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Abstract

A new technique for more accurate automatic segmentation of the kidney from its surround-

ing abdominal structures in diffusion-weighted magnetic resonance imaging (DW-MRI) is

presented. This approach combines a new 3D probabilistic shape model of the kidney with a

first-order appearance model and fourth-order spatial model of the diffusion-weighted signal

intensity to guide the evolution of a 3D geometric deformable model. The probabilistic shape

model was built from labeled training datasets to produce a spatially variant, independent

random field of region labels. A Markov-Gibbs random field spatial model with up to fourth-

order interactions was adequate to capture the inhomogeneity of renal tissues in the DW-

MRI signal. A new analytical approach estimated the Gibbs potentials directly from the

DW-MRI data to be segmented, in order that the segmentation procedure would be fully

automatic. Finally, to better distinguish the kidney object from the surrounding tissues, mar-

ginal gray level distributions inside and outside of the deformable boundary were modeled

with adaptive linear combinations of discrete Gaussians (first-order appearance model).

The approach was tested on a cohort of 64 DW-MRI datasets with b-values ranging from 50

to 1000 s/mm2. The performance of the presented approach was evaluated using leave-

one-subject-out cross validation and compared against three other well-known segmenta-

tion methods applied to the same DW-MRI data using the following evaluation metrics: 1)

the Dice similarity coefficient (DSC); 2) the 95-percentile modified Hausdorff distance

(MHD); and 3) the percentage kidney volume difference (PKVD). High performance of the

new approach was confirmed by the high DSC (0.95±0.01), low MHD (3.9±0.76) mm, and

low PKVD (9.5±2.2)% relative to manual segmentation by an MR expert (a board certified

radiologist).
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Introduction

The prevalence of chronic kidney disease (CKD) in the U.S. (2017) was about 15% of the adult

population and 662,000 were of end-stage kidney disease (ESKD) [1]. Although transplanta-

tion is the definitive therapy for ESKD, approximately 17,000 transplants were annually per-

formed during this time due to limited availability of transplantable kidneys [2]. Thus, all

efforts should be employed to prolong the survival rate of these kidneys. However, acute rejec-

tion (AR) is one of the most serious barriers to transplanted kidneys. Therefore, clinicians are

in a bad need of a fast, accurate, and reliable diagnostic tool to early detect AR for a higher

chance of rescuing the transplanted kidney [3], [4]. An imaging modality, such as diffusion-

weighted magnetic resonance imaging (DW-MRI) with the ability to provide both anatomical

and functional information, expose patients to no radiation or contrast agent like other imag-

ing modalities (e.g., computed topography (CT) and dynamic MRI), is critically needed to

develop a computer-aided diagnostic (CAD) system for the early detection of AR post-

transplantation [5]. DW-MRI allows mapping of water molecules’ diffusion process in biologi-

cal tissues, in-vivo and non-invasively. These water molecule diffusion patterns are quantified

by apparent diffusion coefficients (ADCs) and reveal details about tissue (e.g., kidney) status,

either normal or diseased. In particular, healthy renal allografts provide higher ADC values

than those with AR ones and thus facilitate the transplant status classification process [3], [4],

[6], [7]. Segmentation of transplanted kidney from the surrounding abdominal structures and

tissues is the key step to developing such a CAD system [8]. Thus, in literature several studies

have focused their research on kidney segmentation. However, kidney segmentation from

DW-MRI is very rare and most of it is performed by clinical research either manually or by an

ROI tool [9], [10], [3], [4]. To the best of our knowledge, our group is the only group who

started to automatically segment kidneys from DW-MRIs. Therefore, we will overview the

related work devoted to kidney segmentation on other image modalities. Namely, we will

review some of these studies that used different segmentation methods (e.g., threshold, region

growing and graph cuts, and evolving deformable boundary) and different imaging modalities

(e.g., CT and dynamic MRI).

With threshold methods, the kidney is segmented through studying the pixel intensity dis-

tribution in a certain region of interest (ROI). The ROI can be placed in a manual, semi-

automatic or automatic manner. Giele et al. [11] presented a method for segmenting and regis-

tering the kidney from dynamic contrast-enhanced MRI (DCE-MRI). Their method involves

manual insertion of a contour surrounding the kidney in one image with high contrast, then

the kidney motion in other images is handled using a phase difference movement detection

technique. However, it had a low accuracy and it compensated for the translation resulting

from the motion without referring to the rotation, which was revisited in [12]. Mavromatis

and Sequeira [13] presented a segmentation algorithm for medical tissues based on calculating

texture directional maximums to segment a cancerous kidney from CT images. Priester et al.

[14] segmented the renal transplant in MR images using two groups of images; acquired before

and after the injection of the gadolinium-diethylenetriamine pentaacetic acid (DTPA) contrast

agent. The average images of each group are subtracted and the output is thresholded resulting

in a binary mask. Post-morpholigical processing is conducted to obtain the renal cross section.

Giele [15] used a similar subtraction technique followed by thresholding for renal segmenta-

tion. Post-processing using morphological operations was used to close kidney contours. Sepa-

rating the cortex from the medulla involves generating two ROIs (outer and inner) on the

shape of onion rings using erosion. The outer ROI contains the cortex tissues and the inner

ROI also contains the medulla tissues. They separated the calix manually. Koh et al. [16] used
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3D H-maxima morphological transform for renal segmentation, where training data and prior

information are being excluded by using edge information and rectangular masks.

Pohle and Toennies [17] segmented the kidney cortex using a region growing method.

Their method is capable of self-learning of the homogeneity criterion based on the properties

of the region under consideration. Boykov et al. [18] presented a globally optimal segmenta-

tion method for registered renal dynamic multidimensional data using temporal Markov

based graph cuts. A vector having intensity values over time is used to characterize every voxel.

Some seed points are initially inserted over the objects and the background, which are used to

estimate a 2D histogram to be used with energy minimization. The properties of regions and

boundaries are compromised to meet the imposed constraints. In spite of the good results of

this technique, it requires a manual interaction from user. Rusinek et al. [19] used rigid regis-

tration with graph cut for renal segmentation in order to handle displacements. Farag et al.

[20] presented a segmentation method for kidney that combined shape constraints with

boundary properties and regions using graph cuts. Chevaillier et al. [21] segmented the inter-

nal kidney components in DCE-MRI images. They categorized the pixels based on the contrast

evolution with time, making use of vector quantization algorithm. As in [18], their method

requires interaction from the user. Freiman et al. [22] proposed an automatic, non-parametric

graph min-cut model based technique for segmentation of kidney from CT scans. In their

technique both shape and intensity information are integrated in the model. The latter is itera-

tively estimated using expectation maximization, which meanwhile performs segmentation

through estimating the maximum a posteriori Markov random field using the graph min-cut.

Li et al. [23] automatically segmented the kidneys using wavelet based clustering. Yang et al.

[24] classified kidney tissues using fuzzy c-mean clustering.

Furthermore, kidney segmentation was explored using evolving deformable boundary tech-

niques. Leventon et al. [25] combined the shape and deformable model by attracting the level-

set function to the likely shapes from a training set specified by principal component analysis

(PCA). Wang et al. [26] discussed using constrained optimization with deformable contours

and applied it for kidney segmentation. Their system handled noise by using region informa-

tion as constraints in addition to boundary information. Tsagaan et al. [27] presented a tech-

nique for 3D kidney segmentations from CT scan using a deformable model, which is

described by a non-uniform rational B-spline (NURBS) surface and a priori shape. They used

the principal curvature as a shape feature. Several research has been performed to segment kid-

neys using DCE-MRIs in humans and rats [28], [29]. For human studies, large scale movement

for kidney registration and segmentation was roughly handled by Sun et al. in [30] using trans-

lational gradient based similarity registration. This was followed by the subtraction of an

image with high contrast from a pre-contrast one, where the resulting difference was used to

find the kidney contour by applying the level-set method. This contour was transferred across

other frames to estimate the parameters of the registration. Concerning rats, kidney contours

were found by Sun et al. [28] using a level-set variational method, integrating a model for sub-

pixel movement and smoothness temporal constraints. The medulla and the cortex were seg-

mented using the level-set method [31]. Using hybrid region- and edge-based models added

an improvement to the segmentation techniques utilizing deformable models [32]. Moreover,

multiple object segmentation was performed using multiphase level-sets [33], [34]. Based on

both intensity and shape prior information, Abdelmunim et al. [35], [36] implemented a varia-

tional level-set segmentation framework to segment medical shapes (e.g., kidney). Spiegel et al.

[37] presented a 3D kidney segmentation approach from CT scans using an active shape

model in which non-rigid registration is used to find the correspondence between input train-

ing data points. A deformable model based parametric framework for segmenting kidneys was

presented by Yuskel et al. [38]. The evolution of the contour had a shape prior constraint using
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signed distance maps, in addition to an intensity based distribution constraint calculated using

linear combination of discrete Gaussians (LCDG) [39]. Campadelli et al. [40] proposed a

framework for automatic segmentation of kidneys in CT images. Their framework is intensity

based and depends on a multiplanar fast marching technique. The framework is generic and

can be used for segmentation of various organs due to its robustness to intensity and shape

variations. Gloger et al. [41] used Bayesian statistics in addition to shape prior to build a level-

set kidney segmentation framework. Cuingnet et al. [42] presented an automatic method for

detecting and segmenting kidneys in CT images. After kidneys localization, probabilistic kid-

ney maps were calculated using random forests, utilizing both intensity and first/second order

derivatives of each voxel and its neighbors. Finally, template deformation algorithm was per-

formed on these maps to extract kidney surface.

Although the aforementioned segmentation techniques have relatively succeeded in seg-

menting kidneys with high contrast from CT and dynamic MRI, these techniques were not

designed to handle challenges that exist in DW-MRIs such as low signal-to-noise ratio (SNR),

low contrast, and diffused boundaries due to the high intensity similarities between the kidney

and its background, especially at high b-values, which hinder the aforementioned methods

from accurate segmentation of kidneys from diffusion MRIs.

To overcome these limitations, this paper presents a DW-MRI geometric deformable kid-

ney segmentation framework, shown in Fig 1, that is robust to noise and low contrast. This is

achieved by combining higher-order Markov-Gibbs random field (MGRF) model parameters

and adaptive shape model, in addition to the first-order visual appearance model, into a joint

MGRF model. Our framework includes preprocessing using bias correction [43] and histo-

gram equalization, estimation of the joint MGRF model parameters, and extraction of the kid-

ney volume from the surrounding tissues using the level-sets guided by the estimated joint

MGRF model. This paper presents the following specific contributions. (i) Higher order

MGRF appearance model (up to the 4th-order), which takes into account the spatial dependen-

cies between each voxel and its nearest neighbors in the DW-MR images. This better accounts

for low SNR and low contrast, in addition to intra-kidney variabilities. (ii) An adaptive shape

Fig 1. The proposed framework for kidney segmentation.

https://doi.org/10.1371/journal.pone.0200082.g001
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prior model of the expected kidney shape, which has the advantage over the fixed shape prior

model not only to increase the robustness against noise and low contrast, but also to handle

kidney motions caused by breathing and heart beating and to account for kidney variability

due to inter-patient anatomical differences. This is achieved by adapting the shape probabili-

ties of the kidney volume to be segmented based on its visual appearance. It is worth mention-

ing that the kidney-background visual appearance, shape prior, and statistical spatial

dependencies are adaptable to kidney labels, which is an advantage of the presented

framework.

Materials and methods

Participants

In total, 72 patients who underwent kidney transplantation provided verbal consents to partic-

ipate in this study. All scans and biopsies were performed from July 2014 to February 2017,

and all kidney transplants were done at Mansoura University (Egypt), with the donated kid-

neys having been obtained from live donors. However, eight patients were excluded due to a

later on refusal of the study and/or contraindications for the MRI such as metallic prostheses,

technical problems, artificial valves, or claustrophobia. The remaining 64 patients, (52 males

and 12 females) and range in age from 12 to 54 years (the mean age of 27.2 ± 10.2 years), were

included in the study. Patients were divided into two groups: non-rejection (NR) and acute

rejection (AR). As a part of routine medical care after transplantation, all patients of both

groups were assessed with serum creatinine laboratory values with a normal (basal) level of

� 1.3 mg � dl−1. The NR group (17 patients) included patients with healthy graft function.

Most of the NR group patients only underwent the DW-MRI scans two weeks after transplan-

tation. The AR group (47 patients) included patients with acute renal rejection, based on renal

biopsy histology. All patients of the AR group underwent the DW-MRI scans two weeks after

transplantation and just before the renal biopsy. All patients were asked to hold respiration

(breath) during the study to reduce respiratory effect. Both the DW-MRI scans and biopsy

were examined by a nephrologist and a board certified radiologist.

Imaging protocol

The DW-MR images were acquired before any biopsy procedure by using a 1.5T SIGNA Hori-

zon scanner (General Electric Medical Systems, Milwaukee, WI, USA). Coronal DW-MR

images have been obtained by using a body coil and a multi-shot spin-echo echo-planar

sequence (TR/TE, 8000/61.2 ms; bandwidth, 142 kHz; 1.28 × 1.28 mm2 matrix; section thick-

ness of 4 mm; intersection gap of 0 mm; FOV of 36 cm; 7 acquired signals; water signals

acquired at different b-values of (b0, b50, b100, b200, b300, b400, b500, b600, b700, b800, b900, and

b1000) s/mm2) using a single-direction from right to left. Approximately 50 sections have been

obtained in 60–120 seconds to cover the whole kidney.

Detailed methods

Given an input (3D + b-value) DW-MRI, the presented segmentation technique in Fig 1 per-

forms the following steps: (i) preprocessing of the DW-MRI kidney volume to be segmented;

(ii) estimating of the joint Markov-Gibbs random field (MGRF) model parameters, namely,

the adaptive shape model and the DW-MRI visual appearance features; and (iii) extracting the

kidney volume from the surrounding tissues using the level-sets guided by the joint MGRF

model estimated in the previous step.

Kidney segmentation from DW-MRI
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Achieving an accurate kidney segmentation is a challenging task [44], [38] because of kid-

ney motions due to breathing and heart beating; kidney shape changes due to inter-patient

anatomical differences; low contrast between the kidney and other abdominal structures, espe-

cially at higher gradient strengths and duration, or b-values (Fig 2); low SNR and artifacts that

complicate image alignment [45]; and geometric distortions due to long acquisition time [46].

To overcome these challenges, our segmentation relies on multiple image features to accu-

rately delineate the kidney and thus facilitates analysis of transplant status. Details of our seg-

mentation pipeline and its basic notations are outlined below.

Basic notations: For describing processing steps, let p = (x, y, z) denote a voxel at 3D

position with discrete Cartesian coordinates (x, y, z) and let R = {(x, y, z): 0� x� X − 1; 0� y
� Y−1; 0� z� Z − 1} be a finite 3D arithmetic lattice of unit voxels. The lattice has the size

of XYZ and supports both grayscale images and their parametric or region (segmentation)

maps. A grayscale image, g = {gp: p 2 R; gp 2Q}, takes voxel-wise values from a finite set,

Q = {0, 1, . . ., Q − 1}, of Q integer gray levels, i.e. g: R!Q. A region map, m = {mp: p 2 R;

mp 2 L}, takes voxel-wise values from a binary set of region labels, L = {0, 1}, where 0 and 1

indicate the background and kidney, respectively, i.e. m: R! L.

Fig 2. Typical coronal cross-section DW-MRI samples showing (a) low contrast between the kidney and surrounding abdominal tissues at b0; (b) inter-patient

anatomical differences at b0, (c) low signal-to-noise ratio (SNR), especially, at higher b-values (e.g., b1000); (d) image artifacts; and (e) geometric distortion/diffused

boundaries.

https://doi.org/10.1371/journal.pone.0200082.g002
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3D kidney segmentation: The overall segmentation pipeline starts with a preprocessing

step that combines histogram equalization with non-parametric bias correction [43] in which

the noise and inconsistencies due to low-frequency non-uniformity, or inhomogeneity of

intensities, are partially suppressed.

A 3D geometric (level-set-based) deformable boundary, is employed for the DW-MRI kid-

ney segmentation due to successful results in a wide range of applications, including medical

imaging, (e.g., for segmenting brain, prostate, liver, kidney etc.) [47], [48], [41], [5]. Due to

simplicity, flexibility, and ability to handle complex shapes and topological changes indepen-

dently of surface parameterizations, these deformable boundaries are more popular than the

alternative parametric ones. Points of an object-background boundary at each time instant t
are specified implicitly as a zero-level set, Bt = {p: p 2 R; F(p, t) = 0}, of arguments of a specific

higher-dimensional function, F(p, t), on the lattice R. The function is often a signed distance

map:

Fðp; tÞ ¼

dðp;BtÞ if p is inside the boundary Bt;

0 if p is at the boundary Bt; and

� dðp;BtÞ if p is outside the boundary Bt

8
><

>:
ð1Þ

where dðp;BtÞ ¼ minb2Bt
dðp; bÞ is the distance from the point p to the boundary Bt, and

d(p, b) is the Euclidean distance between two lattice points p and b, as shown in Fig 3. The

function F(p, t) evolves in discrete time t = nτ with a fixed step, τ> 0, as [49]:

Fðp; ðnþ 1ÞtÞ ¼ Fðp; ntÞ � tFnðpÞjrFðp; ntÞj ð2Þ

where n = 0, 1, 2, . . ., is the time index;rF(p, nτ) is the spatial gradient of F(p, nτ):

rFðp; ntÞ ¼
@Fðp; ntÞ

@x
;
@Fðp; ntÞ

@y
;
@Fðp; ntÞ

@z

� �

; ð3Þ

|a| denotes the magnitude of the vector a, and Fn(p) is a speed function guiding the evolution

of an initial boundary B0, defined at the starting instant t = 0, i.e., for n = 0.

Most of the conventional speed functions quantify visual appearance differences between

the object and its background in terms of mean values and variances of image intensities,

intensity edges, or gradient vector flow, and similar regional signal characteristics. Thus, their

guidance may fail if images to be segmented are noisy and/or object-background contrast is

low. To accurately segment the kidneys from noisy and low-contrast DW-MRI, our guiding

function accounts for not only regional kidney-background appearance, but also for a kidney

Fig 3. 3D zero-level set of a function F(p = [x, y, z], t).

https://doi.org/10.1371/journal.pone.0200082.g003
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shape prior and high-order spatial relations in the goal region map. To provide voxel-wise

guidance for the evolving boundary, all appearance and shape descriptors are combined into a

joint Markov-Gibbs random field (MGRF) model of a DW-MR image, g, and its binary

kidney-background region map, m. The model is specified by a joint probability distribution

P(g, m) = P(g|m)P(m), where P(g|m) and P(m) denote a conditional probability distribution

of images, given a map, and an unconditional distribution of region maps, respectively. The

latter distribution is factored into two terms: P(m) = Psp(m)PV(m), where Psp(m) denotes an

appearance-based adaptive shape prior, and PV(m) is a high-order Gibbs probability distribu-

tion with potentials V. The potentials evaluate strengths of not only the nearest-neighbor pair-

wise dependencies, but also of triple- and quadruple-dependencies, which specify a higher-

order spatially homogeneous MGRF model of region maps. These components of the joint

image-map model are outlined below.

First-order kidney/background appearance model. To accurately model DW-MRI

appearance, we approximate the empirical marginal probability distribution of intensities with

a linear combination of discrete Gaussians (LCDG) [39]. The LCDG with two positive domi-

nant components (one each for the kidney and background) and multiple sign-alternate sub-

ordinate components allow for separating the mixed marginal of the DW-MRI voxel-wise

intensities into the two distinct LCDGs, each associated with the kidney or background label.

This LCDG model adapts the segmentation to changing appearance, such as non-linear inten-

sity variations caused by patient weight and the data acquisition system, and it separates indi-

vidual submodels of the kidney and background intensities more accurately than a

conventional mixture of only positive Gaussians. This adaptation yields a better initial region

map after the voxel-wise classification of only the image intensities with no account for the

kidney shape.

Higher-order spatial interactions model. Compared to other imaging modalities, lower

SNRs and frequent artifacts [45], together with geometric distortions due to long acquisition

time [46] and larger inhomogeneities of internal structures, such as cortex and medulla, in the

DW-MRI hinder the kidney segmentation. To better account for intra-kidney variabilities,

spatial dependencies between each voxel and its nearest neighbors in the DW-MR images have

been incorporated into our segmentation. Incorporated spatial relationships not only reduce

noise impacts, but also reveal homogeneities and thus enhance the overall segmentation accu-

racy. Unlike the conventional pairwise-spatial homogeneity descriptors (e.g., in [50]), we use a

4th-order MGRF with analytically estimated potentials to describe those relationships. To find

the potential estimates, an initial kidney map, m, is constructed by a simple Bayes classification

using joint voxel-wise shape and intensity probabilities. Then, inter-label spatial dependencies

in this map, m, are modelled by the 4th-order spatial MGRF with the nearest 26-neighborhood

shown in Fig 4(a). This model adds triple and quadruple clique families to the more conven-

tional 2nd-order Potts MGRF [50].

Let Ca be a family of s-order cliques of the interaction graph with nodes in the lattice sites

p 2 R and edges connecting interdependent pairs of the sites. Let A clique families describe

spatial geometry of interdependencies of region labels in the kidney maps, m. Then the model

is specified by the Gibbs probability distribution:

PVðmÞ ¼
1

ZV
exp

XA

a¼1

X

c2Ca

Vaðmp : p 2 cÞ

 !

ð4Þ

where V¼½VaðμÞ :μ� in f0; 1g
na!ð� 1;1Þ :a¼1; . . . ;A� is a collection of potential functions

for the families Ca, νa is the clique size (νa 2 {2, 3, 4}) for the family Ca; μ is a label configura-

tion on the clique, (i.e., a pair, triple, or quadruple of binary numbers 0 and 1), and ZV is the
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normalizing factor, called the partition function, over the entire populationM ¼ f0; 1gXYZ
of

the maps:

ZV ¼
X

m2M

exp
XA

a¼1

X

c2Ca

Vaðmp : p 2 cÞ

 !

ð5Þ

For equiprobable binary labels, mp 2 {0, 1}, the marginal co-occurrence probabilities over

the 2nd-, 3rd-, and 4th-order cliques are 1

4
, 1

8
, and 1

16
, respectively. Provided the cardinalities of the

clique families are close to the lattice cardinality for all the families a = 1, . . ., A and only the

equality (“eq”) or inequality (“ne”) of all the clique-wise labels are taken into account, the cor-

responding estimates of the 2nd-, 3rd-, and 4th-order potentials are as follows:

V2:a:eq ¼ 4 Fa:eqðmÞ �
1

2

� �

¼ � V2:a:ne ð6Þ

V3:a:eq3
¼

16

3
Fa:eq3
ðmÞ �

1

4

� �

¼ � V3:a:eq2
ð7Þ

V4:a:eq ¼

V4:a:eq4

V4:a:eq3

V4:a:eq2

2

6
6
4

3

7
7
5 ¼ l

�

f4:a

f3:a

f2:a

2

6
4

3

7
5 ð8Þ

where Fa:eq(m) denote relative empirical frequencies of the equal binary labels in the cliques of

each family Ca over a given training map m; “eq” and “ne” denote two equal or non-equal

labels, respectively, for a 2nd-order clique; “eqi” denote i equal labels for a 3rd- and 4th-order

Fig 4. The nearest 26-neighborhood of a voxel for the 4th-order spatial model and examples of its 2nd-order cliques (upper raw), 3rd-order cliques

(middle raw), and 4th-order cliques (lower raw). Note that the central voxel is shown in yellow, while its neighbors are shown (i) in red for the same

plane and (ii) in blue and purple for the adjacent planes.

https://doi.org/10.1371/journal.pone.0200082.g004
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clique; f4:a ¼ Fa:eq4
ðmÞ � 1

8
; f3:a ¼ Fa:eq3

ðmÞ � 1

2
; f2:a ¼ Fa:eq2

ðmÞ � 3

8
; and

l
�
¼

XA

a¼1

f 2
4:a þ f 2

3:a þ f 2
2:a

XA

a¼1

7

64
f 2
4:a þ

1

4
f 2
3:a þ

15

64
f 2
2:a

ð9Þ

This approximation is used for computing the higher-order spatial probabilities PrV:p(l) of

each label; l 2 L.

Adaptive shape prior model. In addition to the distinct visual appearances, the well-

known geometric shapes of medical structures can enhance the segmentation accuracy. Rely-

ing on this fact, we use an adaptive model of the expected kidney shape to both handle kidney

motions, (e.g., due to breathing and/or heart beating), and account for the kidney’s variability

due to inter-patient anatomical differences. In addition, the kidney DW-MR images are very

noisy, especially at high b-values.

To build the shape prior, all the b0-scans (after excluding the test subject) of kidneys formed

a training database, and these images have been manually delineated by an MRI expert (a

board certified radiologist) to get their binary kidney/background region maps. One of the

images was chosen as a database reference. All other images were aligned to the reference by a

non-rigid 3D registration [51] minimizing the sum of squared voxel-wise intensity differences

between the two images. Then, the kidney/background labels of the co-aligned region maps

were used to learn the shape prior. It is worth noting that to select the best reference subject,

we performed a normalized cross-correlation between the test subject and every other subject

in the shape prior training database. The subject with the maximum correlation was selected

to be our reference. The choice of the reference has minimal effect on the shape prior as our

presented shape prior depends on both the mapped spatial location in addition to signal

appearance. In our presented shape prior, an adaptive search space around the mapped spatial

location, which maps each voxel from the test subject to the database, is used in searching for

voxels within a predefined tolerance range to the test voxel appearance. This means that any

misalignment errors in the registration step will be overcome by the adaptive process. More-

over, the final segmentation takes into account the first-order appearance and the higher order

spatial interaction that will overcome any errors from the shape prior segmentation. Fig 5 illus-

trates the co-alignment of the training DW-MRI. Adapting the shape prior to each input

Fig 5. 3D co-alignment of training DW-MRI datasets (S1:SN) to a single reference: The first and second rows

present the overlapped 3D kidney volumes before and after the alignment, respectively. Note that the reference

subject appears in magenta, while the targets are shown cyan.

https://doi.org/10.1371/journal.pone.0200082.g005
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DW-MR image to be segmented is guided by the visual appearance of the latter image. The

probabilistic shape prior is built as a spatially variant independent random field of region labels

Psp(m) = ∏p2R Prp(mp), where Prp(l) is the marginal empirical probability of the label l 2 L in

the voxel p; ∑l2L Prp(l) = 1.

As the DW-MR images are challenged by the motion, which might lead to different kidney

masks at different b-values, each b-scan is segmented separately. The shape prior is built by

segmenting manually and co-aligning the baseline scans (at b0 s/mm2) of all subjects. Then,

the shape prior is applied to each b-scan in combination with the other estimated probabilistic

models for that scan namely, the 1st-order LCDG model of current kidney appearance, in

terms of voxel-wise intensities, and the 4th-order MGRF model of spatial interactions. This

joint probabilistic model provides a stochastic force that guides the evolution of a deformable

boundary to segment the kidneys at that b-scan. So, the segmentation of all b-value scans uses

the same shape prior, but own intensity and spatial interactions models.

Algorithm 1 summarizes estimating and updating the appearance-guided shape prior

for each test DW-MR image to be segmented (the test images are first removed from the train-

ing set).

Algorithm 1 Creating/Updating the Shape Prior
1. Preprocess the training DW-MR images by bias correction and histo-
gram equalization.
2. Construct the shape database by applying the co-alignment [51] to
the preprocessed DW-MR images.
3. Preprocess the DW-MR image for a test subject and co-align with the
shape database.
4. For each voxel, p 2 R, in the test DW-MR image, gtest, calculate its
prior shape probabilities as follows:
(a) Use the co-aligning deformation field to relate the voxel p of

the test image to the shape database lattice.
(b) Initialize a 3D window of size N1 × N2 × N3, centered at the

related voxel in the shape database lattice.
(c) Find within the window all the voxels with the corresponding

intensity, gtest:p, in all the training images.
(d) If necessary, increase the window size and repeat Steps 4b to 4d

until a non-empty set of such corresponding training intensities is
found.
(e) Estimate label probabilities based on relative occurrences of

each label in all the training voxels found.

Appearance- and shape-guided deformable model. Adaptation to the kidney-back-

ground visual appearance, shape prior, and statistical spatial dependencies between kidney

labels is one of the main advantages of our segmentation framework. Estimated directly from

the input image and a given shape database, these properties guide the evolving deformable

boundary by defining, for each voxel p with intensity gp = q, the speed function [5] of Eq (2),

Fn(p) = κWp, where κ is the mean contour curvature and Wp specifies the magnitude and direc-

tion of moving that voxel:

Wp ¼
� Prpð1Þ if Prpð1Þ > Prpð0Þ; i:e:;Prpð1Þ > 0:5;

Prpð0Þ otherwise
ð10Þ

(

Here, Prp(0) and Prp(1) are the voxel-wise background and kidney probabilities, respectively:

Pr
p
ð1Þ ¼

Okd:p

Okd:p þ Obg:p
; Pr

p
ð0Þ ¼

Obg:p

Okd:p þ Obg:p
¼ 1 � Pr

p
ð1Þ ð11Þ

where the variables Okd:p and Obg:p for the kidney and background, respectively, depend on
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the voxel-wise probabilities Pr(q|l); l 2 L, for the LCDG submodels of the kidney (l = 1) or

background (l = 0) appearance and on the kidney label probability in the MGRF spatial region

map model, PrV:p(1), and in the adaptive shape prior, Prsp:p(1), respectively:

Okd:p ¼ Prðqj1ÞPr
V:p
ð1Þ Pr

sp:p
ð1Þ; ð12Þ

Obg:p ¼ Prðqj0Þð1 � Pr
V:p
ð1Þð1 � Pr

sp:p
ð1ÞÞ ð13Þ

Algorithm 2 summarizes the basic steps of the 3D level-set-based kidney segmentation.

Algorithm 2 DW-MRI Segmentation by Geometric Deformable Boundary
1. Approximate the marginal of DW-MRI intensities with the LCDG [39]
with two dominant components.
2. Update the shape prior probability using Step 4 of Algorithm 1.
3. Form an initial region map, mini, using the estimated shape prior and
LCDG submodels of kidney and background appearances.
4. Estimate the Gibbs potentials for the 4th-order spatial MGRF map
model from mini.

Fig 6. Our segmentation (red) with respect to the expert’s manual ground truth (green): The coronal (left), axial

(middle), and sagittal (right) cross-sections for two different subjects in the first and second rows.

https://doi.org/10.1371/journal.pone.0200082.g006
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5. Find the above speed function [5], Fn(p), using results of Steps 1
to 4.
6. Segment the input image, g, by evolving the level-set function, Φ(p,
nτ), of Eq (2) with the speed function found in Step 5.

Results and discussion

Segmentation results: The performance of the proposed segmentation approach was tested on

the collected DW-MRI data (a total of 64 subjects). Fig 6 shows segmentation results for differ-

ent kidney cross-sections (coronal, axial, and sagittal) for two subjects at b0. The segmentation

accuracy was evaluated by two volumetric measures, namely, the Dice similarity coefficient

(DSC) [52] and percentage kidney volume difference (PKVD), and one distance-based metric

—the 95-percentile modified Hausdorff distance (MHD) [53], which characterize the spatial

overlap and distribution of the surface to surface distances between the segmented and ground

truth kidneys, respectively. The ground truth kidney maps were manually delineated by an

MRI expert (a board certified radiologist).

To show the effect of adding the higher-order MGRF model to our segmentation, we com-

pared the current results with our previous segmentation using the 2nd order- MGRF [54],

[55], as shown in Fig 7. Moreover, Table 1 compares both segmentation methods in terms of

Fig 7. Our segmentation (red) with respect to the expert’s manual ground truth (green) using the 4th-order MGRF

(first row) compared to our previous segmentation using the 2nd-order MGRF (second row) [54], [55] for three

different subjects (columns), where the first, second, and third columns show large, moderate, and small

differences in yellow regions (false positive (FP)) and blue regions (false negative (FN)), respectively.

https://doi.org/10.1371/journal.pone.0200082.g007
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the DSC, MHD, and PKVD metrics. As shown in Fig 7 and documented in Table 1, our seg-

mentation has been notably enhanced after adding the higher-order MGRF model. This can

be explained in part by abilities of the latter model to capture more intricate inhomogeneities

of grey levels between different structures, (e.g. cortex and medulla.)

Moreover, the advantages of the presented segmentation approach are highlighted by com-

paring our results with those obtained from other three well-known segmentation approaches,

namely, the vector level-sets [35] (VLS), the segmentation using the random forest classifier

[42] (RFC), and the level-set by Chan and Vese [31] (CV). Fig 8 visually assesses the better seg-

mentation accuracy of the proposed segmentation method compared to others [31], [35], [42]

for two different subjects. Table 2 compares our segmentation method’s results with the results

obtained from the previously mentioned methods in terms of the DSC, MHD, and PKVD

Fig 8. Comparative cross-sectional segmentation results for our approach (a), the vector level sets [35] (b), the

segmentation using the Random Forest classifier [42] (c), and the traditional CV [31] level set (d) for two

independent subjects (rows). The model segmentation is shown in red with respect to the manual ground truth

(green) from an expert.

https://doi.org/10.1371/journal.pone.0200082.g008

Table 1. Our segmentation accuracy by the DSC, MHD (mm), and PKVD (%). All metrics are represented by the

minimum (Min), maximum (Max), and mean±standard deviation (SD) values.

Evaluation Metrics

Our method DSC MHD (mm) PKVD (%)

Min 0.92 2.5 5.7

Max 0.97 6.4 15.7

Mean±SD 0.95±0.01 3.9±0.76 9.5±2.2

Previous [54], [55] DSC MHD (mm) PKVD (%)

Min 0.89 4.0 9.4

Max 0.96 8.0 21

Mean±SD 0.92±0.02 5.7±2.0 14±3.1

P-value <0.0001 <0.0001 <0.0001

https://doi.org/10.1371/journal.pone.0200082.t001
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metrics. As documented in Table 2, our segmentation performs much better than other seg-

mentation methods by providing higher DSC, lower MHD, and lower PKVD values. Further-

more, our approach is confirmed, by the paired t-tests between the DSC, MHD, and PKVD

values for our approach and the compared segmentation approaches, to have a statistically

more significant performance than these approaches and evidenced by the P-values less

than 0.05.

Fig 9 shows 3D segmentation results for three different subjects with their associated evalu-

ation metrics. In particular, the developed segmentation technique proved its ability to pre-

cisely segment the kidney, especially at higher bi values. Shown in Fig 10, favorable

comparative results between the proposed segmentation approach and the previously

mentioned state-of-the-art segmentation methods for one subjects at b0 and higher bi values

(b500 and b1000), which also confirm the high accuracy and robustness of the proposed segmen-

tation method to low contrast and noisy images.

Performance of the proposed segmentation technique

After testing the proposed segmentation approach on the available DW-MRI datasets (a total

of 64 subjects) in a leave-one-subject-out scenario, our system showed a notable better seg-

mentation performance than the aforementioned well-known segmentation methods

Fig 9. Our 3D segmentation (red) with respect to the expert’s manual ground truth (green) for three subjects with

the associated accuracy scores.

https://doi.org/10.1371/journal.pone.0200082.g009

Table 2. Segmentation performance comparison between the presented approach against three other well-known segmentation methods (vector level-sets (VLS),

random forest classifier (RFC), and Chan and Vese (CV)) using DSC, MHD (mm), and PKVD (%). All metrics are represented by the mean± standard deviation (SD).

Evaluation Metrics

DSC MHD (mm) PVKD (%)

Mean±SD Mean±SD Mean±SD P-value

Our method 0.95±0.01 3.9±0.76 9.5±2.2 ——

VLS [35] 0.90±1.8 5±0.85 10.8±4.7 <0.0001

RFC [42] 0.84±1.43 10.4±3.4 29.5±2.1 <0.0001

CV [31] 0.71±11 76±12 46±13 <0.0001

https://doi.org/10.1371/journal.pone.0200082.t002
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confirmed by the higher DSC of 0.95±0.01, lower MHD (mm) of 3.9±0.76 and lower PKVD (%)

of 9.5±2.2.

Currently, the entire processing pipeline is implemented in MATLAB using a Dell Preci-

sion WorkStation T7500 (4 Intel Xeon W5590 CPUs (2 Cores/CPU) @ 3.33 GHz with 48 GB

RAM and 4 TB RAID hard drive). For an input DW-MRI dataset of size 256 × 256 × 50 voxels

of each b-value scan, the whole segmentation pipeline takes around 1.83 min. For processing

all b-value scans and obtaining the final segmentation, the entire processing takes about

20.13 min on average.

Clinical value of the contributions

Preliminary segmentation results outlined in this paper have shown that the proposed segmen-

tation approach can segment kidneys from surrounding tissues with high reliability and accu-

racy. Taking into consideration that kidney segmentation is the first step in developing a fully

Fig 10. Comparative coronal cross-sectional segmentation results for the proposed approach (a), the vector level

sets [35] (b), the segmentation using the Random Forest classifier [42] (c), and the traditional CV [31] level set (d)

for one subjects at b0 (first row) and higher bi values (b500 (second raw) and b1000 (third raw)). The model

segmentation is shown in red with respect to the manual ground truth (green) from an expert.

https://doi.org/10.1371/journal.pone.0200082.g010
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automated CAD system for the early detection of acute renal transplant rejection, the more

accurate the segmentation is, the more accurate estimating discriminatory features from the

segmented kidneys will be. This will in turn be suitable for clinical applications to differentiate

between non-rejection and acute rejection renal transplant.

Moreover, the proposed fully automated segmentation technique provides fast segmenta-

tion per b-value scan (in approximately 1.83 min with this MATLAB version) including all the

pre-processing steps and the non-rigid registration, which is compatible with clinical routine.

These abilities of the proposed segmentation technique encourages us to start developing a

complete CAD system that will help clinicians to initiate timely interventions with appropriate

treatments, which in turn can improve the delivery of healthcare in the USA and worldwide as

a new, automated, fast, and relatively inexpensive diagnostic tool for early detection of acute

renal transplant rejection.

Conclusions and future work

In summary, this paper presented a segmentation technique is very promising to provide the

guidance for the level-set geometric deformable model to accurately segment kidneys from the

other abdomen structures and surrounding tissues using (3D + b-value) DW-MRI data. Our

segmentation has been notably enhanced in terms of robustness to noise and low contrast,

especially at higher b-values, and accuracy after adding the higher-order MGRF model com-

bined with the adaptive shape model and the first-order visual appearance model. This can be

explained in part by abilities of the higher-order MGRF model to capture more intricate inho-

mogeneities of grey levels between different structures, (e.g. cortex and medulla.) Moreover,

the segmentation results hold promise to be incorporated in a complete CAD system for the

early detection of acute renal transplant rejection, thus; the appropriate physiological parame-

ters will be extracted from the segmented kidneys (e.g., apparent diffusion coefficient (ADC))

to be used as our future discriminatory features.

In the future, we plan to test the proposed segmentation technique on more datasets col-

lected from different locations with different scanning parameters to prove the reliability of

the presented technique in dealing with diverse datasets. In addition, we are currently working

to improve and optimize the efficiency of the segmentation algorithm to reduce the total run-

ning time as recommended by our medical collaborator, by converting our codes to C++ or

using the GPU. It is worth mentioning that we plan to investigate the effect of adding a 3D

B-spline non-rigid registration step –after segmenting the kidneys– on handling the possible

potential motion and image distortion between the individual b-values caused by eddy current

and magnetic susceptibility changes, which might lead to a more accurate estimation of the

ADCs to be used as our future discriminatory features between the acute rejection and non-

rejection renal transplants. Furthermore, the presented segmentation technique can be

extended to be applied on segmenting different soft tissues (e.g., prostate, liver, and spleen).
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