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Abstract: The efficiency of conventional screening programs to identify early-stage malignancies can
be limited by the low number of cancers recommended for screening as well as the high cumulative
false-positive rate, and associated iatrogenic burden, resulting from repeated multimodal testing.
The opportunity to use minimally invasive liquid biopsy testing to screen asymptomatic individuals
at-risk for multiple cancers simultaneously could benefit from the aggregated diseases prevalence and
a fixed specificity. Increasing both latter parameters is paramount to mediate high positive predictive
value—a useful metric to evaluate a screening test accuracy and its potential harm-benefit. Thus,
the use of a single test for multi-cancer early detection (stMCED) has emerged as an appealing strategy
for increasing early cancer detection rate efficiency and benefit population health. A recent flurry of
these stMCED technologies have been reported for clinical potential; however, their development
is facing unique challenges to effectively improve clinical cost–benefit. One promising avenue
is the analysis of circulating tumour DNA (ctDNA) for detecting DNA methylation biomarker
fingerprints of malignancies—a hallmark of disease aetiology and progression holding the potential
to be tissue- and cancer-type specific. Utilizing panels of epigenetic biomarkers could potentially
help to detect earlier stages of malignancies as well as identify a tumour of origin from blood testing,
useful information for follow-up clinical decision making and subsequent patient care improvement.
Overall, this review collates the latest and most promising stMCED methodologies, summarizes their
clinical performances, and discusses the specific requirements multi-cancer tests should meet to be
successfully implemented into screening guidelines.

Keywords: cancer screening; liquid biopsy testing; circulating tumour DNA; cancer epigenetics;
DNA methylation biomarkers; tissue-of-origin prediction; multi-cancer early detection; combinatorial
analysis; positive predictive value

1. Introduction

Detecting cancer at an early stage (i.e., stages I and II), when primary tumours are
still localized and have not spread to the surrounding tissues, remains the best strategy
for successful treatment and increased overall survival rate [1–4]. This is because, when
detected early, tumours can be effectively treated by surgical resection, localized radiother-
apy or chemotherapy; in contrast, overall survival rates decline drastically with late-stage
diagnosis, particularly in metastatic cases which are frequently associated with poor prog-
nosis. Early detection also enables reduced medical costs as expensive and long-term
treatment accompanying later disease detection are usually no longer needed. However,
conventional diagnosis of cancer burden still relies on reporting of symptoms and medical
imaging of a single tissue at a time, followed by tissue biopsy for histopathological analysis
when a mass is detected. Such a process is often ineffective for early cancer detection as it
relies on symptomatic and phenotypic changes that typically appear at an advanced stage
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of malignancy [5]. However, new methodologies for sensitive and accurate detection of
multiple cancer types simultaneously are emerging as novel strategies for improving early
cancer detection rate with the potential to also benefit population health and economics [6].

One of the most promising avenues to early-stage disease detection is liquid biopsy
testing from blood, and to a lesser extent, urine, as these body fluids are known to carry
specific cancer biomolecules (e.g., circulating free DNA, RNA, exosomes and circulating
tumour cells) that directly originate from malignant tissues. These biomarkers are released
by cancer cells through various mechanisms and have been reported to harbour specific
signatures that could reflect tumour burden, stage, or location, a precious source of clinical
information for cancer diagnosis as well as treatment monitoring [7–11]. The analysis of cir-
culating tumour DNA (ctDNA) has been of particular interest over recent years because of
its remarkable stability in body fluids and its early occurrence during disease development.

Two different strategies are currently available for interrogating ctDNA from blood in
biomarker discovery and cancer diagnostic development. The most established method con-
sists of using next-generation sequencing analysis to probe for specific genetic abnormalities
(e.g., somatic mutations) associated with cancer which quantitative genotypic informa-
tion of tumour burden provides based on variant allele frequency (VAF) [12–14], as well
as identifying potential therapeutic options (e.g., mutations related to BRAF and PARP
inhibitor therapy). Although the recurrence of certain DNA mutants gradually increases
with tumour progression, their presence in the complex blood matrix during the onset
of malignancies may be so limited (VAF << 1%) that the analytical sensitivity of current
methods is still challenged for their accurate detection in early disease settings. A promis-
ing alternative method for interrogating trace amounts of ctDNA involves screening for
changes in DNA methylation at CpG dinucleotides—a global epigenetic marker involved
in gene activity regulation. DNA methylation reprogramming have been reported to be a
hallmark of disease aetiology and progression and could offer additional opportunities for
the development of biomarker fingerprint for early cancer detection [15–18].

With the recent advances in molecular technologies, the last decade has encountered a
true revolution in genomic and epigenetic profiling methods and an exhaustive number
of these informative regions have been reported for clinical utility [15–18]. The use of
bioinformatics to analyse these large panels of biomarkers and build cancer-specific classi-
fiers has been at the forefront of the research space to achieve high cancer detection power
(Figure 1) [19]. In this technological race, a recent flurry of new methodologies has emerged,
each one reporting different diagnostic performances for early disease detection and claim-
ing potential clinical benefits. However, such performances are mostly reported in terms of
the usual sensitivity and specificity parameters without mentioning the associated positive
predictive value (PPV), a metric that may better reflect diagnostic accuracy in our opinion.
Herein, we first articulate the challenges associated with the current diagnostic paradigm
to efficiently identify early-stage of malignancies and discuss the technological parameters
surrounding clinical risk–benefit required to achieve potential translation. We then review
the latest advances in cancer epigenetics for the development of single tests for multiple
cancer early detection (stMCED), having the potential to increase overall cancer detection
rate and improve patient survival outcome, and provide their extrapolated PPV when
possible (see methodology Section 9). Together, this review showcases the unique potential
of DNA-methylation biomarkers to predict tumours of origin from liquid biopsy testing,
clinical information highly valuable for patient care but difficult to retrieve from genetic
mutation analysis alone.
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Figure 1. Schematic representation of emerging diagnostic methodologies using combinatorial analy-
sis of large circulating tumour DNA (ctDNA) biomarker panels to develop single test-based Multi
Cancer Early Detection (stMCED) blood-based test. Circulating tumour cells (CTCs), Extracellular
vehicles (EVs), CpG Methylation (Me) (Created with BioRender.com).

2. Challenges Associated with the Current Screening Paradigm to Efficiently Identify
Early-Stage Malignancies

Individuals with early-stage malignancy are usually asymptomatic and remain untested;
it is only with the presentation of symptoms that diagnosis occurs, a situation often as-
sociated with a more advanced stage of the disease and poor prognosis. Faced with this,
an ideal approach for increasing early detection rate would appear to be a clinical rec-
ommendation to perform a general cancer test on an annual basis for all asymptomatic
individuals in the general population. However, to be implemented for general screening
of healthy individuals, a test would presumably need to achieve a maximal specificity of
100% to limit the false positive rate to 0% and ensure adequate clinical risk–benefit. Indeed,
every false-positive result would misguide any patients towards further clinical testing,
with concomitant negative impacts on patient mental health and healthcare system burden.
For instance, if 1 billion tests were to be performed using a diagnostic test with a specificity
as high as 99.9%, it would still result in 1 million individuals incorrectly classified as having
disease, all of whom would have to endure an unnecessary and expensive diagnostic
odyssey. Given this false-positive problem, screening the general population annually
seems unrealistic and may not be a practical strategy to improve early cancer detection rate.

As an alternative, conventional guidelines recommend cancer screening for at-risk indi-
viduals (e.g., elderly, smokers, with an existing genetic disorder, or with a family history of
cancer) mostly targeting age-restricted populations [20]. For instance, women aged 45 years
should start undergoing annual screening mammography for breast cancer detection, with
the specificity of modern screening digital mammography being 88.9% [21]. Men from
50 years of age should undergo prostate cancer screening using prostate-specific antigen
testing which has been reported to have a specificity of 91% [22]. Adults aged 45 years
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should start regular colorectal cancer screening with various options available, including
minimally invasive stool-based assays, and with optical colonoscopy for structural exam-
ination of the bowel remaining the gold standard recommendation (any positive results
from non-colonoscopy screening tests should be followed up by a timely colonoscopy) [23].
Different performance for coloscopy screening has been reported in the literature, but a
meta-analysis has estimated that the specificity to detect adenomas of >6 mm and >10 mm
in size was 94.2% and 88.7%, respectively [24]. Women from 21 to 65 years old should be
screened for cervical cancer regularly with the option of using cytology testing (conven-
tional Pap test) alone on a 3-year basis, with an estimated specificity of 92% [25,26]. Current
and former smokers (with a 30 pack-a-year smoking history) aged 55 to 74 years should
undergo regular lung cancer screening, with a low-dose computed tomography (CT) scan
reported to have a specificity of 87.2% [27].

As detailed above, the current screening paradigm relies on methods that have been
developed to interrogate one specific organ at a time, while individuals may undergo
screening for more than a single disease. The major drawback of such multimodal screening
programs is that the cumulative risk for an individual to obtain a false positive result will
inevitably increase with the number of screening tests performed. Croswell et al. conducted
a randomised controlled trial to evaluate the incidence of false-positive results in repeated
multimodal cancer screening [28]. The study involved 68,436 participants aged 55 to
74 years and investigated screening modalities, which were advocated at the time of the
trial, for prostate (prostate-specific antigen and digital rectal examination), lung (chest
radiography), colorectal (flexible sigmoidoscopy), and ovarian cancer (cancer-antigen 125
and transvaginal ultrasonography). Over a period of three years, the cumulative risk of
false-positive findings after four examinations was 36.7% for men and 26.2% for women;
and after 14 examinations was 60.4% and 48.8% for men and women, respectively. Given
the magnitude of cumulative false positives, along with potential invasiveness and related
cost, it is clear that the iatrogenic burden resulting from multiphasic screening programs
would represent a non-negligible risk to the individual undergoing testing.

In addition, a conceptual limitation of the current guidelines to effectively increase
early cancer detection rate is that screening is only recommended for a handful of
cancer [20]. This strategy only covers a fraction of diseases that an individual will po-
tentially develop in his life span and thus limit the possibility to detect the full spectrum of
prevalent malignancies in the asymptomatic population.

Moreover, some of the conventional screening methods such as optical colonoscopy
or cervical cytology testing can involve invasive procedures that could cause discomfort
and, in some cases, complications [29,30]. Other methodologies exposing patient’s body
to radiation such as CT scan or mammography could also come with potential risk when
undergoing repeated testing [31,32]. The emergence of minimally invasive methodologies
such as blood, urine, or stool-based testing are of promising avenue to reduce invasiveness
and risk, as well as facilitate uptake and repeated testing in screening settings. However,
one recurrent challenge for detecting early-stage of malignancies from liquid biopsy testing
is the technical sensitivity that methodologies should achieve to correctly identify tumour
specific molecules and associated signatures that are only present in a trace amount in
body fluids [33].

The technological performances of diagnostic assays are generally reported in terms of
specificity (i.e., the true negative rate) and sensitivity (i.e., the true positive rate) as paired
indicators. Integrating both parameters into a single indicator of diagnostic performance
could help compare the effectiveness of competing tests and facilitate decision making.
For instance, the Diagnostic Odds Ratio (DOR) can be utilized as such a single indicator
and is defined as the odds of disease in positive testing over the odds of disease in negative
testing [34]. However, the DOR is independent of the disease prevalence (i.e., the total
number of people with the disease in a specific population at a given time) which is also
an important parameter affecting the detection rate performance of a screening test [35].
For instance, screening the women population for breast cancer will yield a significantly
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higher detection rate compared to screening the men population as the prevalence of
breast cancer is higher for women. One single indicator of diagnostic performance also
integrating the disease prevalence is the Positive Predictive Value (PPV); a measurement
corresponding to the likelihood that a patient returning with a positive test will truly have
the disease when screening a specific population. This measurement takes into account
the three aforementioned parameters (specificity, sensitivity and disease prevalence) and
may better reflect the global performance of a test for predicting detection rate accuracy
in screening settings. Although the PPV is influenced by the disease prevalence and
cannot be generalized between populations, it can provide a useful metric to evaluate
potential harm–benefit resulting from testing. Herein, we have modelled the effect of
these parameters on the PPV (see methodology section for detailed formula) and show
that maintaining a high specificity and increasing the disease prevalence is paramount to
mediate stronger PPV, as opposed to increasing sensitivity, which had a minimal influence
(Figure 2).

Figure 2. Although many diagnostic tests focus on optimizing sensitivity, specificity, and disease
prevalence have the strongest impact on the Positive Predictive Value (PPV). This series of heatmap
graphs illustrate the relationship of a diagnostic test PPV (%) in a function of different sensitivity
and specificity parameters (both ranging from 50 to 100%) for a hypothetical disease prevalence
fixed to 0.1% (left), 1% (middle) or 10% (right panel). (See the methodology Section 9 for the PPV
equation used).

In summary, the limited number of cancer types targeted by guidelines-recommended
screening as well as conventional multimodal testing programs accepting relatively low
specificity are the major limitations to efficiently improving early cancer detection rate.
One promising strategy to potentially address these limitations and yield higher PPV
is implementing a high specificity blood-based test for screening multiple cancer types
simultaneously.

3. The Clinical Potential of Implementing a Single Test for Multiple Cancer Early
Detection (stMCED)

While individuals may be identified as at-risk for a particular cancer type (e.g., lung
cancer), their combined risk of developing any other cancer (e.g., prostate, colorectal,
melanoma, head and neck, etc.) is substantially greater than the individual risk of cancer
they are being tested for [3,4]. It is this area—testing at-risk individuals and the ageing
population for the presence of multiple different cancers—that stMCED testing from blood
is likely to achieve the most clinical benefit. Using a single blood-based test to target
multiple cancers simultaneously would first benefit from (i) a fixed specificity and thus a
fixed false-positive rate. This would allow limiting the number of false-positive findings
as opposed to the cumulative false-positive rates resulting from conventional multimodal
screening programs. Therefore, it could help improve patient management and mental
health as it would reduce the number of unnecessary confirmation tests and associated
iatrogenic burden. (ii) Screening individuals for multiple cancer types simultaneously
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would also allow covering a broader spectrum of prevalent malignancies and benefit the
test from their aggregated prevalence as opposed to traditional mono-cancer tests. This
could potentially increase the chance to detect any malignancies at an earlier stage and help
reduce cancer-specific mortality in age-restricted populations’ screening settings [36,37].
Together, increased specificity and aggregated diseases prevalence could boost the positive
predictive value (PPV) of stMCED (Figure 2), a strategy with the potential to improve
early cancer detection rate efficiency with a better harm–benefit tradeoff [38] as opposed to
conventional multimodal screening settings.

4. The Potential Value of Methylated-cfDNA for Developing stMCED

Although cancer is mainly considered to be a disease driven by genetic mutations,
epigenetic alterations are also a critical factor for the onset of malignant diseases and
tumours development. DNA methylation at CpG dinucleotides—enzymatically mediated
by DNA Methyltransferase—is a global epigenetic mark used to regulate gene expression
and signalling pathways activity to control diverse cellular functions. The subsequent
regions of the genome that are demarked for transcriptional activation or silencing are of
critical importance to define the functionality of a cell and maintain proper homeostasis [39].
As such, DNA methylation is known to play a critical role in various biological processes
such as embryonic development, cellular pluripotency, differentiation, and cellular age-
ing [40,41], and aberrant methylation patterns are now associated with a growing number
of diseases [42]. In particular, neoplastic cells can manipulate epigenetic mechanisms by
remodelling and overriding normal DNA methylation patterns thereby triggering activa-
tion of oncogenic pathways for malignant transformation. Of note, these aberrant DNA
methylations are associated with diverse genomic classes such as transposable elements or
sequences enriched with CpGs dinucleotides, and such global epigenetic changes can serve
as an alternative to somatic mutation to fuel cells with oncogenic properties and represents
a hallmark of disease aetiology and progression [43–46].

During cancer-related methylome reprogramming, two major epigenetic abnormalities
occur across the genome—DNA hypermethylation and hypomethylation. DNA hyper-
methylation tends to cluster at regulatory regions enriched with CpG islands which are
normally unmethylated and function to control the activity of anticancer mechanisms but
become silenced upon hypermethylation. Notably, the ability to modulate the functional
state of such promoter regions acts as an alternative to somatic mutations to block the
activity of tumour suppressors and DNA repair genes, thereby promoting cancer progres-
sion [47–49]. Conversely, cytosines located in non-CpG islands are highly methylated in
healthy cells but experience a general loss of methyl groups during neoplastic transfor-
mation [18,50]. Although hypomethylation mechanisms remain less understood, some
evidence suggests that it could trigger aberrant activation of cancer-germline genes to
promote key oncogenesis processes and tumour development. Together, these bimodal
epigenetic features have been reported to be a common mechanism of most cancer types
producing specific methylation patterns that significantly differ from normal epigenomes,
and have therefore been proposed as informative surrogates for somatic mutations biomark-
ers typically associated with cancer [47,49–51]. In particular, there are two key aspects of
cancer epigenetics that make DNA methylation biomarkers valuable candidates for devel-
oping stMCED: (i) their availability and remarkable stability in most body fluids as part
of circulating-free DNA (cfDNA) which enable minimally invasive liquid biopsy testing,
and (ii) their early appearance during malignant transformation is a promising avenue
for early disease detection, a key strategy for increasing chance of curative treatments and
reducing cancer-related mortality.

The potential outlined above of clinical epigenetics for early disease detection has
resulted in a flurry of in-vitro diagnostic (IVD) tests based on DNA methylation analysis
of ctDNA, with the majority of these tests targeting panels of hypermethylated CpGs
associated with specific oncogenic genes, typically for the detection of a single specific
cancer type [52–54]. For example, the UroMark test is one promising assay to detect bladder
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cancer (BC) from residual DNA in voided urine. This test targets 150 CpGs loci using next-
generation bisulfite sequencing and was able to classify primary BC from non-BC urine
samples with 98% sensitivity and 98% specificity [55]. The EpiproLung test can be used as
an alternative to low dose computed tomography to screen lung cancer among the high-risk
population. This PCR assay interrogates the methylation status of SOX2 and PTGER4 genes
from plasma samples and was able to discriminate lung cancer from normal subjects with
67% sensitivity at a fixed specificity of 90% [56]. EarlyTect assay can detect early stages
of colorectal cancer (CRC) using quantitative PCR methods to analyse DNA methylation
level of SDC2 gene from stool samples. This test has recently reported an overall sensitivity
of over 90% and a specificity of the same value to detect CRC regardless of stages [57].
The HCCBloodTest has been developed to detect hepatocellular carcinoma using a PCR-
based assay to analyse hypermethylation of the SEPT9 promoter from blood-derived cfDNA
with 91% sensitivity and 87% specificity [58].

Although these ctDNA methylation-based IVD assays relying on minimally invasive
analysis have significantly improved the standard of care methods and highlight the poten-
tial of cancer epigenetics, they are still designed to target one specific type of cancer and
thus do not fully address the aforementioned limitations. One potential avenue is to exploit
artificial intelligence methods to analyse large datasets and build more comprehensive
DNA methylation panels to predict specific cancer types, and eventually combining them
for the development of a single test for multi-cancer early detection. However, one chal-
lenge associated with stMCED is the ability to correctly identify the tumour of origin after a
blood-test returns positive. With that regard, acquired DNA methylation state can be tissue-
specific and maintained during neoplastic transformation, creating epiclone signatures
that could allow tumour of origin identification [44,59]. This is where DNA methylation
biomarkers could show additional potential as this is key information to guide follow-up
clinical decision making and facilitate subsequent patient care and management.

5. Criteria for Developing Efficient stMCED

Methodologies for sensitive and accurate detection of multiple cancer types using
a single assay are emerging as a promising paradigm for potentially increasing early
cancer detection rate and improved harm-benefit tradeoff when screening asymptomatic
individuals in the ageing and at-risk populations. To be successfully implemented into
screening programs and effectively improve health impact while minimizing the associated
risk, stMCED would need to meet the following specific criteria [60]. (1) The sensitivity of
the method must be very high to allow testing from blood and accurately detect minimal
levels of ctDNA present at an early stage of malignancies, and ideally limit overdiagnosis
of benign neoplasms. (2) The specificity of the test must be very high to minimize the
iatrogenic and financial burden of false-positives. (3) The ability to identify the tumour of
origin for the true positive patients would be highly valuable to guide subsequent clinical
decision making, as there is no prior knowledge of the disease location at an early stage of
cancer disease. (4) The test should include a high number of cancer types, preferentially
targeting aggressive diseases with a high incidence rate, to take advantage of the overall
prevalence and boost the PPV to maximize the chance of any cancer detection. (5) The cost
of the test must be minimized to ensure population uptake test and allow the repetitive
screening. Together, these criteria should be taken into account and considered in light
of each other when developing blood-based stMCED technologies. In particular, efforts
should favour increasing the specificity and the aggregated prevalence over the sensitivity
as these two parameters have a significantly greater impact on the positive predictive value
of a diagnostic test (Figure 2).

6. Methodologies for stMCED Screening

The recent advances in sequencing and PCR technologies have certainly allowed
the development of powerful molecular assays enabling high throughput and large-scale
analysis of the human genome. With the help of bioinformatics, it is now possible to analyse
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these extensive genomic (or epigenomic) datasets to decipher combinatorial biomarkers
highly specific to different cancer types. These computational methodologies have opened
new avenues for the discovery and the generation of larger, more comprehensive and
more performant biomarkers panels suitable for stMCED. Here, we discuss the most
promising blood-based diagnostic assays utilizing ctDNA analysis for the detection and
potential identification of multiple cancer types at an early stage of disease and compare
the performance of methylation-based and other technologies (see methodology Section 9
for the literature search criteria and Table 1 for an overview of selected technologies).

Table 1. Overview of reported methodologies with an upcoming potential for single test-based multi-
cancer early detection. The vertical double line separates methodologies using methylation-based
(right) from non-methylation based (left) biomarkers. DMRs: differentially methylated regions, TOO:
tissue of origin prediction, AUROC: area under the receiving operating curve, LOD: limit of detection
-: not specified or not applicable. Methylscape was not included due to limited early-stage data.

DEEPGEN™ CancerSEEK PanSEEER cfMeDIP-seq GRAIL IvyGene®

Biomarker
type

Genomic
variants

Genomic variant
(1933 mutations,

16 genes) &
8 proteins

477 DMRs
(657 genes,

10,613 CpGs)
Enriched DMRs

>100,000 DMRs
(1,166,720 CpGs,
cover 17.2 Mb)

Targeted panels
of methylation

biomarkers

Targeted
cancer types 7 8 5 9 (across 3

sperate studies)
12 pre-specified
(>50 sub-types) 3

Specificity (%) 95 99.14 96.1 - 99.52 96–100

Sensitivity (%):
overall
stage 1
stage 2
stage 3
stage 4

57
51
58
62
67

62.3
48
63
70
-

~95
~95 (s1-2)
~95 (s3-4)

-
-
-
-
-

51.5
16.8
40.4
77

90.1

89–95
-
-
-
-

AUROC:
overall
stage 1
stage 2
stage 3
stage 4

0.9
0.88
0.9

0.92
0.94

0.91
-
-
-
-

~0.99
~0.99 (s1-2)
~0.99 (s3-4)

0.91 to 0.99
(s1-2)

0.92 to 0.99
(s3-4)

- -

TOO capacity
(depends on

organs)
No Yes

(median 63%) No Only Yes
(overall 88.7%) Only

cfDNA input
(ng) - - ~12 1–10 - -

LOD (%
ctDNA) > 0.09 - >0.01 >0.001 - -

6.1. Non-Methylation Based Assays
6.1.1. DEEPGEN™

DEEPGEN™ assay is a blood-based ctDNA test that has been specifically developed
for multi-cancer detection in early disease settings [61]. The authors have used a bioin-
formatics to identify a broad panel of cancer-specific genomic variants that are present at
very low frequency in blood. The assay targets 3062 of these mutant fragments (including
single nucleotides polymorphisms, multi nucleotide polymorphism, and short insertion
or deletion) using proprietary primers for advanced PCR and next-generation sequencing
analysis, resulting in high capture efficiency at VAF down to >0.09% [62]. DEEPGEN™
has been used in an initial comprehensive prospective study for the detection of seven
different types of cancers (bladder, prostate, lung, liver, pancreatic, colorectal, and breast)
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using a cohort of 260 cancer samples across stages I-IV (27% stage I, 21% stage II, 29%
stage III, 10% stage IV and 13% undetermined) and 415 healthy controls. Machine learning
algorithms have been designed to analyse mutations frequencies data obtained from their
genomic target panel to build classifiers deriving prediction scores of cancers. One general
classifier of cancer has been trained using all the samples, while separate cancer-specific
classifiers have been trained using samples derived from a single organ only. The analytical
sensitivity of the full model was 57% at a selected specificity of 95% with a corresponding
area under the receiving operating curve (AUROC) of 0.9, while the detection sensitivity
increased from 51% in stage I to 67% in stage IV. The performance of the individual cancer
classifiers had overall sensitivities that differed between cancer types: being the lowest for
breast (30%) and colorectal cancers (42%), and the highest for prostate (72%) and bladder
cancer (80%). (Overall analytical performances of DEEPGEN™ are reported in Table 2).

Table 2. Detailed analytical performance of the DEEPGEN™ assay [61]. AUROC: area under the
receiving operating curve.

DEEPGEN™ Cohort Size
(Healthy = 415) Specificity (%) Sensitivity (%) AUROC

All cancer
stage 1 70 95 51 0.88
stage 2 55 95 58 0.9
stage 3 73 95 62 0.92
stage 4 27 95 67 0.94
Overall 260 95/99 57/43 0.9

Bladder
Overall 25 95/99 80/32

Prostate
Overall 29 95/99 72/62

Lung
Overall 30 95/99 67/53

Liver
Overall 27 95/99 63/41

Pancreatic
Overall 40 95/99 52/38

Colorectal
Overall 66 95/99 42/27

Breast
Overall 43 95/99 30/16

Together, these preliminary results indicate a promising clinical capability of the
DEEPGEN™ assay to differentiate healthy individuals from those with a disease for seven
different cancer types. Although the reported clinical performance to detect early-stage
malignancies has the possibility of improving patient care, higher specificity should be
favoured over higher sensitivity to better benefit the platform performance in terms of its
PPV. As such, we have estimated that increasing the specificity from 95% to 99% would
increase the overall PPV from 29.9% to 61.7% when considering screening the Australian
population in the 55–64 age-restricted group (Table 8). In addition, the methodology is
still at an initial development stage and the authors have not published pieces of evidence
yet about the ability of the platform to accurately predict the tumour of origin of a sample
that tested positive. Although larger datasets are needed to improve the classifiers’ perfor-
mance and independent cohort for further validation of the models, the interrogation of
genomic variants only may limit the possibilities of identifying specific cancer given the
heterogeneous nature of somatic mutations.
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6.1.2. CancerSEEK

CancerSEEK is one promising blood-based test developed to detect and locate the
presence of eight different types of cancers (ovary, liver, stomach, pancreas, oesophagus,
colorectum, lung, or breast) using an innovative multi analytes approach—targeting both
genetic and protein biomarkers [63]. The first component of the assay relies on sequencing
of cfDNA targeting 16 different oncogenic driver genes which comprise a total of 1933 dis-
tinct genomic positions frequently mutated in cancers. To achieve the high sensitivity
required to detect rare mutations associated with early-stage cancer, Cohen et al. [63] have
designed a robust multiplex PCR assay to amplify the targeted mutants. The assay has
been optimized to use a limited panel of 61 short amplicons (i.e., 33 bp on average) for
each of the 16 genes enabling maximum sensitivity for specific cancer detection while
increasing the signal-to-noise ratio and minimizing cost that would be associated with
longer amplicons reads during downstream sequencing analysis. To further increase the
test sensitivity, the authors intentionally partitioned the total amount of purified cfDNA
in multiple aliquots, which has been reported to reduce the total amount of DNA per
PCR well, while allowing for increasing the mutant molecule fraction compared to normal
DNA molecules when considering an initial sample with very low VAF. This strategy
allowed for increasing the signal-to-noise ratio and eventually detect lower prevalence
mutations. The second component of the assay focuses on evaluating the level of eight
different proteins (cancer antigen 125, carcinoembryonic antigen, cancer antigen 19-9, pro-
lactin, hepatocyte growth factor, osteopontin, myeloperoxidase, and tissue inhibitor of
metalloproteinases 1) with high potential to discriminate cancer from healthy controls
using a single immune assay platform. Together, the mutations data and the protein level
are incorporated into a logistic regression algorithm to build the CancerSEEK score and
predict cancer types and location when possible. A total of 1005 cancer patients across
stages I–III (20% stage I, 49% stage II, and 31% stage III) and 812 healthy individuals were
tested using the developed assay which showed remarkable performances at a specificity
greater than 99% (with only seven false positives) and an overall sensitivity above 62%
(with 379 false negatives), resulting in an AUC of 0.91%. (Overall analytical performances
of CancerSEEK are reported in Table 3). CancerSEEK was able to detect diseases across the
stage with clinically relevant capabilities showing a sensitivity of 47% for stage I, 63% for
stage II, and 70% for stage III. The overall sensitivity of the assay to detect tumour by types
was significantly different depending on the organs, which was best for ovary (98.1%) and
liver (97.7%) cancers while being the lowest for lung (58.7%) and breast cancers (33.5%).
Based on the reported performance (averaged sensitivity of 62.3% at a specificity of 99.14%),
the overall PPV of CancerSEEK was estimated to a minimum of 59.4% when considering
screening the Australian population in the 55–64 age-restricted group using (Table 8). This
value is underestimated and should be over 60% as the prevalence of stomach cancer was
not available and could not be included in the calculation. One important aspect of a
multi-cancer liquid biopsy detection assay is the ability to identify the tumour of origin
when a test returns positive to guide clinicians and allow adequate follow-up. With this
regard, CancerSEEK was able to accurately predict the tumour of origin for 63% of the
patients that tested positive, with the best prediction for colorectal, pancreatic, and ovary
tumours (84%, 81%, and 70%, respectively), and the lowest for lung and liver cancers (39%
and 44%, respectively). As opposed to mutations analysis only, the protein level component
of the assay plays a major role in locating the organ of origin as genetic mutations in driver
genes are usually not tissue-specific—highlighting the importance of the multi-analyte
analysis approach. The authors have also estimated the price of such a test to be under
500 US$ being comparable to a standard of care screening methods for a single cancer
type, such as colonoscopy. With all these abilities, the CancerSEEK platform holds great
opportunities for being implemented as an stMECD test for screening.
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Table 3. Detailed analytical performance of the CancerSEEK assay [63]. TOO: tissue of origin,
AUROC: area under the receiving operating curve.

CancerSEEK Cohort Size
(Healthy = 812) Specificity (%) Sensitivity (%) AUROC TOO

Prediction

All cancer 99.14
stage 1 199 48
stage 2 497 63
stage 3 309 70
Overall 1005 62.3 0.91 63%

Ovary cancer
stage 1 9 88.9
stage 2 4 100.0
stage 3 41 100.0
Overall 54 98.1 79%

Esophagus
cancer
stage 1 5 20.0
stage 2 29 86.2
stage 3 11 45.5

Overall 45 68.9 46% (with
stomach)

Lung cancer
stage 1 46 43.5
stage 2 27 66.7
stage 3 31 74.2
Overall 104 58.7 39%

Liver cancer
stage 1 5 100.0
stage 2 19 100.0
stage 3 20 95.0
Overall 44 97.7 44%

Pancreatic
cancer
stage 1 4 25.0
stage 2 83 73.5
stage 3 6 83.3
Overall 93 72.0 81%

Colorectal
cancer
stage 1 77 42.9
stage 2 191 72.3
stage 3 120 67.5
Overall 388 64.9 84%

Breast cancer
stage 1 32 37.5
stage 2 114 25.4
stage 3 63 46.0
Overall 209 33.5 63%

Stomach
cancer
stage 1 21 71.4
stage 2 30 66.7
stage 3 17 82.4

Overall 68 72.1 46% (with
oesophagus)
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7. Methylation-Based Assay
7.1. PanSEER

PanSEER is a recent promising blood-based cancer screening test relying on a large
panel of ctDNA-methylation biomarkers for the early detection of five major cancer types
(colorectal, oesophagal, liver, lung, and stomach), up to four years before conventional di-
agnostic programs [64]. The assay has been developed to interrogate 477 cancer-specific dif-
ferentially methylated regions (DMRs, associated with 657 genes and covering 10,613 CpGs
sites) at high sequencing depth using semi-targeted PCR libraries constructed from bisulfite-
converted cfDNA and analyzed using next-generation sequencing. The assay showed a
high detection sensitivity as it was able to capture low cancer DNA fraction down to
0.01%. Combinatorial classifiers then generate prediction scores of cancer-based on the
methylation status of the interrogated regions.

One appealing aspect of the PanSEER study for evaluating early cancer detection was
the opportunity to retrospectively interrogate blood samples from a large longitudinal
cohort including individuals who were initially asymptomatic (i.e., the Taizhou longitudinal
study of 123,115 healthy participants) and who later developed a disease that was detected
by conventional diagnosis within four years (or remain healthy). The analyzed cohort
included 191 of these ‘pre-diagnosis’ patients (including 35 colorectal, 45 oesophagal,
29 liver, 47 lung, and 35 stomach cancers), 414 participants that remained healthy, and an
additional set of 223 ‘post diagnosis’ patients who already had cancer (including 7 colorectal,
68 oesophagal, 23 liver, 56 lung and 69 stomach cancers). Half of the samples were randomly
assigned to a training set used to generate the cancer classifiers, while the rest were left out
for a test set used to independently validate the final developed models. The initial training
set was randomly split into two different sub-sets—one for training a cancer classifier and
the other for its validation. To prevent potential bias and of using a single training set for
fitting the classifier and subsequent misclassification, this process was repeated 1000 times
to generate a robust and final model averaging all classifiers’ prediction score output. At a
fixed specificity of 95%, this final model achieved a sensitivity of 88.2% in the post-diagnosis
group and 91.4% in the pre-diagnosis group using the training set samples. At a fixed
specificity of 96%, the analysis of the independent left-aside test set yielded an overall
sensitivity of 87.6% (AUC = 0.97) in the post-diagnosis group, and 94.9% (AUC = 0.99)
in the pre-diagnosis, together with consistent sensitivity for patients diagnosed with a
disease from 1 to 4 years later. Importantly, the authors report similar performances when
the model analysed either early and late-stage samples across the entire cohort (overall
analytical performances of PANSEER are reported in Table 4). The overall PPV of this
assay was estimated to a minimum of 12.1% when considering screening the Australian
population in the 55–64 age-restricted group (Table 8). This value is underestimated and
should be higher as the prevalence of stomach cancer was not available and could not be
included in the calculation. Compared to DEEPGEN and CancerSEEK, PanSEER estimated
that PPV is five times lower, which can be reflected in the reduced number of targeted
cancer type as well as a weaker specificity.

Altogether, this preliminary study underlines the robust ability of the PanSEER assay
to identify individuals with an existing malignant growth across five cancer types but
who remained asymptomatic to standard-of-care diagnostic approach. As such, PanSEER
clearly shows great potential for an earlier stage of diseases detection in screening set-
tings. However, it has been developed to target a panel of methylation biomarkers that
are common signatures of multiple cancers only and is thus not able to predict the organ
of origin. This could be achievable by including additional epigenetic markers that are
highly tissue-specific and provide high potential for tumour tissue prediction [65]. The low
input of initial cfDNA required (i.e., with a reported median amount of 12 ng) along with
the limited number of targeted regions allows cost reduction as opposed to other tests
interrogating larger panels of markers [66]. PanSEER assay is believed to be implemented
as a first-line screening test and guide positive patients to undergo more comprehensive ex-
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amination such as body imaging for tissue mapping, a process that could be costly. Further
independent prospective studies are still needed to fully validate this new methodology.

Table 4. Detailed analytical performance of the PanSEER assay [64]. AUROC: area under the receiving
operating curve.

PanSEER Cohort Size
(Healthy = 207)

Sample Number
Per Stage:
(1–2)–(3–4)

Specificity (%) Sensitivity (%) AUROC

All cancer 96.10
Post diagnosis 113 32–80 87.6 0.97
Pre diagnosis: 98 94.9 0.99

0–1 year before 21 5–13 95.2 0.99
1–2 year before 23 6–17 95.7 0.99

2–3 years
before 31 10–17 93.6 0.99

3–4 years
before 23 8–9 95.7 0.99

Esophagus
stage 1–2 46
stage 3–4 63
Overall 113

Lung
stage 1–2 18
stage 3–4 80
Overall 103

Liver
stage 1–2 7
stage 3–4 43
Overall 52

Colorectal
stage 1–2 21
stage 3–4 16
Overall 42

Stomach
stage 1–2 44
stage 3–4 54
Overall 104

7.1.1. cfMeDIP-Seq

The ability to increase the analytical sensitivity required to detect trace abundance
of ctDNA while limiting potential costs and errors associated with bisulfite sequencing
methods can be challenging. To this end, one clever strategy has been implemented
by Shen et al. [65] where they developed an immunoprecipitation-based assay for spe-
cific enrichment of methylated cfDNA followed by high-throughput sequencing analysis
(cfMeDIP–seq). Although this protocol does not allow resolution down to single-CpG,
it can provide methylation information of larger genomic region (~100bp) without using
any DNA bisulfite conversion. The cost of this protocol from cfDNA extraction to sequenc-
ing libraries preparation has been estimated to be around $150, which does not include
additional sequencing costs [67]. This methodology enables the recovery of very low
abundance (>0.001%) of large-scale methylation-ctDNA profiles that are tumour specific
using low input of initial DNA (1–10 ng). The initial study was composed of a discovery
cohort of 189 plasma samples across seven different cancers (pancreatic, colorectal, breast,
lung, renal, bladder cancer, and acute myeloid leukaemia). The authors have first gener-
ated cfMeDIP-seq profile from these cfDNA samples to identify differentially methylated
regions (DMRs) specific for each cancer type compared to healthy control. Rounds of
machine learning analysis were then used to evaluate the ability of such DMRs to classify
cancer types. To do so, the cohort was randomly separated into a training (80%) set and a
validation set (20%). The training set was used to select the top 300 DMRs for each cancer
versus others and to build seven associated cancer-specific classifiers and a healthy-specific
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one. These models were then used to assign methylation score to the test set samples
and to predict their specific tumour type. The performance of the associated classifiers
was calculated using AUC receiver operating characteristic curves (AUROC). For optimal
classification, this process was repeated 100 times using randomly generated training-test
sets producing 100 classifiers for each class. The ensemble was finally applied to predict
cancer classes of an independent cohort of 199 samples across acute myeloid leukaemia
(AML, n = 35), pancreatic cancer (PDAC, n = 47), lung cancer (LUC, n = 55), and healthy
controls (n = 62), resulting in high mean AUROC value to classify each cancer versus
all-others (0.980 for AML, 0.918 for PDAC, 0.971 for LUC, and 0.969 for healthy samples).
Most importantly, the classifiers were yielding similar prediction accuracy when comparing
early stage versus late-stage samples for PDAC (0.914 vs. 0.92) and LUC (0.975 vs. 0.966).
Together, the cfMeDIP-seq method has been proved to be efficient to retrieve large scale
methylation signatures from ctDNA that are highly specific tumour types when carefully
selected by machine learning models. (Overall, analytical performances are reported in
Table 5).

Table 5. Detailed analytical performance of the cfMeDIP-seq assay (reported from three separate
studies delimited by the double lines) [65,68,69]. TOO: tissue of origin, AUROC: area under the
receiving operating curve.

cfMeDIP-seq Cohort Size in Sets:
(Train/Test)—Validation

Accuracy to Predict Cancer
with TOO
(AUROC)

Lung cancer
stage 1–2 32 0.975
stage 3–4 (22)–23 0.966
Overall (25)–55 0.971

Pancreatic cancer
stage 1–2 (23)–15 0.914
stage 3–4 (1)–32 0.92
Overall (24)–47 0.918

Acute myeloid
leukaemia

Overall 35 0.98

Healthy
Overall (24)–62 0.969

Colorectal cancer
stage 1–2 (1) -
stage 3–4 (21) -
Overall (23) -

Bladder cancer
Overall (20) -

Renal cancer
Overall (20) -

Renal cancer
stage 1–2 (33) -
stage 3–4 (66) -
Overall (99) 0.99

Intracranial Glioma
Overall (59) 0.99

This whole methodology was validated in a separate study for detecting renal cell
carcinoma (RCC) from blood and urine, including early-stage samples [68]. This study
included 99 RCC samples (69 from plasma and 30 from urine), 28 non-cancer control
(13 from plasma and 15 from urine), with an additional 21 Urothelial bladder cancer
(UBC) plasma samples to evaluate the ability of the methods to distinguish between
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different genitourinary cancers. RCC samples of early stages (I and II) composed a third
of the plasma samples and two-thirds of the urine samples. A hundred training-test sets
randomly selected were used to generate the classifiers based on the top 300 DMRs, yielding
a nearly perfect mean AUROC value to differentiate plasma RCC from control samples
(0.99), and plasma RCC from UBC samples (0.979), while the classifier performance was
lower for classifying urine RCC from control samples (0.858).

An additional separate study was conducted to evaluate the performance of cfMeDIP-
seq method to identify highly specific plasma methylation signatures to detect and dis-
criminate intracranial tumours [69]. Using the previously published cfMeDIP-seq data on
seven different extracranial tumours and healthy control [65], plus the cfMeDIP-seq profile
of 59 glioma patients (477 samples in total), new classifiers were generated as detailed
above with 50 different training-test sets. The models were able to classify brain tumours
versus all other classes with very high accuracy (AUC = 0.99). Using an extra 166 samples,
they finally demonstrated the utility of the methodology to accurately differentiate cfDNA
from six different sub-types of primary brain tumours (AUC values ranged from 0.71 for
wild-type glioma to 0.95 for hemangiopericytoma), which are difficult to identify using
common imaging techniques.

Such body of evidence clearly demonstrates the indisputable properties of DNA-
methylation to be organ type and sub-type specific, and its subsequent power to predict
tumour of origin from blood ctDNA when applying appropriate computational models.
Although no detailed data have been found regarding the sensitivity of the methods at a
specific specificity to detect cancers, the reported AUROC to predict cancer and accurately
identify the tumour of origin from early-stage samples provides evidence of the potential
of cfMeDIP-seq to be implemented as an MECD.

7.1.2. IvyGene®

IvyGene® is another recent technology (commercialized by Laboratory for Advanced
Medicine) harnessing the power of methylation signatures for early-stage detection of
specific cancer from a blood sample. The platform has also been developed using next-
generation sequencing data and bioinformatics to identify specific hypermethylated gene
targets and build proprietary methylation-based biomarker panels [70]. The test methodol-
ogy relies on targeted PCR and NGS and has been used in three different blinded studies to
validate individual biomarker panels for the specific detection of liver, breast, and colorectal
cancer. The results published in a proceeding detailed very high diagnostic performance to
accurately detect each cancer type across all stages (I to IV) [71]. More precisely, the respec-
tive specificity and sensitivity of each biomarker panel were 97.5% and 95% to detect liver
cancer, 96% and 89% to detect breast cancer, and 100% and 93% to detect colorectal cancer
(overall analytical performances are reported in Table 6). One strong aspect of Ivygene®

studies is that each patient cohort was designed to include benign tumours in addition
to other cancer types and healthy control samples, which is an important factor to better
represent a population spectrum and provide a more accurate assessment of how the test
will perform in real settings.

Table 6. Detailed analytical performance of the IvyGene® technology for the detection of liver, breast,
and colorectal cancers [71]. TOO: tissue of origin.

IvyGene®

(Laboratory for Advanced
Medicine)

Cohort Size Specificity (%)
Sensitivity (%):
Predict Cancer

& TOO Accuracy

Liver cancer
Overall (stage 1–4) 60 97.5 95

Healthy (control)
Overall 30
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Table 6. Cont.

IvyGene®

(Laboratory for Advanced
Medicine)

Cohort Size Specificity (%)
Sensitivity (%):
Predict Cancer

& TOO Accuracy

Benign liver (control)
Overall 10

Other cancers (control)
Overall 30

Breast cancer
Overall (stage I-IV) 65 96 89

Healthy (control)
Overall 39 95

Benign breast (control)
Overall 15 100

Other cancers (control)
colorectal 11

liver 9
lung 12

Overall 32 96

Colorectal cancer
Overall (stage 1–4) 68 100 93 (67–100)

Healthy (control)
Overall 42

Benign colorectal (control)
Overall 14

Other cancers (control)
breast 10 100
liver 10 100
lung 10 100

Overall 30

7.1.3. GRAIL

In that technological space, the biotech company GRAIL represents a significant
shift with their ambitious circulating cell-free genome atlas (CCGA) study, a large-scale
population investigation for cancer cfDNA signatures discovery, to develop a blood-based
cfDNA multi cancer early detection assay. In a first sub-study, Liu et al. [72] conducted
a comparative analysis where they showed that the cfDNA methylation approach (i.e.,
whole-genome bisulfite sequencing, WGBS) outperformed other genomic approaches
(i.e., targeted mutation panels and whole-genome sequencing) for cancer detection and
organ identification.

In the following CCGA sub-study, these previous WGBS findings and publicly avail-
able methylation array data have been used to develop a cfDNA bisulfite sequencing assay
targeting a panel of 103,456 informative methylation regions and build classifiers for cancer
detection and tissue of origin prediction [73]. The classifiers were trained with 3052 samples
(1521 non-cancer and 1531 cancers) and independently validated with a set of 1264 samples
(610 non-cancer and 654 cancers) across more than 50 cancer types. The assay specificity
was higher than 99% with a reported false-positive rate of 0.7%. The reported sensitivity
was 76.4% for a pre-specified set of 12 major cancer types (anus, bladder, colon/rectum,
oesophagus, head and neck, liver/bile-duct, lung, lymphoma, ovary, pancreas, plasma cell
neoplasm, stomach) and cancer detection sensitivity increased with stages (39% stage-I,
69% stage-II, 75% stage-III, and 92% stage-IV). Importantly, for all the tested samples with
a positive cancer signal (n = 359), the test was able to predict the tumour of origin with
more than 89% accuracy (321/359).
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This developed targeted methylation-based assay was further optimized and indepen-
dently validated in a third and final clinical sub-study using a large cohort of 4077 samples
(1254 non-cancers, 2823 cancers) [73]. The reported test performances correlate with the
previous sub-study with a specificity of 99.5%, a sensitivity of 76.3% in the pre-specified set
of 12 cancers with corresponding sensitivity per stage of 37.1% for stage I, 69.7% for stage
II, 86.6% for stage III, and 92.8% for stage IV (no plasma cell neoplasm sample reported
for stage IV). The overall tissue of origin prediction accuracy in true positive was 88.7%
(overall analytical performances are reported in Table 7). The overall PPV of GRAIL has
been estimated to a minimum of 84.2% (Table 8). This value is underestimated and should
be higher as the prevalence of multiple cancers targeted by the assay were not available
(stomach, plasma cell neoplasm, multiple primaries, urothelial track, gallbladder, sarcoma,
other, lymphoid leukemia, myeloid neoplasm, kidney, and thyroid) and could not be
included in the calculation.

Table 7. Detailed analytical performance of GRAIL technology [73]. The data from the 12 pre-specified
cancers are listed first and separated from the remaining cancer types by a double line. The remaining
cancer types are listed in decreasing order according to their respective overall sensitivity value. TOO:
tissue of origin.

GRAIL Cohort Size
(Healthy = 1254) Specificity (%) Sensitivity (%)

TOO Prediction
Accuracy (%)

(For True Positive)

All cancer 99.52
Stage 1 849 16.8
Stage 2 703 40.4
Stage 3 566 77.0
Stage 4 618 90.1
Overall 2823 51.5 88.7

Liver/bile-duct
Stage 1 6 100.0
Stage 2 10 70.0
Stage 3 9 100.0
Stage 4 20 100.0
Overall 46 93.5 93.0

Head & neck
Stage 1 19 63.2
Stage 2 17 82.4
Stage 3 19 84.2
Stage 4 50 96.0
Overall 105 85.7 93.3

Esophagus
Stage 1 8 12.5
Stage 2 17 64.7
Stage 3 34 94.1
Stage 4 40 100.0
Overall 100 85.0 -

Pancreatic
Stage 1 21 61.9
Stage 2 20 60.0
Stage 3 21 85.7
Stage 4 73 95.9
Overall 135 83.7 -

Ovary
Stage 1 10 50.0
Stage 2 5 80.0
Stage 3 31 87.1
Stage 4 19 94.7
Overall 65 83.1 70.4
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Table 7. Cont.

GRAIL Cohort Size
(Healthy = 1254) Specificity (%) Sensitivity (%)

TOO Prediction
Accuracy (%)

(For True Positive)

Colorectal
Stage 1 30 43.3
Stage 2 40 85.0
Stage 3 66 87.9
Stage 4 64 95.3
Overall 206 82.0 98.8

Anus
Stage 1 4 25.0
Stage 2 4 75.0
Stage 3 13 100.0
Stage 4 1 100.0
Overall 22 81.8 77.8

Lung
Stage 1 96 21.9
Stage 2 44 79.5
Stage 3 118 90.7
Stage 4 145 95.2
Overall 404 74.8 91.7

Plasma cell
neoplasm

Stage 1 17 64.7
Stage 2 16 87.5
Stage 3 14 64.3
Stage 4 - -
Overall 47 72.3 -

Stomach
Stage 1 6 16.7
Stage 2 6 50.0
Stage 3 5 80.0
Stage 4 12 100.0
Overall 30 66.7 -

Lymphoma
Stage 1 33 27.3
Stage 2 48 58.3
Stage 3 46 71.7
Stage 4 46 60.9
Overall 174 56.3 -

Bladder
Stage 1 6 33.3
Stage 2 11 9.1
Stage 3 4 75.0
Stage 4 2 100.0
Overall 23 34.8 87.5

Unknown
primary
Stage 1 - -
Stage 2 1 100.0
Stage 3 2 50.0
Stage 4 13 100.0
Overall 18 94.4 -

Multiple
primaries

Stage 1 2 100.0
Stage 2 5 60.0
Stage 3 6 100.0
Stage 4 6 83.3
Overall 19 84.2 -
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Table 7. Cont.

GRAIL Cohort Size
(Healthy = 1254) Specificity (%) Sensitivity (%)

TOO Prediction
Accuracy (%)

(For True Positive)

Urothelial track
Stage 1 2 0.0
Stage 2 - -
Stage 3 - -
Stage 4 8 100.0
Overall 10 80.0 -

Cervix
Stage 1 12 58.3
Stage 2 5 100.0
Stage 3 7 100.0
Stage 4 1 100.0
Overall 25 80.0 35.0

Gallbladder
Stage 1 2 0.0
Stage 2 3 33.3
Stage 3 4 75.0
Stage 4 8 100.0
Overall 17 70.6 -

Sarcoma
Stage 1 10 40.0
Stage 2 2 100.0
Stage 3 10 50.0
Stage 4 7 85.7
Overall 30 60.0 -

Other
Stage 1 11 18.2
Stage 2 3 100.0
Stage 3 18 72.7
Stage 4 18 61.1
Overall 59 50.8 -

Melanoma
Stage 1 2 0.0
Stage 2 2 0.0
Stage 3 3 0.0
Stage 4 6 100.0
Overall 13 46.2 100.0

Lymphoid
leukemia

Stage 1 - -
Stage 2 - -
Stage 3 - -
Stage 4 - -
Overall 51 41.2 -

Breast
Stage 1 265 2.6
Stage 2 181 47.5
Stage 3 55 85.5
Stage 4 22 90.9
Overall 524 30.5 96.9

Uterus
Stage 1 120 16.7
Stage 2 10 30.0
Stage 3 23 73.9
Stage 4 4 100.0
Overall 157 28.0 -
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Table 7. Cont.

GRAIL Cohort Size
(Healthy = 1254) Specificity (%) Sensitivity (%)

TOO Prediction
Accuracy (%)

(For True Positive)

Myeloid
neoplasm

Stage 1 - -
Stage 2 - -
Stage 3 - -
Stage 4 - -
Overall 10 20.0 -

Kidney
Stage 1 61 4.9
Stage 2 9 22.2
Stage 3 7 14.3
Stage 4 22 54.5
Overall 99 18.2 77.78

Prostate
Stage 1 95 3.2
Stage 2 243 4.9
Stage 3 50 14.0
Stage 4 30 83.3
Overall 420 11.2 -

Thyroid
Stage 1 11 0.0
Stage 2 1 0.0
Stage 3 1 0.0
Stage 4 1 0.0
Overall 14 0.0 -

Compared to the other stMCED platforms, GRAIL is certainly the most powerful
and which has been thoroughly validated by large cohorts of participants. Even though
the overall sensitivity is similar or lower than the other techniques discussed herein (in
particular for early disease stages), the ability to target that many cancer types simulta-
neously with a false positive rate of only 0.7% would yield the highest PPV compared
to other methods targeting fewer diseases with reduced specificity. Indeed, a screening
test would significantly benefit from a higher aggregated prevalence—by increasing the
number of targeted organs—with moderate sensitivity, rather than favouring sensitivity
with a reduced number of interrogated cancers and specificity. The additional ability to
predict the tumour of origin with good accuracy is certainly of great additional value
for patient health and finances. However, that package of benefits is only possible at an
elevated price because a very high number of genomic regions need to be interrogated
through sequencing technology, which may be a limit for the uptake of the test by the
targeted population.

7.1.4. Methylscape

Despite being highly robust and powerful, all the methodologies reported above en-
tirely rely on PCR and sequencing technologies, involving relatively expensive equipment
and well-trained operators, thereby limiting their access in resource-poor countries and re-
mote areas. Knowing that disease screening is only feasible with technologies that could be
implemented and sustained in low-resource settings, simpler and cheaper screening meth-
ods are still needed for cancer diagnostic intervention beyond the boundaries of the first
world [2]. In that technological space, one emerging methodology is Methylscape—a novel
type of universal cancer biomarkers characterized by a specific Methylation landscape
across the genome [74,75]. They reported that the global epigenetic reprogramming arising
during malignant transformation (i.e., DNA hyper- and hypo-methylation)—characteristic
of most cancer types—was affecting the physicochemical properties of DNA and sig-
nificantly increasing its gold physisorption. By taking advantage of that phenomenon,
a simple interfacial biosensing assay has been developed to electrochemically quantify
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direct DNA absorption level at a bare gold electrode surface to differentiate normal from
cancer epigenomes. In a pilot study using only 5 pg of plasma-derived cfDNA, the assay
was able to differentiate healthy controls (n = 45) from advanced colorectal and breast
cancer (n = 100) samples with relatively good performance (AUROC = 0.887). However,
further development is still required to assess the potential of Methylscape to detect earlier
stages of diseases and independent validations including a larger panel of cancer types
across multiple cancer stages are still needed to be done.

Table 8. Estimated positive predictive value (PPV) for four reviewed multi-cancer early detection tests
(DEEPGEN™, CancerSEEK, PanSEER, and GRAIL) in a function of the reported test performances
and the 5-year limited duration prevalence of cancers in the Australian population between 2010 and
2014 (restricted to the age group 55–64 years). The overall 5-year prevalence rate (*) is different for
each assay and has been computed as the sum of the 5-year prevalence rate of each cancer type a
test is targeting (only including the prevalence data provided in [76]). The corresponding values are
listed in the table below each test name.

Epidemiologic Data for the
Australian Population

(2010–2014) —Restricted to the
Aged Group 55–64 Years [76]

DEEPGEN™

at 95%/99% Specificity
* 3604 (n/100,000)

CancerSEEK a

at 99.14% Specificity
* 1981 (n/100,000)

PanSEER a

at 96.1% Specificity
* 560 (n/100,000)

GRAIL b

at 99.52% Specificity
* 4716.1 (n/100,000)

Cancer Type

5-Year
Prevalence

Rate
(n/100,000)

Sensitivity
(%)

PPV
(%)

Sensitivity
(%) PPV (%) Sensitivity c

(%) PPV (%) Sensitivity
(%) PPV (%)

Overall
* Specific
value for

each assay
57.0/43.0 29.9/61.7 62.3 >59.4 94.9 >12.1 51.5 >84.2

Bladder 40.3 32.0/80.0 0.6/1.3 - - - - 34.8 2.8
Brain 23.0 - - - - - - - -
Breast
(female only) 1319.4 16.0/30.0 7.4/17.6 33.5 34.3 - - 30.5 45.9

Primary
unknown 22.3 - - - - - - 99.4 4.4

Cervical 0.0 - - - - - - 80.0 5.4
Colorectal 367.9 42.0/27.0 3.0/9.1 64.9 21.8 n.s - 82.0 38.7
Head and neck 163.3 - - - - - 85.7 22.6
Liver 38.7 63.0/41.0 0.5/1.6 98.7 4.3 n.s - 93.5 7.0
Lung 132.9 67.0/53.0 1.8/6.6 58.7 8.3 n.s - 74.8 17.2
Melanoma 419.8 - - - - - - 46.2 28.9
Non-Hodgkin
lymphoma 145.3 - - - - - - 56.3 14.6

Oesophageal 20.5 - - 68.1 1.6 n.s - 85.0 3.5
Ovarian
(female only) 73.2 - - 98.1 7.7 - - 83.1 11.3

Pancreatic 28.4 52.0/38.0 0.3/1.1 72 2.3 - - 83.7 4.7
Prostate
(male only) 1676.4 72.0/62.0 19.7/51.4 - - - - 11.2 28.5

Uterine
(female only) 233.3 - - - - - - 28.0 12.0

a. Stomach cancer was not included as the 5-year prevalence data was not reported in [76]. b. Stomach,
plasma cell neoplasm, multiple primaries, urothelial track, gallbladder, sarcoma, other, lymphoid leukemia,
myeloid neoplasm, kidney, and thyroid were not included as the 5-year prevalence data were not reported in [76].
c. Sensitivity value reported in the context of pre-diagnosis data.

Although Methylscape showed lower cancer detection accuracy than the other sequencing-
based assay described above, its simple methodology enables reduction of sample prepara-
tion process to the bare minimum (i.e., label-free, biofunctionalization-free sensor, no bisul-
fite DNA treatment, no DNA amplification nor sequencing) allowing for putting for-
ward a very simple and yet efficient technology at a significantly reduced cost. Thus,
Methylscape could be implemented using portable equipment and could find great oppor-
tunities in low-resource settings as a “quick and cheap” first-line screening technology for
cancer detection.
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8. Clinical Translation of stMCEDs: Summary and Future Perspectives

Conventional multimodal screening programs are mainly limited by the low number
of cancers recommended for screening as well as the high cumulative false-positive rate and
associated harms resulting from repeated testing. The possibility to use minimally invasive
blood tests to screen asymptomatic individuals at-risk for multiple cancer types simultane-
ously would benefit from a fixed specificity and the aggregated diseases prevalence, both
parameters increasing the positive predictive value of the test and its efficiency. As such,
stMCED technologies are now emerging as a promising paradigm for increasing earlier
disease detection rate with better harm–benefit trade-off and potentially improving popula-
tion health. However, the development of these technologies must show a positive clinical
cost–benefit to allow potential implementation into current screening programs. With this
regard, the risk–benefit analysis of these tests should be systematically performed based
on diagnostic performances to evaluate their net clinical impact on the healthcare system
and patient’s health, management, and finances. For successful translation, the net benefit
of any of these tests should outweigh the total risks associated with its use. For instance,
a hypothetic low-cost test sensitive enough to detect localized diseases and potentially
improve patient survival outcome, but showing a relatively high false-positive rate and/or
the inability to identify the tumour of origin would probably remain too risky for screening
settings. As such, the burdensome consequences resulting from inaccurate testing would
still outweigh the potential health benefit.

While the legitimate clinical utility of DNA-methylation compared to genetic alter-
ation for accurate cancer diagnostic has been debated in the scientific community, there
is now unprecedented evidence tipping the balance in favour of epigenetic biomarkers.
One important and underappreciated aspect of cfDNA-based liquid biopsy testing is the
relationship between the reported sensitivity of these tests and the amount of input DNA
required to achieve it. For example, one complete copy of the human genome is equivalent
to approximately 3 pg of DNA [77], and an input of 12 ng of would be equivalent to
4000 copies of the genome. Extending this example, a cfDNA sample composed of 20%
tumour DNA, where 10% of the tumour DNA has a somatic mutation equals 120 copies of
the mutant allele are theoretically available, but only at a single locus. In contrast, as DNA
methylation changes are generally a genome-wide phenomenon, the same 12 ng cfDNA
containing 20% tumour material would have 800 copies of DNA at multiple loci, enabling a
much greater sensitivity, highlighting the power of DNA methylation as a clinical diagnos-
tic. As outlined in the present review, one of the most compelling arguments in favour of
DNA methylation is certainly the possibility to identify ctDNA epigenetic signatures that
accurately reflect specific organ of origin—clinical information highly beneficial to allow
translation of a multi-cancers screening test into current guidelines.

Nonetheless, to correctly infer the clinical cost–benefit of a test, its performances
must be thoroughly validated by independent clinical studies. Designing robust studies
that faithfully reflect the targeted population can be challenging when investigating early
stage of malignancies as diseases prevalence are low and a very large number of samples
should be included for statistical significance. In that line, case-control studies often fail
to accurately represent the broad spectrum of individuals within risk populations as they
usually include retrospective samples from either cancerous or non-cancerous patients and
often omit to include other cancer-like patients such as benign neoplasms or inflammatory
associated samples. This could raise concern as DNA methylation mechanisms have been
reported to also be triggered during such cancer-like responses which could lead to false
assessment of a diagnostic performance [78].

Altogether, the overall capabilities of these stMCED technologies are strongly depen-
dent on the selected biomarker panels and richness of patients’ cohorts used for generating
the input data to train the core machine learning classifiers. The diagnostic power of these
computational methodologies is believed to significantly improve with growing datasets
and could potentially achieve optimal performance by combining genetic and epigenetic
biomarker panels to eventually satisfy the clinical cost–benefit required for successful
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implementation. Although these stMCED methodologies are reporting promising diag-
nostic performances, their overall sensitivities to detect early stage of cancers (i.e., stage I
and II) are still underperforming compared to later stage detection. Research in the field
should endeavour towards the development of new panels or technologies of early-stage
biomarkers—with the capabilities to determine whether a neoplasm tissue will transform
into an aggressive tumour or remain benign—to effectively increase earlier detection of
malignant diseases and facilitate improved treatment opportunities and clinical outcome
of patients.

9. Methodology
9.1. Literature Search

The cancer diagnostic tests reviewed in this article have been selected from the lit-
erature after a digital search on Google Scholar for the following criteria: (1) published
online within the last four years (from 2018 onwards), (2) using circulating tumour DNA
analysis from liquid biopsy testing, (3) focusing on the detection of multiple cancer types,
(4) reporting on the ability to detect early stage of malignant diseases, and (5) using DNA
methylation biomarkers for cancer detection. In addition, two distinct methodologies not
utilizing DNA methylation biomarkers, but somatic mutation analysis, have also been
included in this review to better contrast the performance of diagnostic tests in this space
as we believe this information is of value to readers.

9.2. Positive Predictive Value (PPV) Analysis

In-silico modelling of a diagnostic test PPV in relation to different sensitivity, specificity,
and disease prevalence parameters was performed using the following equation reported
by S. Tenny and M.R. Hoffman [35]:

PPV =
(prevalence ∗ sensitivity)

(prevalence ∗ sensitivity) + [(1 − prevalence) ∗ (1 − speci f icity)]
,

and values were plotted in a series of heatmap graphs using GraphPad Prism 8 (Figure 2).
When possible, the PPV associated with the methodologies discussed in this review

was evaluated using Equation (1), and data are shown in Table 8. The calculation was
considered feasible for the methodologies reporting on a fixed specificity value for screening
multiple cancer types and the associated performance in terms of its sensitivity. Therefore,
the PPV was only evaluated for DEEPGEN™, CancerSEEK, PanSEER and GRAIL, while
IvyGene®, cfMeDIP-sequ, and Methylscape were excluded. The disease prevalence data
used to estimate the PPV have been obtained from Cancer Australia’s National Cancer
Control Indicators (NCCI) website [76] and are expressed as the 5-year limited duration
prevalence between 2010 and 2014. That is, the number of individuals diagnosed with
cancer in Australia between 1 January 2010 and 31 December 2014 period and who were
still alive at the end of 2014. The data have been further restricted to the age group
55–64 years to represent a healthy population likely to undergo cancer screening programs.
The 5-year prevalence data were only available for a limited number of cancer types (i.e.,
bladder, brain, breast, primary unknown, cervical, colorectal, head and neck, liver, lung,
melanoma, non-Hodgkin’s lymphoma, oesophageal, ovarian, pancreatic, prostate and
uterine cancers), and data for other cancers (e.g., stomach) were not specified. As such,
the PPV could not be estimated to its fullest for methodologies targeting these additional
cancers (i.e., CancerSEEK, PanSEER, and mostly GRAIL). The overall 5-year prevalence
has been computed separately for each methodology as the sum of the 5-year prevalence
of each cancer type a methodology is targeting (only possible when the prevalence data
were provided).
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53. Taryma-Leśniak, O.; Sokolowska, K.E.; Wojdacz, T.K. Current status of development of methylation biomarkers for in vitro
diagnostic IVD applications. Clin. Epigenet. 2020, 12, 1–16. [CrossRef]

54. Constâncio, V.; Nunes, S.P.; Henrique, R.; Jerónimo, C. DNA Methylation-Based Testing in Liquid Biopsies as Detection and
Prognostic Biomarkers for the Four Major Cancer Types. Cells 2020, 9, 624. [CrossRef]

55. Feber, A.; Dhami, P.; Dong, L.; de Winter, P.; Tan, W.S.; Martínez-Fernández, M.; Paul, D.S.; Hynes-Allen, A.; Rezaee, S.;
Gurung, P.; et al. UroMark—A urinary biomarker assay for the detection of bladder cancer. Clin. Epigenet. 2017, 9, 1–10.
[CrossRef] [PubMed]

56. Weiss, G.; Schlegel, A.; Kottwitz, D.; König, T.; Tetzner, R. Validation of the SHOX2/PTGER4 DNA Methylation Marker Panel for
Plasma-Based Discrimination between Patients with Malignant and Nonmalignant Lung Disease. J. Thorac. Oncol. 2017, 12, 77–84.
[CrossRef] [PubMed]

57. Han, Y.D.; Oh, T.J.; Chung, T.H.; Jang, H.W.; Kim, Y.N.; An, S.; Kim, N.K. Early detection of colorectal cancer based on presence of
methylated syndecan-2 (SDC2) in stool DNA. Clin. Epigenet. 2019, 11, 1–11. [CrossRef] [PubMed]

58. Oussalah, A.; Rischer, S.; Bensenane, M.; Conroy, G.; Filhine-Tresarrieu, P.; Debard, R.; Forest-Tramoy, D.; Josse, T.; Reinicke, D.;
Garcia, M.; et al. Plasma mSEPT9: A Novel Circulating Cell-free DNA-Based Epigenetic Biomarker to Diagnose Hepatocellular
Carcinoma. EBioMedicine 2018, 30, 138–147. [CrossRef] [PubMed]

59. Berdasco, M.; Esteller, M. Clinical epigenetics: Seizing opportunities for translation. Nat. Rev. Genet. 2019, 20, 109–127. [CrossRef]
[PubMed]

60. Braunstein, G.D.; Ofman, J.J. Criteria for Evaluating Multi-cancer Early Detection Tests. Oncol. Haematol. 2021, 17, 3. [CrossRef]
61. Ris, F.; Hellan, M.; Douissard, J.; Nieva, J.J.; Triponez, F.; Woo, Y.; Geller, D.; Buchs, N.C.; Buehler, L.; Moenig, S.; et al. Blood-Based

Multi-Cancer Detection Using a Novel Variant Calling Assay (DEEPGENTM): Early Clinical Results. Cancers 2021, 13, 4104.
[CrossRef]

62. Hermann, B.T.; Pfeil, S.; Groenke, N.; Schaible, S.; Kunze, R.; Hagen, M.E.; Bhakdi, J. DEEPGENTM—A Novel Variant Calling
Assay for Low Frequency Variants. Genes 2021, 12, 507. [CrossRef]

63. Cohen, J.D.; Li, L.; Wang, Y.; Thoburn, C.; Afsari, B.; Danilova, L.; Douville, C.; Javed, A.A.; Wong, F.; Mattox, A.; et al. Detection
and localization of surgically resectable cancers with a multi-analyte blood test. Science 2018, 359, 926–930. [CrossRef]

64. Chen, X.; Gole, J.; Gore, A.; He, Q.; Lu, M.; Min, J.; Yuan, Z.; Yang, X.; Jiang, Y.; Zhang, T.; et al. Non-invasive early detection of
cancer four years before conventional diagnosis using a blood test. Nat. Commun. 2020, 11. [CrossRef]

65. Shen, S.Y.; Singhania, R.; Fehringer, G.; Chakravarthy, A.; Roehrl, M.H.A.; Chadwick, D.; Zuzarte, P.C.; Borgida, A.; Wang, T.T.;
Li, T.; et al. Sensitive tumour detection and classification using plasma cell-free DNA methylomes. Nature 2018, 563, 579–583.
[CrossRef] [PubMed]

66. Liu, M.C.; Oxnard, G.R.; Klein, E.A.; Swanton, C.; Seiden, M.V.; Liu, M.C.; Oxnard, G.R.; Klein, E.A.; Smith, D.; Richards, D.; et al.
Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA. Ann. Oncol. 2020, 31,
745–759. [CrossRef] [PubMed]

67. Shen, S.Y.; Burgener, J.M.; Bratman, S.V.; De Carvalho, D.D. Preparation of cfMeDIP-seq libraries for methylome profiling of
plasma cell-free DNA. Nat. Protoc. 2019, 14, 2749–2780. [CrossRef] [PubMed]

68. Nuzzo, P.V.; Berchuck, J.E.; Korthauer, K.; Spisak, S.; Nassar, A.H.; Abou Alaiwi, S.; Chakravarthy, A.; Shen, S.Y.; Bakouny, Z.;
Boccardo, F.; et al. Detection of renal cell carcinoma using plasma and urine cell-free DNA methylomes. Nat. Med. 2020, 26,
1041–1043. [CrossRef]

69. Nassiri, F.; Chakravarthy, A.; Feng, S.; Shen, S.Y.; Nejad, R.; Zuccato, J.A.; Voisin, M.R.; Patil, V.; Horbinski, C.; Aldape, K.; et al.
Detection and discrimination of intracranial tumors using plasma cell-free DNA methylomes. Nat. Med. 2020, 26, 1044–1047.
[CrossRef]

70. Hao, X.; Luo, H.; Krawczyk, M.; Wei, W.; Wang, W.; Wang, J.; Flagg, K.; Hou, J.; Zhang, H.; Yi, S.; et al. DNA methylation markers
for diagnosis and prognosis of common cancers. Proc. Natl. Acad. Sci. USA 2017, 114, 7414–7419. [CrossRef]

71. Roy, D.; Taggart, D.; Zheng, L.; Liu, D.; Li, G.; Li, M.; Zhang, K.; Van Etten, R.A. Circulating cell-free DNA methylation assay:
Towards early detection of multiple cancer types. In Proceedings of the The American Association for Cancer Research Annual
Meeting, AACR, Atlanta, GA, USA, 29 March–3 April 2019.

72. Liu, M.C.; Klein, E.; Hubbell, E.; Maddala, T.; Aravanis, A.M.; Beausang, J.F.; Filippova, D.; Gross, S.; Jamshidi, A.;
Kurtzman, K.; et al. Plasma cell-free DNA (cfDNA) assays for early multi-cancer detection: The circulating cell-free genome atlas
(CCGA) study. Ann. Oncol. 2018, 29, viii14. [CrossRef]

73. Klein, E.A.; Richards, D.; Cohn, A.; Tummala, M.; Lapham, R.; Cosgrove, D.; Chung, G.; Clement, J.; Gao, J.; Hunkapiller, N.; et al.
Clinical validation of a targeted methylation-based multi-cancer early detection test using an independent validation set. Ann.
Oncol. 2021, 32, 1167–1177. [CrossRef]

74. Sina, A.A.I.; Carrascosa, L.G.; Liang, Z.; Grewal, Y.S.; Wardiana, A.; Shiddiky, M.J.A.; Gardiner, R.A.; Samaratunga, H.; Gandhi,
M.K.; Scott, R.J.; et al. Epigenetically reprogrammed methylation landscape drives the DNA self-assembly and serves as a
universal cancer biomarker. Nat. Commun. 2018, 9, 1–13. [CrossRef]

http://doi.org/10.1038/nrc3130
http://doi.org/10.3389/fgene.2019.01150
http://www.ncbi.nlm.nih.gov/pubmed/31803237
http://doi.org/10.1186/s13148-020-00902-9
http://doi.org/10.3390/cells9030624
http://doi.org/10.1186/s13148-016-0303-5
http://www.ncbi.nlm.nih.gov/pubmed/28163793
http://doi.org/10.1016/j.jtho.2016.08.123
http://www.ncbi.nlm.nih.gov/pubmed/27544059
http://doi.org/10.1186/s13148-019-0642-0
http://www.ncbi.nlm.nih.gov/pubmed/30876480
http://doi.org/10.1016/j.ebiom.2018.03.029
http://www.ncbi.nlm.nih.gov/pubmed/29627389
http://doi.org/10.1038/s41576-018-0074-2
http://www.ncbi.nlm.nih.gov/pubmed/30479381
http://doi.org/10.17925/OHR.2021.17.1.3
http://doi.org/10.3390/cancers13164104
http://doi.org/10.3390/genes12040507
http://doi.org/10.1126/science.aar3247
http://doi.org/10.1038/s41467-020-17316-z
http://doi.org/10.1038/s41586-018-0703-0
http://www.ncbi.nlm.nih.gov/pubmed/30429608
http://doi.org/10.1016/j.annonc.2020.02.011
http://www.ncbi.nlm.nih.gov/pubmed/33506766
http://doi.org/10.1038/s41596-019-0202-2
http://www.ncbi.nlm.nih.gov/pubmed/31471598
http://doi.org/10.1038/s41591-020-0933-1
http://doi.org/10.1038/s41591-020-0932-2
http://doi.org/10.1073/pnas.1703577114
http://doi.org/10.1093/annonc/mdy269.048
http://doi.org/10.1016/j.annonc.2021.05.806
http://doi.org/10.1038/s41467-018-07214-w


Epigenomes 2022, 6, 6 27 of 27

75. Sina, A.A.I.; Carrascosa, L.G.; Trau, M. DNA Methylation-Based Point-of-Care Cancer Detection: Challenges and Possibilities.
Trends Mol. Med. 2019, 25, 955–966. [CrossRef]

76. Cancer Australia’s National Cancer Control Indicators (NCCI). Available online: https://ncci.canceraustralia.gov.au/outcomes/
prevalence/five-year-prevalence (accessed on 3 December 2021).

77. Piovesan, A.; Pelleri, M.C.; Antonaros, F.; Strippoli, P.; Caracausi, M.; Vitale, L. On the length, weight and GC content of the
human genome. BMC Res. Notes 2019, 12, 106. [CrossRef] [PubMed]

78. Murata, M. Inflammation and cancer. Environ. Health Prev. Med. 2018, 23, 1–8. [CrossRef] [PubMed]

http://doi.org/10.1016/j.molmed.2019.05.014
https://ncci.canceraustralia.gov.au/outcomes/prevalence/five-year-prevalence
https://ncci.canceraustralia.gov.au/outcomes/prevalence/five-year-prevalence
http://doi.org/10.1186/s13104-019-4137-z
http://www.ncbi.nlm.nih.gov/pubmed/30813969
http://doi.org/10.1186/s12199-018-0740-1
http://www.ncbi.nlm.nih.gov/pubmed/30340457

	Introduction 
	Challenges Associated with the Current Screening Paradigm to Efficiently Identify Early-Stage Malignancies 
	The Clinical Potential of Implementing a Single Test for Multiple Cancer Early Detection (stMCED) 
	The Potential Value of Methylated-cfDNA for Developing stMCED 
	Criteria for Developing Efficient stMCED 
	Methodologies for stMCED Screening 
	Non-Methylation Based Assays 
	DEEPGEN™ 
	CancerSEEK 


	Methylation-Based Assay 
	PanSEER 
	cfMeDIP-Seq 
	IvyGene® 
	GRAIL 
	Methylscape 


	Clinical Translation of stMCEDs: Summary and Future Perspectives 
	Methodology 
	Literature Search 
	Positive Predictive Value (PPV) Analysis 

	References

