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Background: Tumor immune microenvironment plays a vital role in tumorigenesis and
progression of gastric cancer (GC), but potent immune biomarkers for predicting the
prognosis have not been identified yet.

Methods: At first, RNA-sequencing and clinical data from The Cancer Genome
Atlas (TCGA) were mined to identify an immune-risk signature using least absolute
shrinkage and selection operator (LASSO) regression and multivariate stepwise Cox
regression analyses. Furthermore, the risk score of each sample was calculated, and
GC patients were divided into high-risk group and low-risk group based on their risk
scores. Subsequently, the performance of this signature, including the correlation with
overall survival (OS), clinical features, immune cell infiltration, and immune response,
has been tested in GC data from TCGA database and Gene Expression Omnibus
(GSE84437), respectively.

Results: An immune signature composed of four genes (MAGED1, ACKR3, FZD2, and
CTLA4) was constructed. The single sample gene set enrichment analysis (ssGSEA)
indicated that activated CD4+/CD8+ T cell, activated dendritic cell, and effector memory
CD8+ T cell prominently increased in the low-risk group, showing relatively high
immune scores and low stromal scores. Further GSEA analysis indicated that TGF-β,
Ras, and Rap1 pathways were activated in the high-risk group, while Th17/Th1/Th2
differentiation, T cell receptor and PD-1/PD-L1 checkpoint pathways were activated in
the low-risk group. Low-risk patients presented higher tumor mutation burden (TMB)
and expression of HLA-related genes. The immune-associated signature showed an
excellent predictive ability for 2-, 3-, and 5-year OS in GC.

Conclusion: The immune-related prognosis model contributes to predicting the
prognosis of GC patients and providing valuable information about their response to
immunotherapy using integrated bioinformatics methods.
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INTRODUCTION

Gastric cancer (GC) is a common digestive tract tumor and
the third leading cause of cancer-related deaths (Bray et al.,
2018). Although there have been advances in early screening
and current therapies, the treatment and survival for GC remain
unsatisfactory. The 5-year survival rate for GC is still lower
than 30%, and survival for metastatic GC remains below 2 years
(Ferlay et al., 2015). Further biomedical research is urgently
recommended for screening novel diagnostic biomarkers and
therapeutic targets.

Tumor immune microenvironment (TIM) is closely related
to the tumorigenesis and tumor progression, as well as
resistance to immunotherapy (Bindea et al., 2013; Quail and
Joyce, 2013; Fridman et al., 2017). Accumulating studies have
highlighted that heterogeneity exists in the proportion of
intratumoral immune cell populations, and researchers try to
identify those patients with specific immune response (Zeng
et al., 2019; Zhang et al., 2019). The oncologists focus on
activating immune responses, screening highly specific immune
biomarkers, and exploring immune regulatory mechanisms to
restore dysregulated immune microenvironment and improve
survival outcomes (Eso and Seno, 2020). For example, the
development of immune checkpoint inhibitors (ICIs) (Tang
et al., 2018) has proposed the predictive biomarkers including
microsatellite-instability (MSI) status, PD-1/PD-L1 expression,
and tumor mutation burden (TMB) (Lee et al., 2016; Samstein
et al., 2019). However, there is still no effective biomarker
to predict sensitivity or resistance to ICIs. It is far from
enough to fully understand the roles of tumor immune
landscape in GC.

Bioinformatics analysis has been widely employed to screen
prognostic signatures (Rooney et al., 2015; Jiang et al., 2018).
With the help of ssGESA and CIBERSORT algorithms, some
studies estimated the immune cell subsets and immune scores
in order to gain a better understanding of the immune
infiltration status and treatment response of immunotherapy
in GC (Bindea et al., 2013; Newman et al., 2015). However,
there has been no appropriate study that constructed a robust
signature to predict immune status and the survival of GC
based on immune-related genes, or could systematically evaluate
the relationship between immune genomic characteristics and
TIM (Shi et al., 2018; Zeng et al., 2019). Therefore, our study
took advantage of TCGA and GEO database to determine key
immune-associated genes and build a reliable signature using
Lasso and multivariate Cox regression analyses. In addition,
this signature further examined the predictive effect on the
response of ICIs.

Abbreviations: GC, gastric cancer; STAD, stomach cancer; ICIs, immune
checkpoint inhibitors; MSI, microsatellite-instability; IPS, Immunophenoscore;
TMB, tumor mutation burden; TIM, tumor immune microenvironment; MDSC,
myeloid-derived suppressor cells; Lasso regression analysis, the least absolute
shrinkage and selection operator regression analysis; AUCs, area under the ROC
curves; ssGSEA, single sample gene set enrichment analysis; SMGs, significantly
mutated genes; GSEA, gene set enrichment analysis; KEGG, Kyoto Encyclopedia
of Genes and Genomes; IRGs, immune-related genes; HLA, human leukocyte
antigen; MHC, major histocompatibility complex.

MATERIALS AND METHODS

Data Download and Preprocessing
The FPKM values of gene expression profiles (n = 373)
and corresponding clinical information were derived from the
TCGA database (December, 2020), including 343 GC samples
and 30 adjacent non-tumor samples. Tumor samples with the
corresponding clinical data were randomized into training group
and internal testing group, and then the data with unknown
survival time and 0-month survival time were deleted. The
immune-related gene profile is derived from the ImmPort
database (Bhattacharya et al., 2014) and previous publications.
GSE84437 cohort including 433 samples was also downloaded
from the GEO database as an independent external validation
group. The study did not need the approval from the ethics
committees because all data were open-access in the TCGA or
GEO database. The detailed flowchart of analysis steps is shown
in Figure 1.

Identification of Immune-Related Genes
and Development of Immune-Related
Risk Signature
Based on the ImmPort Database1 and the previous studies
(Li et al., 2017; Gao et al., 2020; Sun et al., 2020), a total of
3,265 immune-related genes (IRGs) were collected. Then,
after the deletion of low-expression genes (FPKM < 0.5),
these IRGs were included into the Lasso analysis to integrate
multiple variables. Lasso Cox regression analysis, a penalty
regression tool, can estimate the regression coefficients by
maximizing the log-likelihood function (or sum of squared
residuals). Through Lasso regression analysis, the high-
dimensional data were resampled 1,000 times, which can
automatically delete unnecessary covariates and screen out the
most stable prognostic factors. We used multivariate stepwise
Cox regression analysis (forward and backward) to evaluate
the capabilities of immune-related signatures in predicting OS
of GC patients. Eventually, we calculated the total risk score
of each patient (β genes × expression level of genes) in the
training and validation cohorts by integrating the regression
coefficients and gene expression levels, respectively. Based
on the risk score, patients’ survival status, risk score levels,
and heat maps of the immune signature were also presented.
Subsequently, the samples were separated into high- and low-
risk groups based on the median risk score of the training
set. The predictive capacity of immune-risk signature was
tested by Kaplan–Meier survival analysis using the R package
“Survminer.” Time-dependent receiver operating characteristic
(ROC) curves with AUC values were used to evaluate the
ability of prognosis classification. Moreover, the independent
predictive ability of the immune-risk signature also needed
to be further assessed by multivariate analyses compared with
other clinical factors including age, grade, and stage treated as
continuous variables.

1https://immport.niaid.nih.gov
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FIGURE 1 | Flowchart of the study.

ssGSEA Validation of Risk Signature
Related to Immune Cell Infiltration
To further elucidate the biological understanding of immune-
related riskScore, ssGSEA was applied to calculate the proportion
of immune cells in the TIM of GC based on the comparison of
GC expression profiles with the gene sets (Subramanian et al.,
2005; Bindea et al., 2013). The gene sets comprising 782 genes
were utilized to identify 28 types of immune cells and predict
the abundance of corresponding immune cells. These types of
immune cells were defined as three major immunocyte types
including anti-tumor immunocytes (activated CD4+ T cells,
activated CD8+ T cells, activated dendritic cells, CD56 bright
natural killer cells, central memory CD4+ T cells, central memory
CD8+ T cells, effector memory CD4+ T cells, effector memory
CD8+ T cells, natural killer cells, natural killer T cells, type-1 T
helper cells, and type-17 T helper cells), pro-tumor immunocytes
(CD56 dim natural killer cells, myeloid-derived suppressor cells

[MDSC], immature dendritic cells, neutrophils, plasmacytoid
dendritic cells, macrophages, regulatory T cells, and type-2 T
helper cells), and intermediate immunocytes (activated B cells,
eosinophils, gamma delta T cells, immature B cells, mast cells,
memory B cells, monocytes, and follicular helper T cells). We
also compared the proportion differences of tumor immune cell
infiltration between low- and high-risk immune groups by using
Mann–Whitney–Wilcoxon tests.

Correlation Analyses of Immune
Response
Human leukocyte antigen (HLA) genes have a critical function in
immune surveillance and response. The human MHC encodes
a glycoprotein known as HLA, which plays an important role
in T-cell antigen presentation (Mosaad, 2015; Dendrou et al.,
2018). The MHC is divided into three subclasses: the class
I region includes the classical gene types (HLA-A, HLA-B,
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and HLA-C genes), as well as the non-classical types known
as MHC Ib (HLA-E, HLA-F, and HLA-G genes); the class
II region includes the HLA-DPA1, HLA-DPB1, HLA-DQA1,
HLA-DQA2, HLA-DQB1, HLA-DQB2, HLA-DRA, HLA-DRB1,
HLA-DRB2, HLA-DRB3, HLA-DRB4, and HLA-DRB5 genes
as well as less variable genes involved in antigen processing
and presentation; and the class III region does not encode
any molecules for antigen delivery and peptide binding, but
contains genes only involving in inflammatory responses,
leukocyte maturation and the complement cascade (Mosaad,
2015). We compared the expression of HLA-related genes
among patients in different immune risk groups. In addition,
Immunophenoscore (IPS), as a scoring tool for evaluating the
tumor immunogenicity, was applied to analyze the correlation
between the new immune signature and intratumor immune
response. ESTIMATE algorithm was also utilized to calculate
the Tumor Purity rate, ESTIMATE Score, Immune Score, and
Stromal Score within the tumor microenvironment of GC in the
TCGA and GEO groups, respectively (Yoshihara et al., 2013). The
difference of immune scores and stromal scores among patients
in different immune risk groups was expressed by “ggplot2” and
“ggsignif” (R package).

Functional Enrichment Analysis
The R package “limma” was used to analyze differential
expression between high-risk and low-risk groups, and all
genes were ranked by foldchange values. Gene Set Enrichment
Analysis of KEGG was performed to clarify the significant
annotated pathways (P < 0.05) through R package “gseKEGG of
clusterProfiler” (Subramanian et al., 2005).

Tumor Mutation Burden Analysis
The somatic mutational annotation file of GC in the TCGA was
downloaded from Genome Data Commons. TMB, defined as
non-synonymous somatic mutations per Mb, was counted by the
total number of mutations in six mutation categories, including
all GC splice site mutations, missense and non-sense mutations,
in-frame insertions, frameshift mutations, and deletions. The R
package “GenVisR” was conducted to investigate the relationship
between the immune signature and TMB. Meanwhile, we
performed multivariate analyses again to assess the predictive
performance of the immune-risk signature by comparing with
other factors including age, grade, stage, TMB, and IPS.

qRT-PCR Analysis
A tissue microarray containing 13 independent STAD tissue
samples and paired adjacent non-cancerous tissue samples
was purchased from Shanghai Outdo Biotech Co., Ltd. (cat.
no. cDNA-HStmA030CS01, Shanghai, China), and used to
investigate the expression of four genes (MAGED1, ACKR3,
FZD2, and CTLA4). The forward primer sequences were as
follows: ACKR3-F: 5′- GACGCTTTTGTTGGGCATGT-3′
and the reverse primer sequence was ACKR3-R: 5′- ATT
TGATTGCCCGCCTCAGA-3′ and the product length was
149 bp; FZD2-F: 5′- CTCCGTCCTCGGAGTGGTTC-3′ and
the reverse primer sequence was FZD2-R: 5′- GCGAAGC
CCTCATGAACAAG-3′ and the product length was 117 bp;

MAGED1-F: 5′- AGGTCTGCATAAGCAAGGCG-3′ and
the reverse primer sequence was MAGED1-R: 5′- TGCTGC
CTTCTTCGTCAAGC-3′ and the product length was 143 bp;
CTLA4-F: 5′- GCAGCAGTTAGTTCGGGGTT-3′ and the
reverse primer sequence was CTLA4-R: 5′- CTCTGTTGGGGG
CATTTTCAC-3′ and the product length was 123 bp. The primers
of β-actin (reference gene): forward: 5′-GAAGAGCTACG
AGCTGCCTGA-3′ and reverse: 5′- CAGACAGCACTGTGTTG
GCG-3′. All RT-PCR operations were performed according to the
manufacturer’s instructions. In short, a 20-µl mixture containing
10 µl of TB Green Premix Ex Taq (Tli RNaseH Plus) (TaKaRa Bio
Inc., Japan), 1 µl of 100 µM primer mix (Tsingke Biotechnology
Co., Ltd., Beijing, China) and 9 µl of RNase/DNase-free sterile
water were added to each cDNA sample, and then the cDNA
arrays were sealed with a transparent sealing film, and placed
on ice for 15 min. The qRT-PCR reaction was carried out in
the LightCycler 96 Real-Time PCR System (Roche Diagnostics,
Indianapolis, Ind.). The reaction mixture was activated at 50◦C
for 2 min, pre-denatured at 95◦C for 10 min, followed by 40
cycles of amplification reaction at 95◦C for 15 s and 60◦C for
1 min. Finally, LightCycler 96 software (Version 1.1.0.1320,
Roche) was used for the collection and analysis of qRT-PCR
data. The relative mRNA expression level was calculated by the
2−11Ct method taking β-actin as the reference gene.

Statistical Analysis
R statistics software (version 3.6.1) was used for all statistical
analyses. The chi-square test for qualitative variables was used to
estimate the differences between groups. Differences between two
or more than two cohorts were examined by non-parametric tests
including Mann–Whitney–Wilcoxon test and Kruskal–Wallis
H test in quantitative data. Chi-square test, Mann–Whitney–
Wilcoxon test, and Kruskal–Wallis H test were performed with
the R functions “chisq.test,” “wilcox.test,” and “kruskal.test,”
respectively. P values less than 0.05 were considered to be
statistically significant.

RESULTS

Construction of Immune Risk Signature
A total of four immune genes (MAGED1, FZD2, ACKR3,
and CTLA4) were screened out through Lasso regression
analysis (Figures 2A,B). In order to strictly examine
their prognostic significance and establish an immune-
risk signature, these four genes were further included
into multivariate stepwise Cox regression analysis, and a
prognostic Cox regression model was established (Figure 2C).
Based on regression coefficients and expression levels, the
formula of risk score was as follows: (0.2615 × expression
level of MAGED1) + (−0.3691 × expression
level of FZD2) + (0.2597 × expression level of
ACKR3) + (−0.4425 × expression level of CTLA4). The
patients were divided into high- and low-risk cohorts according
to the median value of the training group. Based on the risk
score, patients’ survival state, risk score levels, and heatmaps
of this signature in the training group are shown in Figure 2D
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FIGURE 2 | Construction of the immune risk signature model. Lasso regression analysis (A,B) and multivariate stepwise Cox regression analysis (C) for identification
of the immune risk signature; expression heat map (upper), survival status (middle), and risk score (bottom) of the signature consisting of four immune-related genes
were depicted (D).

in detail. Validations in the TCGA and GEO sets are shown in
Supplementary Figure 1. Taken together, these genes are most
likely to participate in GC.

Validation of Prognostic Value of Risk
Signature
In the TCGA and GEO cohorts, we observed significant
differences in prognosis among patients in different immune risk
groups via Kaplan–Meier curves (Figures 3A–C). Moreover, the
AUC values of 2-, 3-, and 5-years were 0.74, 0.77, and 0.83 in
the training cohort, 0.60, 0.69, and 0.77 in the TCGA testing
cohort, and 0.61, 0.59, and 0.60 in the GEO cohort, respectively
(Figures 3D–F).

Multivariate analyses were conducted to validate whether this
immune signature was the risk factor of GC, not concerned
with clinical features (age, gender, grade classification, and tumor
stage). The results showed that the risk score was an independent

variable related to the survival of GC patients in all three cohorts
(P < 0.01, Figures 3G–I).

Correlation Assessment Between
Immune Risk Signature and Immune Cell
Infiltration
We would like to further evaluate the relationship between the
immune signature and TIM characteristics. Hence, we draw
a heatmap by ssGSEA to visualize the relative abundance of
28 immune infiltrating cell subsets from the TCGA training
dataset (Figure 4). Obviously, the cell subset of anti-tumor
lymphocytes including activated dendritic cells (P = 0.009),
activated CD4+/CD8+ T cells (P < 0.001), and effector
memory CD8 T cells (P < 0.001) were enriched in the
low-risk signature group. Protumor immunocyte subtypes like
MDSC (P = 0.002), regulatory T cells (P = 0.042), and type
2 T helper cell (P = 0.007) and intermediate immunocyte
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FIGURE 3 | Immune risk signature was associated with GC survival. Kaplan–Meier curves of overall survival based on low- and high-risk groups in the TCGA training
cohort (A), TCGA testing cohort (B), and GEO validation cohort (C); receiver operating characteristic (ROC) curve with AUC values for validation of the immune risk
signature’s predictive performance in the TCGA training cohort (D), TCGA testing cohort (E), and GEO validation cohort (F); forest plot of the multivariate Cox
regression analysis delineated the association between immune risk signature and survival in the three cohorts compared with other clinical variables (G–I),
respectively.

subtypes like eosinophil (P = 0.014) and immature B cell
(P = 0.008) were also elevated in the low-risk signature group.
Subsequently, the conclusion was validated again in TCGA
and GEO validation datasets (Supplementary Figure 2), and
a similar tendency was observed in the two-risk stratification
groups. Moreover, immune and stromal scores were counted
by the ESTIMATE algorithm. Analysis of differences between
groups showed that the immune score of the low-risk group
was higher (P < 0.001) than that of the high-risk group,
but the stromal score was relatively low (Supplementary
Figure 3), which was basically in line with the results

observed within the entire TCGA and GEO validation groups
(P < 0.05).

Functional Enrichment Analysis
We assessed the newly identified signature’s roles in regulating
the gene enrichment pathways via the related biological signaling
pathway analysis based on GSEA analysis (Figure 5A). The
TGFβ, Ras, and Rap1 pathways involved in tumor proliferation,
migration, and invasion were obviously enriched in the
immune high-risk cohort. In the immune low-risk signature,
Th17/Th1/Th2 differentiation signaling pathways, T cell receptor
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FIGURE 4 | Correlation between immune risk signature and immune cell infiltration. Single-sample gene set enrichment analysis (ssGESA) determined the relative
abundance of 28 types of immune cell subpopulations with high- and low-risk signature subgroups. *P < 0.05, **P < 0.01, and ***P < 0.001
(Mann–Whitney–Wilcoxon test).

as well as PD-L1 expression and PD-1 checkpoint pathways were
mainly activated.

Immune Risk Signature Evaluated
Immune Response
We assessed the difference in expression of 24 HLA-related genes
in all three datasets. We found that HLA-B, HLA-DMA, HLA-
DMB, HLA-DOA, HLA-DOB, HLA-DPA1, HLA-DPB1, HLA-
DPB2, HLA-DQA1, HLA-DQB1, HLA-DQB2, HLA-DRA, HLA-
DRB1, HLA-DRB5, HLA-E, HLA-F, and HLA-H were elevated
(P < 0.05) in the immune low-risk signature group, which may
indicate a good immune response (Figure 5B). Validation within
the entire TCGA and GEO groups was shown in Supplementary
Figure 4. According to the results of IPS, the low-risk group had
an obviously higher score compared with the high-risk group in
the TCGA dataset (P = 0.007, Figure 6A).

Immune Risk Signature Determined the
Mutation Landscape
To improve the understanding of the correlation between the
newly constructed immune signature and mutational landscape,
TMB was counted and summed. Patients in the low-risk group
tended to exhibit higher TMB than those in the high-risk
group in the TCGA dataset (P = 0.002, Figure 6B). Besides,
the study further explored the association between survival
and various variables such as clinical factors, IPS, TMB, and
newly constructed immune signature, which indicated that the

immune signature was still an independent survival-related factor
(P < 0.001, Figure 6C). Significantly mutated genes (SMGs)
analysis for GC samples (high-risk vs. low-risk subgroups) was
demonstrated in Figure 6D. The SMGs including ARID1A [2
of 164 (1.22%) vs. 12 of 143 (8%), P = 0.008], PIK3CA [12 of
164 (7.32%) vs. 33 of 143 (22%), P < 0.001], OBSCN [15 of 164
(9.15%) vs. 29 of 143 (19.33%), P = 0.015], PLEC [11 of 164
(6.71%) vs. 25 of 143 (16.67%), P = 0.01], DMD [14 of 164 (8.54%)
vs. 28 of 143 (18.67%), P = 0.013], KMT2D [13 of 164 (7.93%) vs.
33 of 143 (22%), P < 0.001], and XIRP2 [10 of 164 (6.1%) vs. 20
of 143 (13.33%), P = 0.046] were marked in Figure 6D.

Expression Verification in STAD by
qRT-PCR
The expression levels of these selected genes were tested using
qRT-PCR to further prove their reliability. As shown in Figure 7,
all the mRNA transcripts were detected and their expressions in
STAD were significantly higher than those in adjacent normal
tissues (p < 0.05).

DISCUSSION

Tumor immune contexture plays a key role in tumorigenesis,
progression, and metastasis (Dunn et al., 2004; Fridman et al.,
2012; Remark et al., 2015). ICIs have been regarded as a
promising treatment in advanced or metastatic GC. Yet, up
to now, only a small number of GC patients have benefited
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FIGURE 5 | Top enriched signaling pathways in distinct immune risk signature groups from the TCGA training cohort were assessed using the GSEA algorithm (A).
The immune risk signature was associated with human leukocyte antigen (HLA) (B). *P < 0.05, **P < 0.01, ***P < 0.001, nsP > 0.5.

from the ICIs treatment. In this research, we have developed
an immune risk signature based on four immune-related genes
(MAGED1, FZD2, ACKR3, and CTLA4) in a stand-alone dataset,
and have validated its performance in TCGA and GEO datasets.
This new signature can stratify GC patients into high- and low-
risk subgroups and serve as a potential prognostic biomarker
of immunotherapy.

Similar to previous investigation (Lee et al., 2008; Kang et al.,
2017), our study indicates that many types of immune cells
are enriched in low-risk immune groups, including activated
CD4+/CD8+ T cell, activated dendritic cell, effector memory
CD8+ T cell, eosinophil, immature B cell, MDSC, regulatory T

cell, and type 2 T helper cell, with better survival. Protumor
immunocyte types like MDSC and regulatory T cell, as adverse
prognostic factors in GC (Ichihara et al., 2003; Wang B. et al.,
2011), similarly increase in the low-risk immune group. This
inconsistent result may be due to the actual high ratio of
anti-tumor immunocytes compared with protumor immunocyte,
presenting a favorable factor in GC survival. In addition,
stromal and immune scores calculated by the ESTIMATE
algorithm showed that immune scores are significantly elevated
and stromal scores depressed in the low-risk immune group,
which is consistent with studies that emphasize that these
patients may be sensitive to immunotherapy (Mao et al., 2013;
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FIGURE 6 | Immune risk signature was associated with Immunophenoscore (IPS) and tumor mutation burden (TMB). Difference boxplot of IPS and TMB between
high- and low-risk immune groups (A,B). Multivariate Cox regression analysis (C) delineated the survival-related independent factors, taking into account clinical
variables, signature, IPS, and TMB. Mutational landscape of SMGs (D) stratified by high- and low-risk signature groups was presented based on the somatic
mutational annotation files of GC in the TCGA cohort.

Mariathasan et al., 2018). The GSEA analysis revealed that TGF-
β, Ras, and Rap1 signaling pathways are easily activated in
high-risk signature and regulate tumorigenesis, proliferation, and
invasion, which has been confirmed in the previous studies
(Adjei, 2001; Tauriello et al., 2018; Liu et al., 2021). Other
pathways activated in low-risk signature like Th17/Th1/Th2
differentiation, T cell receptor signaling as well as PD-L1
expression and PD-1 checkpoint pathways potentially improve
the therapeutic efficacy (Thorsson et al., 2018). The new immune

signature helps to screen high-risk population and facilitate the
development of precision immunotherapy.

The validation analysis reveals that the immune-related
signature performs well in therapeutic and prognostic prediction
for GC, and low-risk patients are characterized as higher
mutation burden and expression level of HLA genes. HLA, often
referred to as the MHC molecule or major histocompatibility
complex, varies greatly from person to person. In addition,
it is a marker for mutually recognizing the immune cells of

Frontiers in Cell and Developmental Biology | www.frontiersin.org 9 November 2021 | Volume 9 | Article 687473

https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cell-and-developmental-biology#articles


fcell-09-687473 October 27, 2021 Time: 15:45 # 10

Dai et al. Immune-Related Signature for Gastric Cancer

FIGURE 7 | The mRNA expression of MAGED1, ACKR3, FZD2, and CTLA4 in a GC tumor and the adjacent tissues.

different individuals, which participates in the immune response
and has very important biological functions. HLA-I (MHC-I),
of great importance, consists of a highly polymorphic α-heavy
chain and a β2-microglobulin (β2M) light chain, encoded by the
HLA-A, HLA-B, or HLA-C genes, delivers peptides to CD8+
T cells, and is essential for immune surveillance and cancer
immunotherapy (Hazini et al., 2021). Patients with increased
expression of HLA-A, HLA-B, or HLA-C genes have a higher
efficiency of antigen delivery. HLA-I dysregulation in cancer
patients results in poor immune outcomes. Shim et al. (2020) have
shown that correcting HLA can improve the immune efficacy of
NSCLC. In our study, the immune-related risk score was able
to assess patients with different levels of HLA-A, HLA-B, or
HLA-C expression, thus guiding the use of immunotherapy to
some extent. High TMB is often regarded as a sensitive marker
of immune-checkpoint blockade, particularly a high mutation
proportion of driver genes (Rizvi et al., 2015; Samstein et al.,
2019). The SMGs like ARID1A, PIK3CA, OBSCN, PLEC, DMD,
KMT2D, and XIRP2 are enriched in low-risk groups. ARID1A
and PIK3CA have significant association with microsatellite
instability (Wang K. et al., 2011; Mathur, 2018; Shen et al., 2019),
predicting good response for immunotherapy of GC. DMD acts
as a favorable gene for survival of gastric adenocarcinomas
(Jones et al., 2020). The relationship between other SMGs and
immunotherapy have not been reported yet. Moreover, IPS
also exhibits a rising tendency in low-risk immune groups. To
investigate the survival-related covariates, we included TMB,
IPS, and other clinical factors into multivariate analysis, and
found that this signature remains an independent prognostic
factor. Therefore, it is reasonable to think that people with a
low-risk immune systems may probably gain clinical benefits
from checkpoint immunotherapy. The new immune signature
can distinguish immune status and promote the progress of
precision immunotherapy.

There are still several limitations in our study. For one,
immune-related features are only constructed based on public
datasets, which have not been confirmed in clinical cohorts.
Prospective clinical studies involving immunotherapy combined
with basic experiments are needed for further validation. For
another, as the lack of mutational profile in the GEO database,
the mutational landscape is not validated in independent datasets.
In addition, the AUC values of the above prognostic signature
cannot be very high, and some AUC values are only at fair

levels, especially in the GEO independent validation group.
This is because our study only extracted immune-related genes
for model construction. So far, studies have identified other
gene categories closely linked to tumors and built models
accordingly, such as ferroptosis-related genes and m6A-related
genes. A mature precision model with strong AUC value level
for gastric cancer is bound to be an integrated model through
various genomics, proteomics, and even radiomics, which is also
bound to be a long process of effort. Despite this, the findings
of our study still have noteworthy implications for survival
prediction along with the evaluation of precision immunotherapy
for GC patients.

In a word, our study has developed a new immune-related
signature that could not only predict the prognosis of GC
patients but also reveal intratumor immune response, which may
guide the development of novel treatment strategies combining
chemotherapy, targeted therapy, and immunotherapy.
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