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ABSTRACT

The transcription of a gene from its DNA template
into an mRNA molecule is the first, and most heavily
regulated, step in gene expression. Especially in
bacteria, regulation is typically achieved via the
binding of a transcription factor (protein) or small
RNA molecule to the chromosomal region
upstream of a regulated gene. The protein or RNA
molecule recognizes a short, approximately
conserved sequence within a gene’s promoter
region and, by binding to it, either enhances
or represses expression of the nearby gene. Since
the sought-for motif (pattern) is short and
accommodating to variation, computational
approaches that scan for binding sites have
trouble distinguishing functional sites from
look-alikes. Many computational approaches are
unable to find the majority of experimentally
verified binding sites without also finding many
false positives. Phyloscan overcomes this difficulty
by exploiting two key features of functional binding
sites: (i) these sites are typically more conserved
evolutionarily than are non-functional DNA se-
quences; and (ii) these sites often occur two or
more times in the promoter region of a regulated
gene. The website is free and open to all users,
and there is no login requirement. Address:
(http://bayesweb.wadsworth.org/phyloscan/).

INTRODUCTION

With the sequencing of many genomes, we may immedi-
ately start asking questions about the genes that are being
found. The gene sequences encode proteins and other
products, but what do the gene products do and what

determines the quantity of expression of a gene product?
The answer to the latter question is key to the study of
normal and pathological cell function and differentiation;
for instance, how does a muscle cell know not to produce
proteins used exclusively in skin cells, and how might the
regulation go awry?

There are many steps in the creation of a gene product
from a gene, starting with transcription, the reading of the
DNA template to create an RNA message to be used in
subsequent steps. Especially in bacteria, gene regulation is
typically achieved via the binding of a transcription factor
(protein) or small RNA molecule to the chromosomal
region upstream of a regulated gene. The protein or
RNA molecule recognizes a sequence within such a
promoter region and, by binding to it, either enhances
or represses expression of the nearby gene.

With a collection of experimentally verified binding sites
for a regulating protein or RNA in hand, or with a motif
(pattern)-derived therefrom, it is natural to seek additional
genes that are regulated by the same molecule. This com-
putational process is called scanning (1–16), and it often
includes multi-species data and mathematical models for
exploiting phylogenetic/evolutionary relationships
(17–20). However, especially because the motif is typically
short (6–30 nt in length) and tolerant of variation, the de-
termination as to whether a proposed site is a functional
binding site can be difficult. Frequently, attempts to hold
the level of false positives low also cause the tools to
overlook too many experimentally verified binding sites.
Among the purely computational approaches, the
phylogeny-based tools have some advantage, because
they can exploit conservation across species as suggestive
of a functional binding site. Phyloscan (21) does particu-
larly well, because it handles phylogenetic relationships
whether or not a (multiple) sequence alignment is avail-
able, and also because it is able to combine the existence of
multiple weak binding sites [a common occurrence (22)]
into a statistically strong statement that binding does
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occur somewhere in a promoter region. These traits are
advantageous for analyses of large multi-genomic data
sets.

The Phyloscan algorithmics paper (21) describes how
we use the Neuwald–Green technique (23) to statistically
combine evidence from multiple sites within a promoter
region, and how we use the Bailey–Gribskov technique
(24) to statistically combine evidence across unaligned
orthologous sequences. The algorithmics paper also de-
scribes the quantitative evaluations of Phyloscan that we
have performed, and includes several measures of predict-
ive performance, such as sensitivity, specificity and
positive predictive value, as estimated from real and
simulated data. Some of the earlier data are reproduced
in Figure 1. Note that the ‘1 clade / 1 site’ functionality is
similar to that of MONKEY (17), although MONKEY
employs techniques to optimize the placement of sequence
alignment gaps.

With the new web server, the underlying algorithmics
remain unchanged. The new web server permits the user to
supply the data to be scanned, where the older server
scanned only a specific set of gamma-proteobacterial
species data. The new server allows several data formats
instead of requiring the use of the FASTA format.
Additionally, the new web server provides a tutorial and
expanded ‘help’ information.

The Phyloscan runtime is OðwLÞ, where w is the width
of a binding site and L the number of nucleotides in the
sequences to be scanned. The constant of proportionality
is �2 ms; Phyloscan scans 2 million nucleotides with a
motif model of width 16 in 60 s.

THE INPUTS

For input, Phyloscan requests the information itemized
below. Defaults and/or examples are available for each
item.

E-mail address

The user can optionally supply an e-mail address. If it is
supplied, the user will receive notification when the
submitted Phyloscan job has completed. Whether or not
an e-mail address is supplied, upon job submission the
user will be provided a link to where the results will
become available. The user can go to that web page im-
mediately; the page refreshes every 10 s until the results
become available.

Phylogenetic tree

Phyloscan exploits phylogenetic relationships among se-
quences that are (multiply) aligned, by employing nucleo-
tide substitution models: non-functional nucleotides are
modeled with HKY85 (25) and binding-site nucleotides
are modeled with HB98 (26). To make use of these
models, Phyloscan needs a phylogenetic tree relating the
species from which the sequences derive. The user should
attempt to find an applicable tree in the literature.
Alternatively, the user can make an educated guess;
Phyloscan will perform well enough if there has been a

good-faith effort to give a reasonable tree topology and
set of edge lengths.
The phylogenetic tree should be supplied in Newick tree

format (also termed New Hampshire tree format); a de-
scription for that is available on the Phyloscan help page.
The length of each phylogenetic tree edge should be
supplied as a non-negative number; it is the average
number of substitution events, per nucleotide position,
that are expected in neutrally evolving (junk) DNA. For
instance, a value of 0.1 for a phylogenetic tree edge means
that, within a span of 500 nt positions, we expect an
average of 50 nt substitution events to occur, in the time
interval separating the ancestral and descendant sequences
that are connected by that edge.

Sequences to be scanned

The user selects a file format, and supplies gene promoter
(or other) sequence data to be scanned, by pasting them
into a text box, or by uploading a file. Each sequence is
labeled by the species from which it comes and by the
gene (i.e. orthologous gene group) with which it is
associated. Sequences can be supplied as aligned or un-
aligned, and the choice need not be consistent from gene
to gene. For instance, suppose that human, chimp and
baboon promoter sequences for gene ‘abc’ are aligned,
and the orthologous sequences for mouse and rat are also
aligned; when the data for gene ‘bcd’ is supplied, the
promoter sequences from the same species can be
grouped differently for alignments, and any of the se-
quences can be left unaligned to the others. Each supplied
sequence should appear exactly once in the input data.
The supplied identifier for a sequence must conform to a

specific format. The text before the first ‘.’ must match the
name of a species present in the phylogenetic tree. The text
after the last ‘.’ must match those sequences that are
orthologous to the sequence, whether or not aligned; for
example, the sequence upstream of the human ‘abc’ gene
and its orthologous counterparts should be labeled with a
shared identifier, such as ‘abc.’ If an identifier has more
than one ‘.’, then the text between the first and last ‘.’ is
ignored by Phyloscan. The letters in the nucleotide se-
quences can be any combination of uppercase and
lowercase; Phyloscan ignores the case distinction.

Motif model

The user supplies instances of known binding sites as input
to Phyloscan, so that Phyloscan can build a motif model
for subsequent scanning. These instances are supplied in a
user-specified format; they are pasted into the form or
uploaded as a file.
From these data, Phyloscan constructs a product phyl-

ogeny model (27), also known as a phylogenetic motif
model (28). Phyloscan employs the nucleotide substitution
models of HKY85 (25) and HB98 (26) for neutral- and
functional-position evolution, respectively.
All supplied binding sites should be unaligned, gapless,

and of the same length. Known binding sites can be
found in public databases such as JASPAR (29),
PAZAR (30) PRODORIC (31), RegTransBase (32) and
TRANSFAC (33).
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Palindrome flag

The user specifies whether Phyloscan should assume that
the supplied known binding sites are palindromes: when a
nucleotide sequence (read from 50 to 30) is identical to the
Watson–Crick complementary sequence to which it would
bind in a DNA double helix (also read from 50 to 30), the
sequence is said to be palindromic.
Many transcription factors are dimeric and recognize a

motif that is palindromic; Phyloscan can exploit this
common occurrence. Among other features, a check in
the palindrome form box permits Phyloscan to skip the
reverse scan of each supplied sequence, leading to better
statistical significance for the binding sites that are
located.
When the user indicates a palindromic model, each

binding site supplied as part of the motif model can be
supplied in either orientation, but not in both orientations.
When the user indicates a non-palindromic model, all of
the binding sites supplied for the motif model must have

the same orientation, from the perspective of the binding
protein or RNA molecule.

Fragmentation mask

Many transcription factors are relatively insensitive to the
identity of the nucleotide at some positions within a
binding site. For instance, a dimeric transcription factor
may bind regardless of the handful of nucleotides that fall
between the reverse complement ‘half-sites’ to which each
constituent monomer binds. The user specifies, with an
asterisk, which positions are important for binding speci-
ficity and, with a period, which positions are ignorable.
When in doubt, the user should supply an asterisk for a
position.

For example, if the middle six positions of a 22-nt wide
binding site are not significant for binding, the supplied
fragmentation mask should be
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Figure 1. Shown are receiver operating characteristic (ROC) curves for Phyloscan as applied to promoter regions containing a pair of full-strength
Escherichia coli Crp binding sites, a pair of 1/2-strength sites, and a pair of 1/3-strength sites. The simulated sequence data are for 14 prokaryotic
species organized into four clades; the orthologous promoter regions are each 500-nt long and are multiply aligned within each clade, but not
between clades. ROC curves are shown for fully enabled Phyloscan, as well as for Phyloscan without the advantage of its multi-clade functionality
and for Phyloscan without the advantage of both its multi-clade and its multi-site functionality. (Phyloscan with its multi-clade functionality but
without its multi-site functionality is not displayed, because it is nearly indistinguishable from the fully enabled Phyloscan.) A comparison of the ‘1
clade/2 sites’ curves to the ‘1 clade/1 site’ curves shows that there is value in combining evidence from multiple sites within a promoter region, using
the Neuwald–Green calculation (23). A comparison of the ‘4 clades’ curves to the ‘1 clade/2 sites’ curves indicates that there is additional value in
considering data from multiple clades, using the Bailey–Gribskov calculation (24). For instance, if p-value cutoffs are chosen so that the false-positive
rate (type I error) is 0:1% (i.e. the specificity is 99:9%), then Phyloscan correctly classifies 99:85% of the full-strength-Crp promoter regions, 72:68%
of the 1/2-strength regions and 32:64% of the 1/3-strength regions. The corresponding numbers for ‘1 clade/2 sites’ are 96:98%, 33:01% and 10:11%.
The corresponding numbers for ‘1 clade/1 site’ are 79:02%, 21:66% and 6:33%. See the Phyloscan algorithmics paper (21) for further details.
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p-value cutoff

Phyloscan will report a promoter region as being likely to
contain one or more binding sites if and only if there is
sufficient evidence of the binding sites (i) in the primary
species, as considered in isolation and (ii) in the primary
species as considered in the context of the remaining
orthologous sequences (see below for an explanation of
the term primary species). The p-value cutoff field sets
the cutoff threshold for the primary species considered in
isolation; for instance, a cutoff value of 0.05 will instruct
Phyloscan to consider only those promoter regions with a
p-value of 0.05 or better in the primary species. With this
cutoff, approximately 1 of 20 promoter regions that do not
contain binding sites will be false positives at this stage,
and Phyloscan will proceed with the analysis of the
promoter region in the context of the promoter region’s
orthologous sequences. (Such a high interim level of false
positives is acceptable because of the further processing
that occurs; see q-value cutoff below.)

The setting of a low (tight) value for the p-value cutoff,
e.g. 0.001, will cause Phyloscan to reject promoter regions
that do not appear quite good in the primary species, even
if they could otherwise be ‘rescued’ by the existence of
high-quality binding sites in the orthologous sequences
that are not aligned to the primary species’ sequence.
Note that a promoter region that passes such a strict
cutoff is necessarily of high quality, and frequently
such high quality will cause the region to pass the subse-
quent q-value test as well, unless the second test is
even more strict. On the other hand, a high (lax) value
for the p-value cutoff will instruct Phyloscan to not be
too concerned with the quality of the binding sites in the
primary species; Phyloscan will deem a promoter region to
be of high quality if consideration of the primary species
and orthologous sequences together so indicates. The
default value, 0.05, has been chosen so that Phyloscan
will identify (i) those promoter regions that have one or
more high-quality binding sites in the primary species and
(ii) those promoter regions that have only low-quality
binding sites in the primary species but for which the con-
servation of those sites across the remaining species is sig-
nificant evidence of the functionality of those sites.
However, binding sites that are absent in a promoter
region in the primary species, but present in the
orthologous sequences, are unlikely to be detected when
the cutoff is 0.05 (or lower).

q-value cutoff

The q-value cutoff is the mechanism by which Phyloscan
balances the trade-off between the number and quality of
the promoter regions that it identifies. The q-value (also
termed the false discovery rate) is the expected ratio of the
number of false discoveries in an output data set to the
size of the output data set. For example, for a set of 40
promoter regions reported as significant hits by
Phyloscan, a q-value of 0.05 would indicate that, on
average, 2 of those 40 will be false discoveries (under the
assumption that the statistical models that are employed
perfectly model the underlying biology). This cutoff
defaults to 0.001, a conservative value, to account for

the fact that the actual biology is more complicated than
are the statistical models that we use to analyze it.
Note that q-value differs from p-value. Each is a

fraction with the numerator equal to the number of false
positives in an output set. However, for p-value the de-
nominator is the expected number of negative cases (i.e.
the number of promoters to which the regulatory molecule
does not bind); for q-value the denominator is the size of
the output set.

Rank weights

Much of the strength of Phyloscan arises from its ability
to combine the evidence across multiple binding sites
within a promoter region. The default weight, 0.9, for
the best site indicates to Phyloscan that �90% of the
time, a promoter region with one or more functional
binding sites will have at least one strong binding site.
The default rank weight, 0.1, for the second-best site in-
dicates to Phyloscan that �10% of the time, the best site
will not be strong, yet the second-best site will be strong
enough that the best two sites taken together cause the
promoter region to be identified as functional for the tran-
scription factor.
The user must supply one or more rank weights. Each

supplied rank weight must be non-negative, and at least
one of the rank weights must be positive. If the supplied
rank weights do not sum to 1.0, they will be scaled
proportionally.

Primary species

Once Phyloscan has accepted the above inputs and has
checked that they are reasonable, it will ask the user to
select a primary species. This selection influences the algo-
rithm as discussed earlier, in the ‘p-value cutoff’ section.

Acknowledgment boxes

As part of it evaluation of the user-supplied inputs,
Phyloscan checks whether any species present in the
phylogenetic tree fails to be present in the sequence data
and, conversely, whether any species present in the
sequence data fails to be present in the phylogenetic
tree. If the former event arises, the user is asked to ac-
knowledge that the extra species in the phylogenetic tree
will be ignored. If the latter event occurs, the user is asked
to acknowledge that the supplied sequences for the extra
species will be ignored.

THE OUTPUTS

Figure 2 shows the best result calculated from the example
data that is provided by the web site. Here, we describe the
fields present in the output.

Gene family

Gene family is the name associated with a gene and its
orthologs (if any). It is extracted from the
sequences-to-be-scanned input data and is the text follow-
ing the last ‘.’ in a sequence identifier.
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Combined q-value

The combined q-value is the proportion of groups of
orthologous promoter regions in the Phyloscan output
of this quality or better that is expected to be false
discoveries. For instance, if q=0.05 for the 40th-best
reported promoter region, that result indicates that, on
average, 2 among the 40 are false discoveries.
Combined q-value is a measure of a promoter region

and its orthologous sequences, whether aligned to it or
not, when the evidence for all of the sequences and for
all of the potential binding sites are considered together.
This statistic reflects multiple-testing considerations.
Because the statistical model only approximately models
the underlying biology, we find that a value � 0.001 to be
statistically significant in many circumstances.

Combined p-value

The combined p-value is the probability that a randomly
generated promoter region will accidentally look this
good. This statistic does not reflect multiple-testing con-
siderations, in that its computation ignores the number of
promoter regions that were scanned. Similar to the
combined q-value, the combined p-value is a measure of
a promoter region and its orthologous sequences, whether
aligned to it or not, when the evidence for all of the se-
quences and for all of the potential binding sites are con-
sidered together.

Species name

A species name must be associated with each sequence. It
will be extracted from the sequences-to-be-scanned input
data, as the text preceding the first ‘.’ in the sequence iden-
tifier. It is also present in the user-supplied phylogenetic
tree.
If, for a gene promoter region, a species’ sequence is

aligned with one or more orthologous sequences, they

will be presented together in a block. The promoter
p-value (described below) and the binding sites’ E-values
(that are also described below) shown with the first species
in the block are statistics applicable to the alignment
block.

Promoter p-value

Promoter p-value is a measure of a single alignment block
of a promoter region, when the evidence of all the se-
quences within the block and all the potential binding
sites within the block are considered together. Promoter
p-value is the probability that a randomly generated align-
ment block will accidentally look this good. For alignment
blocks that contain sequence from the primary species, the
promoter p-value will be lower than the user-specified
p-value cutoff.

Site rank

The site rank is the relative strength of a potential binding
site found in the sequence data. A value of ‘1’ indicates
that it is the strongest site found in a species’ sequence
data for a promoter region, a value of ‘2’ indicates that
it is the second strongest site, and so on.

The number of sites listed will depend upon the
user-provided input rank weights and the strengths of
the sites. In addition to an evaluation of its strength, via
the rank weights each site is evaluated as to how surprising
it is to find a site of this strength at this rank. For example,
there are instances for which the discovery that the
strongest site has an E-value of 0.10 is not unusual, but
for which the discovery that the second strongest site has a
weaker E-value of 0.15 is unusual. All sites that are
as strong as or stronger than the most unusual site are
listed.

Gene Family : mtlA Combined q-Value / p-Value : 3.544e-16 / 8.643e-18

ECOL.mtlA 1 F 9.206e-06 170

ECOL.mtlA 7.116e-13 2 F 1.355e-05 53

1Altm.PYTS F 169

2Altm.PYTS F 53

YPES.mtlA 1 F 2.952e-04 313
YPES.mtlA 5.337e-07 2 F 3.270e-04 357

VCHO.mtlA 2.331e-02 1 F 2.120e-02 26

Species
Promoter 
p-Value

Site
Rank

Site Sequence 
Fwd
Rev

E-Value
Position in 
Promoter 

Figure 2. A run with the example data set provided by our web server, for identifying Escherichia coli binding sites for Crp, gives the ‘mtlA’ gene
family as the best result. The combined q-value for this gene family, 3.544�10�16, indicates that the user who takes all results of this quality or better
(in this case, just the one result) will, ‘on average,’ find that <10�15of the results are false discoveries. The combined p-value, 8.643�10�18, indicates
that if the user had looked at only the mtlA gene family, and believed the family to be non-functional for Crp binding, then the chance that it would
accidentally look this functional for Crp binding is <10�17. The combined p-value is computed from the promoter p-values via the technique of
Bailey and Gribskov (24). The promoter p-values, 7.116�10�13, 5.337�10�7 and 2.331�10�2, arise from the scans of the three user-supplied
alignment blocks for mtlA: (i) E. coli aligned to Salmonella enterica serovar Typhi (S. typhi), (ii) Yersinia pestis and (iii) Vibrio cholerae, respectively.
These promoter p-values are constructed from the best two, the best two and the best one sites found, respectively, using the technique of Neuwald
and Green (23). The best two sites in the E. coli–S. typhi aligned sequence data have E-values of 9:206� 10�6 and 1:355� 10�5; the user can display
them in context in, e.g. the E. coli sequence, by clicking on the position numbers 170 and 53. The field names in yellow are links to help for these
fields.
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Site sequence

Phyloscan reports the sequence of nucleotides in each po-
tential binding site. Note that these are shown in the
forward orientation, even when the site better matches
the pattern when read in the reverse-complement
sequence.

Sequence orientation

The sequence orientation is set to ‘F’ when the forward
orientation of the potential binding site matches the
pattern. It is set to ‘R’ when the reverse-complement
sequence is the match to the pattern. When the pattern
is palindromic, an ‘F’ will always be indicated.

Binding site E-value

The binding site E-value is similar to the promoter
p-value, although it does not combine evidence across
multiple potential binding sites. The E-value for a single
potential binding site is the average number of sites in a
randomly generated alignment block of this size that are
expected to accidentally look this good.

Position in promoter

The location of each potential binding site in the input
sequence data is reported. The first position in any input
sequence is numbered ‘1’ (rather than ‘0’, as some
computer scientists prefer). Gaps are not counted.

Clicking on the number will take the user to a web page
that shows the location(s) of the potential binding site(s)
graphically.

CONCLUSION

The ability to scan DNA sequence for regulatory binding
sites is key to an understanding of gene regulation and its
effects on normal and pathological cell function and dif-
ferentiation. For the first time, our new web server brings
together the use of the Bailey–Gribskov technique, for
combining mixed aligned and unaligned sequence data,
and the Neuwald–Green technique, for statistically
combining multiple binding sites’ data, into a scan
engine that runs on a user’s multi-genomic data sets.
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