., Sejnowski, T., and Makeig, S. (2007). Enhanced detection of artifacts
in EEG data using higher-order statistics and independent component analysis.
Neuroimage 34, 1443–1449. doi: 10.1016/j.neuroimage.2006.11.004

Flexer, A., Bauer, H., Pripfl, J., and Dorffner, G. (2005). Using ICA for removal
of ocular artifacts in EEG recorded from blind subjects. Neural. Netw. 18,
998–1005. doi: 10.1016/j.neunet.2005.03.012

Gandhi, V., Prasad, G., Coyle, D., Behera, L., and McGinnity, T. M. (2014).
EEG-based mobile robot control through an adaptive brain-robot interface.
IEEE Trans. Syst. Man Cybern. Syst. 44, 1278–1285. doi: 10.1109/TSMC.2014.
2313317

Gao, J. F., Zheng, C. X., and Wang, P. (2010). Online removal of muscle
artifact from electroencephalogram signals based on canonical correlation

analysis. Clin. EEG Neurosci. 41, 53–59. doi: 10.1177/15500594100410
0111

Hassan, A. R., and Bhuiyan, M. I. H. (2017). Automated identification of sleep
states from EEG signals by means of ensemble empirical mode decomposition
and random under sampling boosting. Comput. Meth. Programs Biomed. 140,
201–210. doi: 10.1016/j.cmpb.201

He, P., Wilson, G., and Russell, C. (2004). Removal of ocular artifacts from electro-
encephalogram by adaptive filtering. Med. Biol. Eng. Comput. 42, 407–412.
doi: 10.1007/BF02344717

Hoffmann, S., and Falkenstein, M. (2008). The correction of eye artefacts in the
EEG: a comparison of two prominent methods. PLoS One 3:e3004. doi: 10.1371/
journal.pone.0003004

Huang, N. E., Shen, Z., Long, S. R., Wu, M. L. C., Shih, H. H., Zheng, Q. N.,
et al. (1998). The empirical mode decomposition and the Hilbert spectrum for
nonlinear and non-stationary time series analysis. Proc. R. Soc. Math. Phys. Eng.
Sci. 454, 903–995.

Iriarte, J., Urrestarazu, E., Valencia, M., Alegre, M., Malanda, A., Viteri, C., et al.
(2003). Independent component analysis as a tool to eliminate artifacts in EEG:
a quantitative study. J. Clin. Neurophysiol. 20, 249–257. doi: 10.1097/00004691-
200307000-00004

Janani, A. S., Grummett, T. S., Lewis, T. W., Fitzgibbon, S. P., Whitham, E. M.,
DelosAngeles, D., et al. (2018). Improved artefact removal from EEG using
canonical correlation analysis and spectral slope. J. Neurosci. Methods 298, 1–15.
doi: 10.1016/j.jneumeth.20

Klados, M. A., Papadelis, C., Braun, C., and Bamidis, P. D. (2011). REG-ICA:
a hybrid methodology combining blind source separation and regression
techniques for the rejection of ocular artifacts. Biomed. Signal Process. Control
6, 291–300.

Kranczioch, C., Zich, C., Schierholz, I., and Sterr, A. (2014). Mobile EEG and
its potential to promote the theory and application of imagery-based motor
rehabilitation. Int. J. Psychophysiol. 91, 10–15. doi: 10.1016/j.ijpsycho.2013.10.
004

Krishnaveni, V., Jayaraman, S., Anitha, L., and Ramadoss, K. (2006). Removal of
ocular artifacts from EEG using adaptive thresholding of wavelet coefficients.
J. Neural Eng. 3, 338–346. doi: 10.1088/1741-2560/3/4/011

Frontiers in Neuroscience | www.frontiersin.org 12 October 2021 | Volume 15 | Article 729403

https://www.frontiersin.org/articles/10.3389/fnins.2021.729403/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fnins.2021.729403/full#supplementary-material
https://doi.org/10.1162/neco.1995.7.6.1129
https://doi.org/10.1016/j.jneumeth.2006.05.033
https://doi.org/10.1109/TITB.2010.2072963
https://doi.org/10.1109/jsen.2018.2872623
https://doi.org/10.1016/0165-1684(94)90029-9
https://doi.org/10.7554/eLife.06513
https://doi.org/10.1109/TBME.2006.879459
https://doi.org/10.1109/TBME.2006.879459
https://doi.org/10.1016/j.neuroimage.2006.11.004
https://doi.org/10.1016/j.neunet.2005.03.012
https://doi.org/10.1109/TSMC.2014.2313317
https://doi.org/10.1109/TSMC.2014.2313317
https://doi.org/10.1177/155005941004100111
https://doi.org/10.1177/155005941004100111
https://doi.org/10.1016/j.cmpb.201
https://doi.org/10.1007/BF02344717
https://doi.org/10.1371/journal.pone.0003004
https://doi.org/10.1371/journal.pone.0003004
https://doi.org/10.1097/00004691-200307000-00004
https://doi.org/10.1097/00004691-200307000-00004
https://doi.org/10.1016/j.jneumeth.20
https://doi.org/10.1016/j.ijpsycho.2013.10.004
https://doi.org/10.1016/j.ijpsycho.2013.10.004
https://doi.org/10.1088/1741-2560/3/4/011
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles


fnins-15-729403 October 6, 2021 Time: 15:49 # 13

Teng et al. EICA for Removing EOG Artifacts

Li, Y. D., Ma, Z. W., Lu, W. K., and Li, Y. D. (2006). Automatic removal of the
eye blink artifact from EEG using an ICA-based template matching approach.
Physiol. Meas. 27, 425–436. doi: 10.1088/0967-3334/27/4/008

Li, Y. M., Shi, W., Liu, Z. A., Li, J., Wang, Q., Yan, X. G., et al. (2020). Effective
brain state estimation during propofol-induced sedation using advanced EEG
microstate spectral analysis. IEEE J. Biomed. Health Inform. 25, 978–987. doi:
10.1109/JBHI.2020.3008052

Mammone, N., La Foresta, F., and Morabito, F. C. (2012). Automatic artifact
rejection from multichannel scalp EEG by wavelet ICA. IEEE Sens. J. 12,
533–542. doi: 10.1109/jsen.2011.2115236

Mijovic, B., De Vos, M., Gligorijevic, I., Taelman, J., and Van Huffel, S. (2010).
Source separation from single-channel recordings by combining empirical-
mode decomposition and independent component analysis. IEEE Trans.
Biomed. Eng. 57, 2188–2196. doi: 10.1109/TBME.2010.2051440

Mowla, M. R., Ng, S. C., Zilany, M. S. A., and Paramesran, R. (2015). Artifacts-
matched blind source separation and wavelet transform for multichannel EEG
denoising. Biomed. Signal Process. Control 22, 111–118. doi: 10.1016/j.bspc.
2015.06.009

Ng, S. C., and Raveendran, P. (2009). Enhanced µ rhythm extraction using
blind source separation and wavelet transform. IEEE Trans. Biomed. Eng. 56,
2024–2034. doi: 10.1109/TBME.2009.2021987

Rajesh, A. N., Chandralingam, S., Anjaneyulu, T., and Satyanarayana, K. (2012).
Denoising EOG signal using stationary wavelet transform. Meas. Sci. Rev. 12,
46–51. doi: 10.2478/v10048-012-0010-0

Rashed-Al-Mahfuz, M., Islam, M. R., Hirose, K., and Molla, M. K. I. (2013). Artifact
suppression and analysis of brain activities with electroencephalography
signals. Neural. Regen. Res. 8, 1500–1513. doi: 10.3969/j.issn.1673-5374.2013.
16.007

Rojas, G. M., Alvarez, C., Montoya, C. E., de la Iglesia-Vaya, M., Cisternas, J. E.,
and Galvez, M. (2018). Study of resting-state functional connectivity networks
using EEG electrodes position as seed. Front. Neurosci. 12:235. doi: 10.3389/
fnins.2018.00235

Sivathamboo, S., Farrand, S., Chen, Z. B., White, E. J., Pattichis, A., Hollis,
C., et al. (2019). Sleep-disordered breathing among patients admitted for
inpatient video-EEG monitoring. Neurology 92, e194–e204. doi: 10.1212/WNL.
0000000000006776

Wallstrom, G. L., Kass, R. E., Miller, A., Cohn, J. F., and Fox, N. A. (2004).
Automatic correction of ocular artifacts in the EEG: a comparison of regression-
based and component-based methods. Int. J. Psychophysiol. 53, 105–119. doi:
10.1016/j.ijpsycho.2004.03.0

Wang, G., Teng, C. L., Li, K., Zhang, Z. L., and Yan, X. G. (2016). The removal
of EOG artifacts from EEG signals using independent component analysis and
multivariate empirical mode decomposition. IEEE J. Biomed. Health Inform. 20,
1301–1308. doi: 10.1109/JB

Wang, G., Wang, D., Du, C. W., Li, K., Zhang, J. H., Liu, Z. A., et al. (2020). Seizure
prediction using directed transfer function and convolution neural network
on intracranial EEG. IEEE Trans. Neural. Syst. Rehabli. Eng. 28, 2711–2720.
doi: 10.1109/TNSRE.2020.3035836

Wu, Z., and Huang, N. E. (2009). Ensemble empirical mode decomposition: a
noise-assisted data analysis method. Adv. Adapt. Data Anal. 1, 1–41. doi: 10.
1142/S1793536909000047

Yeung, N., Bogacz, R., Holroyd, C. B., Nieuwenhuis, S., and Cohen, J. D. (2007).
Theta phase resetting and the error-related negativity. Psychophysiology 44,
39–49. doi: 10.1111/j.1469-8986.2006.00482.x

Zeng, H., Song, A. G., Yan, R. Q., and Qin, H. Y. (2013). EOG artifact
correction from EEG recording using stationary subspace analysis and
empirical mode decomposition. Sensors 13, 14839–14859. doi: 10.3390/s13111
4839

Zhao, Q. L., Hu, B., Shi, Y. J., Li, Y., Moore, P., Sun, M. H., et al. (2014).
Automatic identification and removal of ocular artifacts in EEG-improved
adaptive predictor filtering for portable applications. IEEE Trans. Nanobiosci.
13, 109–117. doi: 10.1109/T

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Teng, Zhang, Wang, Luo, Wang and Xu. This is an open-access
article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided
the original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Neuroscience | www.frontiersin.org 13 October 2021 | Volume 15 | Article 729403

https://doi.org/10.1088/0967-3334/27/4/008
https://doi.org/10.1109/JBHI.2020.3008052
https://doi.org/10.1109/JBHI.2020.3008052
https://doi.org/10.1109/jsen.2011.2115236
https://doi.org/10.1109/TBME.2010.2051440
https://doi.org/10.1016/j.bspc.2015.06.009
https://doi.org/10.1016/j.bspc.2015.06.009
https://doi.org/10.1109/TBME.2009.2021987
https://doi.org/10.2478/v10048-012-0010-0
https://doi.org/10.3969/j.issn.1673-5374.2013.16.007
https://doi.org/10.3969/j.issn.1673-5374.2013.16.007
https://doi.org/10.3389/fnins.2018.00235
https://doi.org/10.3389/fnins.2018.00235
https://doi.org/10.1212/WNL.0000000000006776
https://doi.org/10.1212/WNL.0000000000006776
https://doi.org/10.1016/j.ijpsycho.2004.03.0
https://doi.org/10.1016/j.ijpsycho.2004.03.0
https://doi.org/10.1109/JB
https://doi.org/10.1109/TNSRE.2020.3035836
https://doi.org/10.1142/S1793536909000047
https://doi.org/10.1142/S1793536909000047
https://doi.org/10.1111/j.1469-8986.2006.00482.x
https://doi.org/10.3390/s131114839
https://doi.org/10.3390/s131114839
https://doi.org/10.1109/T
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/
https://www.frontiersin.org/journals/neuroscience#articles

	A Novel Method Based on Combination of Independent Component Analysis and Ensemble Empirical Mode Decomposition for Removing Electrooculogram Artifacts From Multichannel Electroencephalogram Signals
	Introduction
	Materials and Methods
	Electroencephalogram Data
	Generation of Simulated Data
	Acquisition of Real Electroencephalogram Data

	Methodology
	Independent Component Analysis
	Electrooculogram-Related Independent Components Identification
	Ensemble Empirical Mode Decomposition
	Electrooculogram-Related Intrinsic Mode Functions Identification and Rejection
	Signal Reconstruction

	Quantitative Measures
	Statistical Analysis

	Results
	Eliminating Electrooculogram Artifacts From Simulated Signals
	Electrooculogram Artifacts Rejection of Real Electroencephalogram Data

	Discussion
	Limitation
	Conclusion
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


