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Abstract

It is known that Wnt/β-catenin signaling induces endochondral ossification and plays a sig-

nificant role in the pathophysiology of osteoarthritis (OA). Sclerostin is a potent inhibitor of

the Wnt/β-catenin signaling pathway. This study investigated the role of sclerostin in the

endochondral differentiation under an OA-like condition induced by proinflammatory cyto-

kines. ATDC5 cells were used to investigate chondrogenic differentiation and terminal calci-

fication, and 10 ng/ml IL-1β and/or 200 ng/ml sclerostin were added to the culture medium.

IL-1β impaired early chondrogenesis from undifferentiated state into proliferative chondro-

cytes, and it was not altered by sclerostin. IL-1β induced progression of chondrogenic differ-

entiation in the late stage and promoted terminal calcification. These processes were

inhibited by sclerostin and chondrogenic phenotype was restored. In addition, sclerostin

restored IL-1β-induced upregulation of Wnt/β-catenin signaling in the late stage. This study

provides insights into the possible role of sclerostin in the chondrogenic differentiation under

the IL-1β-induced OA-like environment. Suppression of Wnt signaling by an antagonist may

play a key role in the maintenance of articular homeostasis and has a potential to prevent

the progression of OA. Thus, sclerostin is a candidate treatment option for OA.

Introduction

Osteoarthritis (OA) is a degenerative joint disease, characterized by cartilage degradation, sub-

chondral bone sclerosis, osteophyte formation, and synovial inflammation. A complex net-

work of multifactorial mechanisms including biochemical, mechanical, and enzymatic aspects

are involved in the pathogenesis of OA [1]. Proinflammatory cytokines such as interleukin

(IL)-1β, IL-6, and tumor necrosis factor (TNF)-α are the critical mediators of the disturbed

processes implicated in OA pathophysiology [2].

The Wnt/β-catenin signaling pathway plays a significant role in the pathophysiology of OA

[3]. A previous study demonstrated that inhibition of Wnt/β-catenin signaling by small mole-

cules can effectively prevent IL-1β- and TNFα-induced cartilage degradation by blocking the
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production of matrix metalloproteinase (MMP) [4]. Furthermore, tissue-specific activation of

Wnt/β-catenin signaling in articular chondrocytes of adult mice resulted in progressive loss of

articular cartilage and an OA-like phenotype [5]. Thus, blockade of Wnt/β-catenin signaling

may be proposed as a therapeutic target.

Sclerostin, encoded by the SOST gene, is known to be one of the Wnt signaling antagonists

[6]. Sclerostin regulates disease processes in OA by opposing the effects of promotion of dis-

ease-associated subchondral bone sclerosis, while inhibiting the degradation of cartilage [7].

The deficiency of SOST aggravates the OA phenotype by increasing catabolic activity of carti-

lage [8], and SOST-knockout mice exhibited severe progression of OA in response to joint

instability, suggesting that sclerostin may contribute to the maintenance of cartilage integrity

in OA [9]. However, effects of sclerostin on terminal calcification of chondrocytes in the oste-

oarthritic environment are unknown and need to be elucidated, considering that endochon-

dral ossification signals may be important for OA progression [10].

We previously demonstrated that SOST is upregulated in the early stage of chondrogenic

differentiation, but is not required for endochondral ossification [11]. This study focused on

the role of sclerostin in the chondrogenic differentiation under the OA-like condition induced

by proinflammatory cytokines. We hypothesized that sclerostin upregulates chondrogenic dif-

ferentiation to proliferating chondrocytes and downregulates endochondral ossification under

the proinflammatory cytokine-induced condition. This study investigated IL-1β-induced

osteochondral differentiation in vitro, and examined whether sclerostin can restore the chon-

drogenic phenotype.

Materials and methods

Cell lines and culture conditions

ATDC5 cells (mouse embryo teratocarcinoma-derived chondrogenic cell line) were purchased

from European Collection of Cell Cultures (ECACC, Public Health England, Porton Down,

UK), and were cultured at a seeding density of 4 × 104 cells/well for a 12-multiwell plate,

6 × 104 cells/well for a 6-multiwell plate and 7 × 103 cells/well for a 8-multiwell chamber slide,

in a 1:1 mixture of Dulbecco’s modified Eagle’s and Ham’s F12 medium (Flow Laboratories,

Irvine, UK) supplemented with 5% fetal bovine serum (FBS: GIBCO, New York, NY, USA),

10 μg/ml bovine insulin (I; Wako Pure Chemical, Osaka, Japan), 10 μg/ml human transferrin

(T; Boehringer Mannheim, Mannheim, Germany), and 3 × 10−8 M sodium selenite (S; Sigma

Chemical Co., St. Louis, MO, USA) at 37˚C in a humidified atmosphere of 5% CO2 in air for

the initial 3 weeks, as previously described [10, 15]. On day 21, the culture medium was

switched to alpha modified essential medium supplemented with 5% FBS plus ITS, and the

CO2 concentration was shifted to 3% to facilitate mineralization, as previously described [10,

15]. The medium was replaced every other day. To characterize the cells that are not subjected

to chondrogenic media, ATDC5 cells were also cultured without ITS (S1 Fig). For the early

stage experiment, IL-1β and/or sclerostin were filled in each well from 3 days to 3 weeks. For

the late stage experiment, IL-1β and/or sclerostin were filled in each well from 3 weeks to 7

weeks. To mimic the OA-like condition, 10 ng/ml recombinant murine IL-1β (PeproTech,

Rocky Hill, NJ, USA) was used, as previously described [12–14]. The effect of sclerostin was

examined by the addition of 200 ng/ml recombinant mouse SOST (R&D systems).

Alcian blue staining

To visualize the deposition of sulfated glycosaminoglycan (sGAG), a marker for chondrogenic

differentiation, cells were fixed with 100% methanol and stained with 0.1% Alcian blue 8GS

(Sigma) in 0.1 N HCl for 4 h at room temperature, as previously described [10].
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sGAG assay

The culture media were collected and sGAG content was quantified using a commercially

available sGAG Alcian blue binding assay kit (Euro-Diagnostica, Malmo, Sweden). The absor-

bance at 640 nm was measured using a microplate reader (Infinite F50, TECAN, Kawasaki,

Japan), as previously described [10].

Alizarin red staining

To evaluate visualize the calcium deposits, cells were fixed with phosphate-buffered formalin

and then stained with 40 mM alizarin red S (pH 4.2, Sigma) for 30 min, as previously described

[10]. The Alizarin red-stained areas were scanned using an image scanner and analyzed quali-

tatively using Image J software.

Immunostaining

The cultured cells were washed one time with cold PBS and fixed with 4% paraformaldehyde

for 10 minutes at room temperature. Following washing three times with PBS, the cells were

permeabilized with 0.2% Triton X-100 in PBS buffer for 20 minutes at room temperature. Fol-

lowing washing three times with 0.1% Tween20 in PBS, the cells were blocked with 0.1%

Tween20 and 10% goat serum, with 1% BSA in PBS buffer for 1 hour at room temperature.

The cells were incubated with the anti-rabbit primary antibodies of β-catenin (Abcam, Cam-

bridge, UK), Axin1 (Novus Biologicals, Centennial, USA), Axin2 (Novus Biologicals) and

phosphorylated LRP6 (Biorbyt Ltd., Cambridge, UK) over night at 4˚C. The cells were washed

three times with 0.1% Tween20 in PBS. The cells were incubated with Alexa Fluor1 568 conju-

gated goat anti-rabbit IgG secondary antibody (Invitrogen, Carlsbad, USA) for 45 minutes at

room temperature. To visualize the nuclei, the cells were double-stained with 4’, 6-diamidino-

2-phenylindole (DAPI) (Vector Laboratories, Burlingame, USA). The cells were viewed with a

Keyence BZ 800 epifluorescence microscope, which was equipped with a digital camera (CFI

60, Nikon Corporation, Tokyo, Japan). All immunofluorescence images were obtained with

identical exposure settings.

Total RNA isolation and real-time RT-PCR

As described in detail previously [10], mRNA expression levels were analyzed following proce-

dures. Total RNA was extracted from the cultured cells using Trizol reagent according to the

manufacturer’s instructions (Invitrogen, Carlsbad, CA, USA). RNA was quantified by measur-

ing absorbance at 260 nm, and the quality was confirmed by 260/280 nm absorbance ratio

greater than 1.8. First-strand cDNA synthesis from total RNA was performed using an

iScriptTM advanced cDNA synthesis kit (BIO-RAD, Richmond, CA, USA). Quantitative real-

time PCR was carried out using TaqMan gene expression assays (Applied Biosystems, Foster

City, CA, USA) on a CFX96TM real-time PCR detection system (BIO-RAD). Expression of

the gene of interest was normalized to GAPDH expression. TaqMan gene expression assays

used in this study were as follows: Col2a1 (Mm01309565_m1); Col10a1 (Mm00487041_m1);

Sox9 (Mm00448840_m1); Runx2 (Mm00501584_m1); BMP2 (Mm01340178_m1);Wnt3a
(Mm03053669_s1);Wnt5a (Mm00437347_m1); LRP5 (Mm01227476_m1); LRP6
(Mm00999795_m1); Axin1 (Mm01299060_m1); Axin2 (Mm00443610_m1); Ctnnbl1 (β-cate-

nin) (Mm00499427_m1);MMP13 (Mm00439491_m1); ADAMTS5 (Mm00478620_m1); and

GAPDH (Mm99999915_g1).
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Statistical analysis

All experiments were repeated independently at least three times. All data are presented as

means ± standard deviation. The analysis was performed with JMP Pro 12 software (SAS Insti-

tute Inc.) for Mac. Continuous variables were expressed as means. One-way analysis of vari-

ance (ANOVA) was used to compare mean values from different samples. Tukey’s HSD was

used for post-hoc analyses. A value of P< 0.05 was considered significant.

Results

No restorative effects of sclerostin on IL-1β-induced impairment in the

early stage of chondrogenic differentiation

To simulate the inflammatory environment, 10 ng/ml IL-1β was added to the culture media

for chondrogenic differentiation, and the effects of sclerostin were assessed. The mRNA

expressions of markers for chondrogenic differentiation were significantly decreased with

IL-1β treatment, and they were not restored by sclerostin (Fig 1a). The mRNA expression of

MMP-13, one of markers for cartilage catabolism, was significantly increased with IL-1β
treatment, and they were not significantly altered by sclerostin (Fig 1b). Chondrogenic dif-

ferentiation with proteoglycan synthesis was confirmed by positive staining with Alcian blue

after 3 weeks (Fig 1c). Less intense staining was observed with the addition of IL-1β, and it

was not restored by sclerostin. The expression of Wnt/β-catenin-associated genes,Wnt5a,

LRP5, LRP6, Axin1, Axin2, and Ctnb-1, was significantly decreased with IL-1β treatment,

and was not restored by sclerostin (Fig 2a). Less intense expressions of Axin1, Axin2, and

β-catenin was observed in the immunofluorescence images of the cultured cells with the

addition of IL-1β, and these were not restored by sclerostin (Fig 2b–2d). These results sug-

gested that IL-1β induces impairment in the early stage of chondrogenic differentiation and

downregulation of the Wnt/β-catenin signaling. In this condition, there are no restorative

effects of sclerostin on IL-1β-induced impairment in the early stage of chondrogenic

differentiation.

Inhibitory effects of sclerostin on IL-1β-induced terminal calcification in

the late stage of chondrogenic differentiation

To assess the effects of sclerostin on IL-1β-induced terminal calcification in the late stage of

chondrogenic differentiation, IL-1β and sclerostin were added from 3 weeks of culture. The

mRNA expression of SOST was significantly decreased by IL-1β (S2 Fig). The mRNA expres-

sions of markers for chondrogenic differentiation were significantly decreased with IL-1β, but

they were restored by sclerostin (Fig 3a). The mRNA expressions of markers for cartilage

catabolism and BMP2 were significantly increased with IL-1β, but they were restored by scler-

ostin (Fig 3b and 3c). Terminal calcification was confirmed by positive staining with Alizarin

red after 7 weeks (Fig 3d). Stronger staining was identified with addition of IL-1β, but it was

inhibited by sclerostin. The expression of Wnt/β-catenin associated genes,Wnt3a,Wnt5a,

LRP6, Axin1, and Ctnb-1, was significantly increased with IL-1β, and was restored by sclerostin

(Fig 4a). The immunofluorescence images of the cultured cells with the addition of IL-1β
showed more intense expressions of phosphorylated LRP6, Axin1, Axin2, and β-catenin, but

these were diminished by sclerostin (Fig 4b–4e). These results suggested that IL-1β promotes

cartilage degradation and terminal calcification by upregulating the Wnt/β-catenin signaling

pathway, and those effects were inhibited by sclerostin.
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Discussion

The most important findings of this study were that sclerostin restores the chondrogenic phe-

notype and inhibits endochondral ossification under the IL-1β-induced condition. This pro-

cess was associated with the downregulation of Wnt/β-catenin signaling. However, sclerostin

did not alter the IL-1β-impaired early chondrogenesis from the undifferentiated state into

Fig 1. Effect of sclerostin on early stage of chondrogenic differentiation in the presence of IL-1β. ATDC5 cells were cultured for chondrogenic

conditions, and 10 ng/ml IL-1β and/or 200 ng/ml sclerostin were added to the culture medium from 3 days to 3 weeks. (A) Relative mRNA expressions

of markers for chondrogenic differentiations, Sox9, Runx2, Col2a1, and Col10a. (B) Relative mRNA expressions of markers for cartilage catabolism,

VEGF,MMP13, and Adamts5. (C) Alcian Blue staining of ATDC5 cells under chondrogenic culture at 3 weeks of culture (left). Relative absorbance

indicating GAG concentration of culture medium after 3 weeks (right). N = 4 �P<0.05.

https://doi.org/10.1371/journal.pone.0239651.g001
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Fig 2. Effect of sclerostin on Wnt/β-catenin signaling pathway in early stage of chondrogenic differentiation with IL-1β. (A) Relative mRNA

expressions of LRP5, LRP6, Axin1, Axin2,Wnt3a,Wnt5a, and Ctnb-1. N = 4 �P<0.05. (B-D) Immunofluorescence images of the cultured cells

expressing Axin1 (B), Axin2 (C), and β-catenin (D). Scale bars = 100 μm.

https://doi.org/10.1371/journal.pone.0239651.g002
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proliferative chondrocytes. The major advance in the present study is the investigation of the

restorative effects of sclerostin on chondrogenic differentiation in the multistep process from

mesenchymal chondroprogenitor to terminal calcification in vitro, which can be separately

assessed during the early and late stages of chondrogenic differentiation.

Fig 3. Effect of sclerostin on late stage of chondrogenic differentiation in the presence of IL-1β. ATDC5 cells were cultured for chondrogenic

conditions, and 10 ng/ml IL-1β and/or 200 ng/ml sclerostin were added to the culture medium from 21 days. (A) Relative mRNA expressions of

markers for chondrogenic differentiations, Sox9, Runx2, Col2a1, and Col10a. (B) Relative mRNA expressions of markers for cartilage catabolism,

VEGF,MMP13, and Adamts5. (C) Relative mRNA expression of BMP2. (D) Alizarin red staining of ATDC5 cells under condition of endochondral

ossification at 7 weeks of culture (left). Relative staining area indicating total size of calcified nodules (right). N = 4 �P<0.05.

https://doi.org/10.1371/journal.pone.0239651.g003
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Fig 4. Effect of sclerostin on Wnt/β catenin signaling pathway in late stage of chondrogenic differentiation with IL-1β. (A) Relative mRNA

expressions of LRP5, LRP6, Axin1, Axin2,Wnt3a,Wnt5a, and Ctnb-1. N = 4 �P<0.05. (B-E) Immunofluorescence images of the cultured cells

expressing phosphorylated LRP6 (B), Axin1 (C), Axin2 (D), and β-catenin (E). Scale bars = 100 μm.

https://doi.org/10.1371/journal.pone.0239651.g004
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As described in detail previously [15, 16], ATDC5 is a good model system for studying the

dynamic processes of chondrogenesis, and many findings in this system may have relevance to

chondrogenesis in vivo. In our previous study, the role of sclerostin as an inhibitor of the

canonical Wnt signaling pathway in the chondrogenic differentiation could be characterized

using the same model system [11]. This established model system was used to investigate the

effects on chondrogenic differentiation at the different timing of early and later stages in the

present study. Although several in vivo OA models have been developed to investigate the

pathological feature and therapeutic effects, they need to be considered influence under the

multifactorial and complex conditions including mechanical load, synovial inflammation, car-

tilage degeneration and abnormal bone remodeling. This study simply focused the effect of

sclerostin on the cytokine among several factors associated with OA pathogenesis.

The process of endochondral ossification, including chondrocyte hypertrophy, production

of proteinases and cartilage apoptosis, is thought to be involved in the initiation and progres-

sion of OA [10, 17]. Wnt/β-catenin signaling plays a key role in the development of endochon-

dral ossification and regulates OA development [3, 5]. As described in detail previously [3], β-

catenin-dependent canonical Wnt signaling is required for the progression of endochondral

ossification and growth of axial and appendicular skeletons, while excessive activation of this

signaling can cause severe inhibition of initial cartilage formation and growth plate organiza-

tion and function. Increased canonical Wnt signaling inhibits chondrogenesis [18, 19], but

once cartilage has formed, it promotes chondrocyte maturation, enhances perichondral bone

formation, initiates cartilage vascularization, and drives the formation of primary and second-

ary ossification centers [20]. Sclerostin is an inhibitor of Wnt/β-catenin signaling, which is

expressed in the chondrocyte and modulates chondrogenic differentiation [11]. Thus, the pres-

ent study focused on sclerostin as a potential target for the suppression of OA.

The present study investigated the restorative effects of sclerostin on chondrogenic differ-

entiation under the IL-1β-induced condition in the different timing. IL-1β is a primary media-

tor of local inflammatory processes in OA [21, 22], and IL-1β-induced degradation of

chondrogenesis is often utilized for in vitromodel of OA [23, 24]. Since IL-1β is not cytotoxic

up to a concentration of 100 ng/mL [12], and 10 ng/mL IL-1β is considered as an optimized

concentration to induce OA-like condition in vitro, 10 ng/mL of concentration was used in

this study [13, 14]. IL-1β modulates the chondrogenic differentiation, and those effects differ

between the early and late stages. In the early stage, IL-1β downregulated Wnt/β-catenin sig-

naling and impaired chondrogenic differentiation. In this condition, Wnt/β-catenin signaling

has already been inhibited, and there was no further requirement for sclerostin to act as Wnt

inhibitor. In addition, IL-1β downregulates the synthesis of master chondrogenic factor Sox9

[25], and inhibits early differentiation from mesenchymal phenotype into proliferative chon-

drocytes [26, 27]. In contrast, IL-1β promotes endochondral ossification with increased

expressions of catabolic markers in the later stage [28, 29]. Although details of IL-1β and Wnt

cross talk have not been well elucidated, as a possible mechanism, it was reported that nitric

oxide mediates the IL-1β-induced inflammatory response of chondrocytes through the upre-

gulation of Wnt signaling [30]. In the present study, sclerostin inhibited the IL-1β-induced ter-

minal calcification through downregulation of Wnt/β-catenin signaling. Thus, the restorative

effects of sclerostin on chondrogenic phenotype under the IL-1β-induced condition may be

expected only in the later stage of chondrogenic differentiation.

In summary, the present study demonstrated that sclerostin restores the chondrogenic phe-

notype and inhibits endochondral ossification under the IL-1β-induced OA-like environment.

IL-1β reduces the production of the Wnt antagonist, and enhances Wnt signaling in the articu-

lar resident cells [31]. Suppression of the Wnt signaling by the antagonist may play a key role
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in the maintenance of articular homeostasis [9, 32], and has the potential to prevent the pro-

gression of OA. Thus, sclerostin is a candidate treatment option for OA.

Supporting information

S1 Fig. To characterize the cells that are not subjected to chondrogenic media, ATDC5

cells were cultured with or without ITS. (A) Alcian Blue staining of ATDC5 cells at 3 weeks

of culture in chondrogenic media (left) and non-chondrogenic media (right). Less intense

staining is observed in non-chondrogenic media. Scale bars = 100 μm. (B) Alizarin red staining

of ATDC5 cells at 7 weeks of culture in chondrogenic media (left) and non-chondrogenic

media (right). Less intense staining is observed in non-chondrogenic media. Scale

bars = 100 μm.

(TIFF)

S2 Fig. To assess the effect of IL-1ß on expression of sclerostin, ATDC5 cells were cultured

for 3 weeks in chondrogenic media and then 10 ng/ml IL-1β was added to the media for 24

hours. The relative mRNA expression of SOST is significantly decreased in the cells with addi-

tion of IL-1β. N = 4 �P<0.05.

(TIFF)
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