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Abstract: Oral squamous cell carcinoma (OSCC) is a malignant disease. Methylation plays
a key role in the etiology and pathogenesis of OSCC. The goal of this study was to identify
aberrantly methylated differentially expressed genes (DEGs) in OSCCs, and to explore the underlying
mechanisms of tumorigenesis by using integrated bioinformatic analysis. Gene expression profiles
(GSE30784 and GSE38532) were analyzed using the R software to obtain aberrantly methylated
DEGs. Functional enrichment analysis of screened genes was performed using the DAVID
software. Protein–protein interaction (PPI) networks were constructed using the STRING database.
The cBioPortal software was used to exhibit the alterations of genes. Lastly, we validated the
results with the Cancer Genome Atlas (TCGA) data. Twenty-eight upregulated hypomethylated
genes and 24 downregulated hypermethylated genes were identified. These genes were enriched
in the biological process of regulation in immune response, and were mainly involved in the
PI3K-AKT and EMT pathways. Additionally, three upregulated hypomethylated oncogenes and four
downregulated hypermethylated tumor suppressor genes (TSGs) were identified. In conclusion, our
study indicated possible aberrantly methylated DEGs and pathways in OSCCs, which could improve
the understanding of the underlying molecular mechanisms. Aberrantly methylated oncogenes and
TSGs may also serve as biomarkers and therapeutic targets for the precise diagnosis and treatment of
OSCCs in the future.
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1. Introduction

Head and neck squamous cell carcinoma (HNSC) is a common malignant disease in the world,
accounting for 90% of head and neck cancers. Oral squamous cell carcinoma (OSCC) is the main
subtype of HNSCs. OSCCs, characterized by high incidence and mortality, are considered aggressive,
based mainly on clinical behavior, with frequent local recurrences, as well as regional and distant
metastasis [1]. The incidence of OSCCs is related to smoking, drinking, and viral infections (especially
HPV), as well as a lack of vitamins and trace elements, such as folic acid, vitamins A, C, and E, zinc,
and selenium [2–5]. The accumulation of many genetic and epigenetic alterations in head and neck
epithelial cells are also regarded as central in the initiation and progression of OSCCs [6].
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Since the post-genomic era, the study of tumor pathogenesis is no longer confined to gene
mutation, gene deletion, etc. In recent years, the role of epigenetics in tumorigenesis has drawn
growing attention. Aberrant DNA methylation can influence the occurrence and development of
tumors by affecting chromatin structure, and the regulation of oncogenes and tumor suppressor genes
at the transcriptional level [7,8]. As an important tumor epigenetic mechanism, DNA methylation
was extensively studied with respect to DNA damage repair, cell cycle regulation, angiogenesis,
and apoptosis, which are all associated with CpG-island methylation in regulatory regions [9,10].
Abnormal methylation in OSCCs can affect the functions of normal genes, especially the expression of
tumor suppressor genes, resulting in the occurrence and development of OSCCs [6]. Although some
studies demonstrated certain genes with aberrant DNA hypermethylation or hypomethylation
in OSCCs, the comprehensive profiling and pathways of the interactions in this network remain
largely elusive.

In recent years, microarrays based on high-throughput platforms unveiled themselves as
promising and efficient tools in the search for meaningful genes and epigenetic alternations
in carcinogenesis, and in the identification of biomarkers used in diagnosis or prognosis [11].
Gene-expression-profile microarrays were used to find differentially expressed genes (DEGs) in
OSCCs [12]. Additionally, many studies on aberrant methylation in OSCCs were performed to
find differentially methylated genes (DMGs) [13]. By using integrated and advanced bioinformatic
analysis for the available microarray data, more reliable and precise results may be revealed through
overlapping relevant datasets.

Until now, there was almost no research that attempted to combine gene-expression-profile
microarrays and gene-methylation-profile microarrays to analyze data in the context of the
development of OSCCs. In this study, the data from gene-expression-profile microarrays (GSE30784),
gene-methylation-profile microarrays (GSE38532), and oncogenes and tumor suppressor genes (TSGs)
were integrated and systematically analyzed using bioinformatics. Analyses included obtaining
DEGs and DMGs using the R software, overlapping three datasets using a Venn diagram, screening
gene-enrichment analysis of gene ontology (GO) and pathway, protein–protein interaction (PPI)
network analysis, and the identification and validation of oncogenes and TSGs. We aimed to find
aberrantly methylated DEGs, GO, and pathways between tumor groups and normal groups to help
uncover the underlying molecular mechanisms of tumorigenesis in OSCCs. We also expected to find
novel aberrantly methylated oncogenes or TSGs which might serve as biomarkers and therapeutic
targets for the precise diagnosis and treatment of OSCCs.

2. Results

2.1. Identification of the DEGs and DMGs in OSCCs

We got the expression matrices from GSE30784 (containing 167 OSCC samples, and 45 normal
samples, GPL570) after data preprocessing and quality assessment using the R software. We set the
cut-off criteria as |logFC| > 1, and the p-value < 0.05 to screen the DEGs. A total of 1417 DEGs were
obtained, including 725 upregulated genes and 692 downregulated genes. Figure 1A,B shows the
DEGs using a volcano plot and a hierarchical-clustering heat map. There were 18,119 differentially
methylated probes (DMPs) obtained to compare normal samples and tumor samples in GSE38532, as
shown in Figure 1C as a heat map. Subsequently, 704 hypermethylated genes and 545 hypomethylated
genes were also obtained.
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Figure 1. The results of differentially expressed genes (DEGs) in GSE30784, and differentially 
methylated probes (DMPs) in GSE38532. (A) Volcano Plot visualizing the DEGs. The vertical lines 
demark the fold-change values. The right vertical line corresponds to log2FC > 1 changes, while the 
left vertical line corresponds to log2FC < −1 changes. The horizontal line marks a −log10 p-value of 
0.05. (B) Heat-map hierarchical clustering revealed 1417 genes that were differentially expressed in 
oral squamous cell carcinoma (OSCC) groups when compared with control groups. Red and green 
colors indicate higher expression and lower expression, respectively. (C) Heat map of the DMPs. 
Hierarchical clustering showed separate groupings of DMPs for OSCC tissue and normal tissue. 

2.2. Identification of Aberrantly Methylated Differentially Expressed Genes  

To explore the aberrantly methylated differentially expressed genes, we overlapped the 
upregulated genes with the hypomethylated genes, and overlapped the downregulated genes with 
the hypermethylated genes. We got 28 upregulated hypomethylated genes, and 24 downregulated 
hypermethylated genes. To further explore the aberrantly methylated DEGs, we overlapped the up-
hypomethylated genes with oncogenes, and got three up-hypomethylated oncogenes (ABL2, IL7R, 
and CDK14 in Figure 2A), indicating that the aberrant methylation of those oncogenes led to a high 
expression in OSCCs, and contributed to tumorigenesis. Meanwhile, by overlapping down-
hypermethylated genes with TSGs, four down-hypermethylated TSGs (C2orf40, EPB41L3, GPX3, and 
WIF1 in Figure 2B) were obtained, indicating the possibility that aberrant hypermethylation in those 
TSGs resulted in a low expression in OSCCs, and promoted tumorigenesis. All genes were shown in 
table S1. 

 
Figure 2. Identification of aberrantly methylated differentially expressed genes, and relating 
oncogenes and tumor suppressor genes (TSGs). (A) Twenty-eight hypomethylated and upregulated 
genes were identified, and three of them were oncogenes. (B) Twenty-four hypermethylated and 
downregulated genes were identified, and four of them were TSGs. 

Figure 1. The results of differentially expressed genes (DEGs) in GSE30784, and differentially
methylated probes (DMPs) in GSE38532. (A) Volcano Plot visualizing the DEGs. The vertical lines
demark the fold-change values. The right vertical line corresponds to log2FC > 1 changes, while the
left vertical line corresponds to log2FC < −1 changes. The horizontal line marks a −log10 p-value of
0.05. (B) Heat-map hierarchical clustering revealed 1417 genes that were differentially expressed in oral
squamous cell carcinoma (OSCC) groups when compared with control groups. Red and green colors
indicate higher expression and lower expression, respectively. (C) Heat map of the DMPs. Hierarchical
clustering showed separate groupings of DMPs for OSCC tissue and normal tissue.

2.2. Identification of Aberrantly Methylated Differentially Expressed Genes

To explore the aberrantly methylated differentially expressed genes, we overlapped the
upregulated genes with the hypomethylated genes, and overlapped the downregulated genes with
the hypermethylated genes. We got 28 upregulated hypomethylated genes, and 24 downregulated
hypermethylated genes. To further explore the aberrantly methylated DEGs, we overlapped the
up-hypomethylated genes with oncogenes, and got three up-hypomethylated oncogenes (ABL2,
IL7R, and CDK14 in Figure 2A), indicating that the aberrant methylation of those oncogenes led
to a high expression in OSCCs, and contributed to tumorigenesis. Meanwhile, by overlapping
down-hypermethylated genes with TSGs, four down-hypermethylated TSGs (C2orf40, EPB41L3, GPX3,
and WIF1 in Figure 2B) were obtained, indicating the possibility that aberrant hypermethylation in
those TSGs resulted in a low expression in OSCCs, and promoted tumorigenesis. All genes were
shown in Table S1.

Int. J. Mol. Sci. 2018, 19, x 3 of 15 

 

 
Figure 1. The results of differentially expressed genes (DEGs) in GSE30784, and differentially 
methylated probes (DMPs) in GSE38532. (A) Volcano Plot visualizing the DEGs. The vertical lines 
demark the fold-change values. The right vertical line corresponds to log2FC > 1 changes, while the 
left vertical line corresponds to log2FC < −1 changes. The horizontal line marks a −log10 p-value of 
0.05. (B) Heat-map hierarchical clustering revealed 1417 genes that were differentially expressed in 
oral squamous cell carcinoma (OSCC) groups when compared with control groups. Red and green 
colors indicate higher expression and lower expression, respectively. (C) Heat map of the DMPs. 
Hierarchical clustering showed separate groupings of DMPs for OSCC tissue and normal tissue. 

2.2. Identification of Aberrantly Methylated Differentially Expressed Genes  

To explore the aberrantly methylated differentially expressed genes, we overlapped the 
upregulated genes with the hypomethylated genes, and overlapped the downregulated genes with 
the hypermethylated genes. We got 28 upregulated hypomethylated genes, and 24 downregulated 
hypermethylated genes. To further explore the aberrantly methylated DEGs, we overlapped the up-
hypomethylated genes with oncogenes, and got three up-hypomethylated oncogenes (ABL2, IL7R, 
and CDK14 in Figure 2A), indicating that the aberrant methylation of those oncogenes led to a high 
expression in OSCCs, and contributed to tumorigenesis. Meanwhile, by overlapping down-
hypermethylated genes with TSGs, four down-hypermethylated TSGs (C2orf40, EPB41L3, GPX3, and 
WIF1 in Figure 2B) were obtained, indicating the possibility that aberrant hypermethylation in those 
TSGs resulted in a low expression in OSCCs, and promoted tumorigenesis. All genes were shown in 
table S1. 

 
Figure 2. Identification of aberrantly methylated differentially expressed genes, and relating 
oncogenes and tumor suppressor genes (TSGs). (A) Twenty-eight hypomethylated and upregulated 
genes were identified, and three of them were oncogenes. (B) Twenty-four hypermethylated and 
downregulated genes were identified, and four of them were TSGs. 

Figure 2. Identification of aberrantly methylated differentially expressed genes, and relating oncogenes
and tumor suppressor genes (TSGs). (A) Twenty-eight hypomethylated and upregulated genes were
identified, and three of them were oncogenes. (B) Twenty-four hypermethylated and downregulated
genes were identified, and four of them were TSGs.
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2.3. Functional Enrichment Analysis

To explore the biological processes and pathways in which the overlapped genes were involved,
we uploaded the two lists into the DAVID software and the FunRich software, and obtained
the results. A p-value < 0.05 was considered significant. Biological-process-enrichment analysis
using the DAVID software (Figure 3A) suggested that up-hypomethylated genes were significantly
enriched in immune response, inflammatory response, innate immune response, cell adhesion,
and natural-killer-cell-mediated cytotoxicity. The down-hypermethylated genes were significantly
enriched in odontogenesis and transferrin transport. As for biological pathways (Figure 3B,C), the
up-hypomethylated genes were enriched in the immune system, the innate immune system, epithelial
to mesenchymal transition, the transport of glycerol from adipocytes to the liver by aquaporins, and the
AIM2 inflammasome, while the down-hypermethylated genes were enriched in transferrin endocytosis
and recycling, iron uptake and transport, the glypican pathway, and the Wnt signaling network.
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Figure 3. Enrichment analysis of aberrantly methylated differentially expressed genes. (A) Significantly
enriched biological processes were ranked by p-value for the aberrantly methylated differentially
expressed genes using the DAVID software. A p-value < 0.05 was regarded as significant. (B) The
top five pathways in which the 28 upregulated hypomethylated genes were significantly involved are
shown (ranked by p-value using the FunRich 3.0 software). A p-value < 0.05 was regarded as significant.
(C) The top five pathways in which the 24 downregulated hypermethylated genes were significantly
involved are shown (ranked by p-value using the FunRich 3.0 software). A p-value < 0.05 was regarded
as significant.
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2.4. PPI Network Construction

We used the online database, STRING, to construct the PPI network. For the 28 upregulated
hypomethylated genes, the PPI network contained 28 nodes and 64 edges (Figure 4A). The PPI
enrichment p-value was 4.44 × 10−16 (Figure 4A). The PPI network of the 24 downregulated
hypermethylated genes is illustrated in Figure 4B. There were 24 nodes and 18 edges, and the
enrichment p-value was 3.35 × 10−3. Figure 4C,D show the three up-hypomethylated oncogenes,
and the four down-hypermethylated TSGs, and their associated genes, allowing us to evaluate their
biological functions. Table 1 demonstrates the pathways they were mainly involved in. The STRING
version of Figure 4C,D are shown in Figure S1 and Table S2.
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Figure 4. The protein–protein interaction (PPI) network complex for the aberrantly methylated
differentially expressed genes. (A) A total of 28 genes were filtered into the upregulated
hypomethylated PPI network complex using the STRING online database. (B) A total of 24 genes
were filtered into the downregulated hypermethylated PPI network complex using the STRING online
database. (C) The PPI network of the three up-hypomethylated oncogenes, and their related genes,
created by the FunRich software. (D) The PPI network of the four down-hypermethylated TSGs, and
their related genes, created by the FunRich software.
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Table 1. The pathways in which the three oncogenes and the four tumor suppressor genes (TSGs) were
mainly involved.

# Node Count p-Value

Upregulated and hypomethylated oncogene

1 Proteoglycan syndecan-mediated signaling events 32 p < 0.001
2 Class I PI3K signaling events 31 p < 0.001
3 Insulin Pathway 31 p < 0.001
4 mTOR signaling pathway 31 p < 0.001
5 Class I PI3K signaling events mediated by AKT 31 p < 0.001

Downregulated and hypermethylated TSGs

1 α6β4 integrin 7 p < 0.001
2 Neurotrophic factor-mediated Trk receptor signaling 8 p < 0.001
3 p75(NTR)-mediated signaling 9 p < 0.001
4 Regulation of nuclear SMAD2/3 signaling 10 p < 0.001
5 TGF-β receptor signaling 10 p < 0.001

2.5. Identification and Validation of the Seven Selected Genes

To further validate our results, we employed the Cancer Genome Atlas (TCGA) database.
Based on the TCGA HNSC data, we found that the expressions of the three up-hypomethylated
oncogenes, and the four down-hypermethylated TSGs were significantly different between normal
tissues and tumor tissues (Figure 5A). The trend of these seven genes in the TCGA data was the same
as observed in our data. Moreover, the immunohistochemistry staining obtained from the Human
Protein Atlas database demonstrated the deregulation of the expression of these seven genes (Figure 6).
By using the TCGA data for validation, we found that the expression of EPB41L3 was not significantly
different between normal samples and tumor samples. This needs to be confirmed by further experiments.
However, data for the remaining six oncogenes/TSGs were in accordance with our data. As for the
methylation status of the seven genes, the TCGA HNSC data were used, and the results were found to be
the same as our data. The methylation statuses of the seven genes were significantly different between
normal samples and tumor samples, and this trend was in accordance with our results.
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Figure 5. Validation of the seven genes in the Cancer Genome Atlas (TCGA) database. (A) Box plots
showing the expression of the seven genes in messenger RNA (mRNA) expression, using data from
the TCGA database in GEPIA. The statuses of the expression of six genes were the same as in our
study, and their p-values < 0.05 (EPB41L3 was not statistically significant). (B) Box plots showing
the methylation status of the seven genes using the data from the TCGA database. The methylation
statuses were in accordance with our study.
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2.6. Genetic Information of the Seven Genes

We conducted survival analysis using GEPIA to evaluate the relationship between the seven
genes and the prognosis. We found that the upregulated hypomethylated oncogene ABL2 was closely
related to overall survival (OS) (Figure 7A). The deregulation of oncogene ABL2 caused by aberrant
methylation could result in poor OS. As for the remaining six genes, the trends were similar with
our prognosis, but not statistically significant. The cBioPortal software was employed to explore the
genetic alteration of the seven genes. Figure 7B illustrates the network constructed by our seven genes,
and their 50 most frequently altered neighbor genes (only three of the seven had a connection node,
while the remaining four had no connections, and were not shown). Additionally, drugs targeting the
seven genes were exhibited, and only ABL2 and CDK14 were currently considered as drug targets.
We suppose that the other five genes may serve as novel drug targets in the future. The alteration
information of the seven genes is exhibited in Figure 8A,B. We found that the seven genes were
altered in 207 (41%) of the 510 sequenced cases/patients (528 total), and that EPB41L3 and IL7R were
altered most often (14% and 11%), including amplification, missense, etc. Figure 8C demonstrates the
correlation between messenger RNA (mRNA) and DNA methylation of the seven genes in the TCGA
HNSC patients. We found that the correlation was negative, indicating that methylation regulated
the mRNA expression of these genes (except for IL7R). This illustrated that methylation played an
important role in the expression of these genes.
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Figure 8. Genetic alterations connected with the seven genes, and the correlation between mRNA and
DNA methylation in the TCGA HNSC study. (A) A visual summary across a set of HNSC (data from
head and neck squamous cell carcinoma TCGA, provisional) shows the genetic alteration of the seven
genes which were altered in 207 (41%) of the 510 sequenced cases/patients (528 total). (B) An overview
of changes in the seven genes in the genomics datasets of TCGA. (C) Correlation between mRNA and
DNA methylation in the seven genes in TCGA HNSC patients.
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3. Discussion

NCBI-GEO is a free database for microarray profiling and next-generation sequencing.
The gene-expression-profile dataset (GSE0784), and the gene methylation profile (GSE38532) were
obtained there. The R software is a powerful tool for the analysis of microarray data, allowing users
to compare different groups of samples, in an effort to screen genes that are differentially expressed
through experimental conditions. Studies of the mechanism involved in the cause and development of
OSCCs are of great help for the diagnostic, treatment, and prognostic assessment of OSCC patients.
In our study, we obtained three upregulated hypomethylated oncogenes, and four downregulated
hypermethylated TSGs in OSCCs, using bioinformatic analysis. Functional enrichment of these genes
revealed that aberrant methylation indeed affects certain pathways and hub genes. These results can
provide novel insight into the explanation of OSCC pathogenesis.

GO analysis demonstrated the enrichment of aberrantly methylated differentially expressed
genes in the regulation of the immune response. Tumorigenesis is closely related to immunity [14],
as the immune system has the function of identifying and destroying tumor cells; however,
the occurrence and development of malignant tumors is often caused by tumor cells which evade
the immune response through immune escape mechanisms. Tumor immune evasion (i.e., tumors
making the host body unable to produce an effective anti-tumor immune response through various
methods) and its mechanisms are quite complex [15]. Among them, the immunosuppressive cell
subsets negatively regulate the anti-tumor immune response, and are an important cause of tumor
escape. These subsets include regulatory T cells (Treg), immature dendritic cells (DC), and so on.
Pathway enrichment analyses were also found to be concentrated in the regulation of the immune
system, as described above.

The PPI network of upregulated hypomethylated oncogenes was constructed using the FunRich
software, and was visualized as a network. In this network, the function analysis of these
oncogenes was revealed. Involvement in the PI3K-AKT-mTOR pathway was one such function,
which was identified as an important pathway in cancer [16]. The mTOR protein is a key kinase
downstream of the PI3K/AKT proteins, which regulate cancer cell proliferation, growth, survival,
and angiogenesis [17]. Cancer cells can escape normal biochemical systems that keep the balance
between apoptosis and survival. The PI3K-AKT-mTOR pathway generally functions by promoting
survival through the inhibition of proapoptotic factors, and the activation of anti-apoptotic factors.
Through phosphorylation, the PI3K-AKT-mTOR pathway inhibits the activity of proapoptotic members
while activating anti-apoptotic members. To negatively regulate PI3K, cells contain the PTEN
phosphatase [18]. A reduction in PTEN expression indirectly stimulates the PI3K-AKT-mTOR
pathway’s activity, thereby contributing to oncogenesis in humans. Recent data suggested that
the PI3K-AKT-mTOR signaling pathway plays an important role in cancer stem-cell self-renewal, and
the resistance to chemotherapy or radiotherapy [19], believed to be the root of treatment failure and
cancer recurrence, as well as metastasis. From these results, we can understand the importance of
the function of these modules in HNSC, and recognize the need for further investigation to confirm
these results.

The three upregulated hypomethylated oncogenes were ABL2, IL7R, and CDK14. ABL2 encodes a
member of the Abelson family of nonreceptor tyrosine protein kinases. The protein is highly similar to
the c-abl oncogene 1 protein, and it plays a role in cytoskeletal rearrangement through its C-terminal
F-actin- and microtubule-binding sequences [20]. This gene is expressed in both normal and tumor
cells, and is involved in the translocation of the ETV6 gene in leukemia [21]. It was reported that high
expression of ABL2 results in a poor prognosis in hepatocellular carcinomas, and the overexpression of
ABL2 can promote cancer cell migration and invasion [22]. Similar reports, concerned with prostate
cancer and breast cancer, also reported that ABL2 promotes cancer cells invasion and migration [23,24].
However, the role of ABL2 in OSCCs is currently yet to be determined. From our results, we found
that ABL2 was indeed highly expressed in OSCC tissues when compared with normal samples from
multiple datasets. The survival analysis results demonstrated that ABL2 was closely related with OS,
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indicating that ABL2 could be a predictor of poor prognosis in OSCC patients. Furthermore, aberrant
methylation may be the reason for the high expression of ABL2 in OSCC, which is also yet to be
reported. The rate of ABL2 mutation was 7% in HNSCs, and we suppose that the mutation resulted
in the aberrant methylation or deregulation of ABL2. ABL2 is only the target for one kind of drug at
present, and ABL2 may serve as a drug target for more drugs in the future, such as anti-tumor drugs.
The protein encoded by IL7R is a receptor for interleukin 7 (IL7). This protein was shown to play a
critical role in V(D)J recombination during lymphocyte development [25]. Defects of this gene may be
associated with severe combined immunodeficiency (SCID) [26]. It may also play an important role in
tumor immune evasion. The reports on IL7R were mainly concerned with its mutational activation,
which is involved in human T-cell leukemogenesis [27]. In HNSCs, IL7R was found to be altered about
11% of the time, indicating a similar mechanism may exist in OSCC tumorigenesis. It was reported that
T cells lack the expression of IL7 receptor α (IL7Rα), which is associated with the hypermethylation of
the IL7R promoter, therefore restricting T-cell development in SIOD patients [28]. From our results,
we found that hypomethylation in IL7R led to a high expression in OSCC samples, which may affect
the anti-tumor immune response during tumorigenesis. The CDK14 protein is a member of the CDC2
(MIM 116940)-related protein kinase family, and acts as a regulator of cell cycle progression and cell
proliferation via its interaction with CCDN3 [29]. It was reported that a high expression of CDK14 was
associated with poor prognosis in osteosarcoma, and miR-216a was found to target CDK14, resulting
in the inhibition of cell proliferation, invasion, and metastasis of osteosarcoma [30]. In our study, we
found that CDK14 affected by hypomethylation resulted in a high expression in OSCCs, indicating
that CDK14 may function as a promoter of OSCC proliferation. CDK14 was altered in about 10% of
HNSC patients, and we suppose that mutations in CDK14 led to deregulation in OSCCs. Reports on
breast cancer demonstrated that an allele-specific copy-number imbalance in CDK14 was related to
poor prognosis [31]. The three oncogenes we found were highly expressed in OSCC samples, and we
suppose that they play an important role in OSCC tumorigenesis. Aberrant methylation of these three
oncogenes may be the reason for their deregulation in OSCCs.

The four downregulated hypermethylated TSGs were C2orf40, EPB41L3, GPX3, and WIF1.
C2orf40 (chromosome 2 open reading frame 40) is a protein-coding gene, associated with diseases
such as esophageal cancer [32]. It functions as a probable hormone that induces senescence of
oligodendrocyte and neural precursor cells, characterized by G1 arrest, RB1 dephosphorylation,
and accelerated CCND1 and CCND3 proteasomal degradation [33]. EPB41L3 is a tumor suppressor
that inhibits cell proliferation, and promotes apoptosis [34]. It also modulates the activity of protein
arginine N-methyltransferases, including PRMT3 and PRMT5. It was widely reported for multiple
cancers, such as esophageal cancer and hepatocellular carcinoma, that a high expression of EPB41L3
in tumor cells promotes migration and invasion, and is related with poor prognosis [35,36]. The
protein encoded by GPX3 belongs to the glutathione peroxidase family, members of which catalyze
the reduction of organic hydroperoxides, and hydrogen peroxide (H2O2) by glutathione, thereby
protecting cells against oxidative damage [37]. Downregulation of the expression of this gene through
the promotion of hypermethylation was observed in a wide spectrum of human malignant diseases,
including thyroid cancer, hepatocellular carcinoma, and chronic myeloid leukemia. A low expression
of GPX3 was found to be a biomarker for poor prognosis in gallbladder cancer, and silencing GPX3
was found to promote tumor metastasis of thyroid cancer in which GPX3 functioned as a TSG [38,39].
WIF1 functions to inhibit Wnt proteins, which are extracellular signaling molecules that play a role
in embryonic development [40]. It also functions as a tumor suppressor gene, and was found to be
epigenetically silenced in various cancers. A downregulation of WIF1 was widely reported for multiple
cancers, such as prostate cancer, breast cancer, lung cancer, and bladder cancer, and was correlated
with a more advanced tumor stage [41]. It functions as an inhibitor of the Wnt signaling pathway, and
could regulate SKP2 and c-Myc expression, resulting in G1 arrest and the inhibition of proliferation in
urinary bladder cancer cells [42]. The roles of the four TSGs were not reported for OSCCs. In our study,
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we found that they were hypermethylated and downregulated in OSCCs, indicating that aberrant
methylation in OSCCs might lead to the deregulation of these TSGs, resulting in OSCC tumorigenesis.

We acknowledge that there were some limitations and shortcomings in this study. Firstly, we
focused on the upregulated hypomethylated and downregulated hypermethylated genes without
analyzing the contra-regulated genes. Further analysis considering this aspect is needed in the
future. Secondly, the clinical parameters and prognoses were not analyzed due to the availability of
data. The validation of aberrantly methylated genes was carried out using TCGA data, and further
experiments are needed to produce a solid confirmation of these results in relation to OSCCs.

4. Materials and Methods

4.1. Microarray Data Information

NCBI-GEO is a free database for microarray/gene profiling and next-generation sequencing.
In this study, the gene-expression-profiling dataset (GSE30784) and the gene-methylation-profile
dataset (GSE38532) were obtained from the Gene Expression Omnibus (GEO, https://www.
ncbi.nlm.nih.gov/geo/) of NCBI. The microarray data from GSE30784 were based on GPL570
Platforms ((HG-U133_Plus_2) Affymetrix Human Genome U133 Plus 2.0 Array; Thermo Fisher
Scientific, Waltham, MA, USA), and included 167 OSCC samples and 45 normal samples.
The gene-methylation-profile microarray data from GSE33202 were based on GPL8490 Platforms
(Illumina HumanMethylation27 BeadChip (HumanMethylation27_270596_v.1.2; Thermo Fisher
Scientific), and contained 40 OSCC samples and 40 normal samples.

4.2. Data Processing for the Identification of DEGs and DMGs

We used the R software (version 3.4.3; Bell Laboratories, formerly AT&T, now Lucent Technologies,
Murray Hill, NJ, USA) to analyze GSE30784 and GSE38532, in an effort to identify DEGs and DMGs.
For the DEGs, we set cut-off criteria as p-value < 0.05, and logFC (>1 or <−1). As for the DMPs, we set
FDR < 0.05 and cut-off β > 0.2. The computer code is provided in the Supplementary Materials (in
the “computer code” section). We then transformed the DMG identifiers (IDs) to gene names using
the wANNOVAR tool (http://wannovar.wglab.org/). We got the oncogene list from the ONGene
database (http://ongene.bioinfo-minzhao.org/), and the TSG list from the TSGene database (https:
//bioinfo.uth.edu/TSGene/index.html). Next, we used an online Venn diagram tool (http://bioinfogp.
cnb.csic.es/tools/venny/) to identify overlapping DEGs, DMGs, oncogenes, and TSGs. Lastly, we
obtained upregulated hypomethylated oncogenes by overlapping hypomethylated genes, upregulated
genes, and oncogenes. The same method was used to obtain downregulated hypermethylated genes,
overlapping hypermethylated genes, downregulated genes, and TSGs.

4.3. Gene Ontology and Pathway Enrichment Analysis

The Database for Annotation, Visualization, and Integrated Discovery (DAVID, https://david.
ncifcrf.gov/) was employed to perform the gene ontology enrichment analysis. We submitted our
lists, which contained 28 upregulated hypomethylated genes and 24 downregulated hypermethylated
genes, into DAVID. A p-value < 0.05 was regarded as statistically significant, and the GO results were
ranked by p-value. The significant terms for biological processes (BPs) were selected. The functional
enrichment analysis tool (FunRich, version: FunRich 3.0, http://www.funrich.org/) is a stand-alone
software tool used mainly for functional enrichment and interaction network analysis of genes and
proteins. The FunRich tool was used to unravel the pathways behind the genes we submitted.
A p-value < 0.05 was regarded as statistically significant, and the top five significant pathways in the
upregulated hypomethylated genes and the downregulated hypermethylated genes were exhibited as
bar charts.

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://wannovar.wglab.org/
http://ongene.bioinfo-minzhao.org/
https://bioinfo.uth.edu/TSGene/index.html
https://bioinfo.uth.edu/TSGene/index.html
http://bioinfogp.cnb.csic.es/tools/venny/
http://bioinfogp.cnb.csic.es/tools/venny/
https://david.ncifcrf.gov/
https://david.ncifcrf.gov/
http://www.funrich.org/
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4.4. Protein–Protein Interaction (PPI) Network Construction and Module Analysis

Protein–protein interaction (PPI) analysis is important for the interpretation of molecular
mechanisms of the key cellular activities in carcinogenesis. In our study, the Search Tool for the
Retrieval of Interacting Genes (STRING) database (https://string-db.org/cgi/input.pl) and the
FunRich tool were employed to construct the PPI network. The functional enrichment analyses of the
up-hypomethylated oncogenes and the down-hypermethylated TSGs were carried out in FunRich,
and we selected the top five pathways for each group.

4.5. Validation of the Seven Genes

The Cancer Genome Atlas (TCGA) database includes comprehensive, multi-dimensional maps
of key genomic changes in various types of cancers. In order to confirm our results, we validated
the seven oncogenes/TSGs using TCGA data. We downloaded the TCGA data from UCSC Xena
(http://xena.ucsc.edu/). The expressions of the seven oncogenes/TSGs were compared between
normal samples and OSCC samples. Furthermore, the validation of the translational levels of the seven
oncogenes/TSGs was carried out using the Human Protein Atlas database (https://www.proteinatlas.
org/). The IHC (immunohistochemistry) pathological section between the normal and OSCC samples
was used to validate the results. The cBio Cancer Genomics Portal (http://www.cbioportal.org/) is
an open platform, providing visualization, analysis, and downloads of large-scale cancer genomics
datasets of various cancers. Complex cancer genomics profiles are easily obtained using the query
interface of the portal, enabling researchers to explore and compare genetic alterations across samples.
We used the cBioPortal tool to explore the genetic alterations connected with the seven genes, and the
correlation between mRNA and DNA methylation in HNSC studies.

5. Conclusions

Our results identified aberrantly methylated and differentially expressed oncogenes and TSGs,
and their related pathways and functions by means of integrated bioinformatic analysis. These results
may contribute to uncovering the molecular mechanisms underlying the initiation and development
of OSCCs. The seven genes found were validated using the TCGA, and included IL7R, CDK14,
ABL2, EPB41L3, GPX3, WIF1, and C2orf40. These genes might serve as aberrant methylation-based
biomarkers and therapeutic targets for the precise diagnosis and treatment of OSCCs in the future.
When compared with single-dataset investigations, our study provided more reliable and accurate
results by using several datasets. Further experiments are needed to confirm the candidate genes
which we uncovered in OSCCs.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/19/6/1698/
s1.

Author Contributions: X.Z. and H.F. contributed equally to this work, and should be considered co-first authors.
X.Z., H.F., D.L., S.L., and N.A. conceived and designed the study; X.Z. and H.F. analyzed the data; D.L. and S.L.
made the diagrams and tables of the article; and X.Z. and H.F. wrote the paper.

Acknowledgments: This study was partially supported by the National Nature Science Foundation of China
(Grant Nos. 81470719; 81611140133) to M.L., and the Construction Engineering Special Fund of “Taishan Scholars”
(No. Ts 20151106) to Xu Xin.

Conflicts of Interest: We declare that we have no conflict of interest.

Abbreviations

HNSC Head and neck squamous cell carcinoma
DEGs Differentially methylated genes
DMGS Differentially methylated genes
PPI Protein–protein interaction
GO Gene ontology

https://string-db.org/cgi/input.pl
http://xena.ucsc.edu/
https://www.proteinatlas.org/
https://www.proteinatlas.org/
http://www.cbioportal.org/
http://www.mdpi.com/1422-0067/19/6/1698/s1
http://www.mdpi.com/1422-0067/19/6/1698/s1


Int. J. Mol. Sci. 2018, 19, 1698 13 of 15

BP Biological process
CC Cell component
MF Molecular function

References

1. Mignogna, M.D.; Fedele, S.; Lo Russo, L. The World Cancer Report and the burden of oral cancer. Eur. J.
Cancer Prev. 2004, 13, 139–142. [CrossRef] [PubMed]

2. Eleftheriadou, A.; Chalastras, T.; Ferekidou, E.; Yiotakis, I.; Kyriou, L.; Tzagarakis, M.; Ferekidis, E.;
Kandiloros, D. Association between squamous cell carcinoma of the head and neck and serum folate
and homocysteine. Anticancer Res. 2006, 26, 2345–2348. [PubMed]

3. Lo, A.K.F.; Lo, K.W.; Tsao, S.W.; Wong, H.L.; Hui, J.W.Y.; To, K.F.; Hayward, S.D.; Chui, Y.L.; Lau, Y.L.;
Takada, K.; et al. Epstein-Barr virus infection alters cellular signal cascades in human nasopharyngeal
epithelial cells. Neoplasia 2006, 8, 173–180. [PubMed]

4. Hennessey, P.T.; Westra, W.H.; Califano, J.A. Human papillomavirus and head and neck squamous cell
Carcinoma: Recent evidence and clinical implications. J. Dent. Res. 2009, 88, 300–306. [CrossRef] [PubMed]

5. Smith, E.M.; Rubenstein, L.M.; Haugen, T.H.; Pawlita, M.; Turek, L.P. Complex etiology underlies risk and
survival in head and neck cancer human papillomavirus, tobacco, and Alcohol: A case for multifactor
disease. J. Oncol. 2012, 2012, 571862. [CrossRef] [PubMed]

6. Maruya, S.; Issa, J.P.; Weber, R.S.; Rosenthal, D.I.; Haviland, J.C.; Lotan, R.; El-Naggar, A.K. Differential
methylation status of tumor-associated genes in head and neck squamous Carcinoma: Incidence and
potential implications. Clin. Cancer Res. 2004, 10, 3825–3830. [CrossRef] [PubMed]

7. Towle, R.; Truong, D.; Hogg, K.; Robinson, W.P.; Poh, C.F.; Garnis, C. Global analysis of DNA methylation
changes during progression of oral cancer. Oral Oncol. 2013, 49, 1033–1042. [CrossRef] [PubMed]

8. Farkas, S.A.; Milutin-Gasperov, N.; Grce, M.; Nilsson, T.K. Genome-wide DNA methylation assay reveals
novel candidate biomarker genes in cervical cancer. Epigenetics 2013, 8, 1213–1225. [CrossRef] [PubMed]

9. Amatu, A.; Sartore-Bianchi, A.; Moutinho, C.; Belotti, A.; Bencardino, K.; Chirico, G.; Cassingena, A.;
Rusconi, F.; Esposito, A.; Nichelatti, M.; et al. Promoter CpG island hypermethylation of the DNA repair
enzyme MGMT predicts clinical response to dacarbazine in a phase II study for metastatic colorectal cancer.
Clin. Cancer Res. 2013, 19, 2265–2272. [CrossRef] [PubMed]

10. Draht, M.X.; Riedl, R.R.; Niessen, H.; Carvalho, B.; Meijer, G.A.; Herman, J.G.; van Engeland, M.; Melotte, V.;
Smits, K.M. Promoter CpG island methylation markers in colorectal Cancer: The road ahead. Epigenomics
2012, 4, 179–194. [CrossRef] [PubMed]

11. Kulasingam, V.; Diamandis, E.P. Strategies for discovering novel cancer biomarkers through utilization of
emerging technologies. Nat. Clin. Pract. Oncol. 2008, 5, 588–599. [CrossRef] [PubMed]

12. Demokan, S.; Chuang, A.Y.; Chang, X.; Khan, T.; Smith, I.M.; Pattani, K.M.; Dasgupta, S.; Begum, S.; Khan, Z.;
Liegeois, N.J.; et al. Identification of guanine nucleotide-binding protein γ-7 as an epigenetically silenced
gene in head and neck cancer by gene expression profiling. Int. J. Oncol. 2013, 42, 1427–1436. [CrossRef]
[PubMed]

13. Poage, G.M.; Houseman, E.A.; Christensen, B.C.; Butler, R.A.; Avissar-Whiting, M.; McClean, M.D.;
Waterboer, T.; Pawlita, M.; Marsit, C.J.; Kelsey, K.T. Global hypomethylation identifies Loci targeted for
hypermethylation in head and neck cancer. Clin. Cancer Res. 2011, 17, 3579–3589. [CrossRef] [PubMed]

14. Wimmers, F.; Aarntzen, E.H.; Duiveman-deBoer, T.; Figdor, C.G.; Jacobs, J.F.; Tel, J.; de Vries, I.J. Long-lasting
multifunctional CD8+ T cell responses in end-stage melanoma patients can be induced by dendritic cell
vaccination. Oncoimmunology 2016, 5, e1067745. [CrossRef] [PubMed]

15. De Visser, K.E.; Eichten, A.; Coussens, L.M. Paradoxical roles of the immune system during cancer
development. Nat. Rev. Cancer 2006, 6, 24–37. [CrossRef] [PubMed]

16. Steelman, L.S.; Chappell, W.H.; Abrams, S.L.; Kempf, C.R.; Long, J.; Laidler, P.; Mijatovic, S.;
Maksimovic-Ivanic, D.; Stivala, F.; Mazzarino, M.C.; et al. Roles of the Raf/MEK/ERK and
PI3K/PTEN/Akt/mTOR pathways in controlling growth and sensitivity to therapy-implications for cancer
and aging. Aging 2011, 3, 192–222. [CrossRef] [PubMed]

17. Guertin, D.A.; Sabatini, D.M. Defining the role of mTOR in cancer. Cancer Cell 2007, 12, 9–22. [CrossRef]
[PubMed]

http://dx.doi.org/10.1097/00008469-200404000-00008
http://www.ncbi.nlm.nih.gov/pubmed/15100581
http://www.ncbi.nlm.nih.gov/pubmed/16821614
http://www.ncbi.nlm.nih.gov/pubmed/16611410
http://dx.doi.org/10.1177/0022034509333371
http://www.ncbi.nlm.nih.gov/pubmed/19407148
http://dx.doi.org/10.1155/2012/571862
http://www.ncbi.nlm.nih.gov/pubmed/22315596
http://dx.doi.org/10.1158/1078-0432.CCR-03-0370
http://www.ncbi.nlm.nih.gov/pubmed/15173091
http://dx.doi.org/10.1016/j.oraloncology.2013.08.005
http://www.ncbi.nlm.nih.gov/pubmed/24035722
http://dx.doi.org/10.4161/epi.26346
http://www.ncbi.nlm.nih.gov/pubmed/24030264
http://dx.doi.org/10.1158/1078-0432.CCR-12-3518
http://www.ncbi.nlm.nih.gov/pubmed/23422094
http://dx.doi.org/10.2217/epi.12.9
http://www.ncbi.nlm.nih.gov/pubmed/22449189
http://dx.doi.org/10.1038/ncponc1187
http://www.ncbi.nlm.nih.gov/pubmed/18695711
http://dx.doi.org/10.3892/ijo.2013.1808
http://www.ncbi.nlm.nih.gov/pubmed/23403885
http://dx.doi.org/10.1158/1078-0432.CCR-11-0044
http://www.ncbi.nlm.nih.gov/pubmed/21505061
http://dx.doi.org/10.1080/2162402X.2015.1067745
http://www.ncbi.nlm.nih.gov/pubmed/26942087
http://dx.doi.org/10.1038/nrc1782
http://www.ncbi.nlm.nih.gov/pubmed/16397525
http://dx.doi.org/10.18632/aging.100296
http://www.ncbi.nlm.nih.gov/pubmed/21422497
http://dx.doi.org/10.1016/j.ccr.2007.05.008
http://www.ncbi.nlm.nih.gov/pubmed/17613433


Int. J. Mol. Sci. 2018, 19, 1698 14 of 15

18. Carnero, A.; Blanco-Aparicio, C.; Renner, O.; Link, W.; Leal, J.F.M. The PTEN/PI3K/AKT signalling pathway
in cancer, therapeutic implications. Curr. Cancer Drug Target 2008, 8, 187–198. [CrossRef]

19. Bleau, A.M.; Hambardzumyan, D.; Ozawa, T.; Fomchenko, E.I.; Huse, J.T.; Brennan, C.W.; Holland, E.C.
PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor
stem-like cells. Cell Stem Cell 2009, 4, 226–235. [CrossRef] [PubMed]

20. Iijima, Y.; Ito, T.; Oikawa, T.; Eguchi, M.; Eguchi-Ishimae, M.; Kamada, N.; Kishi, K.; Asano, S.; Sakaki, Y.;
Sato, Y. A new ETV6/TEL partner gene, ARG (ABL-related gene or ABL2), identified in an AML-M3 cell line
with a t(1;12)(q25;p13) translocation. Blood 2000, 95, 2126–2131. [PubMed]

21. Lin, Y.C.; Yeckel, M.F.; Koleske, A.J. Abl2/Arg controls dendritic spine and dendrite arbor stability via
distinct cytoskeletal control pathways. J. Neurosci. 2013, 33, 1846–1857. [CrossRef] [PubMed]

22. Xing, Q.T.; Qu, C.M.; Wang, G. Overexpression of Abl2 predicts poor prognosis in hepatocellular carcinomas
and is associated with cancer cell migration and invasion. Oncotargets Ther. 2014, 7, 881–885. [CrossRef]
[PubMed]

23. Qiang, X.F.; Zhang, Z.W.; Liu, Q.; Sun, N.; Pan, L.L.; Shen, J.; Li, T.; Yun, C.; Li, H.; Shi, L.H. miR-20a
promotes prostate cancer invasion and migration through targeting ABL2. J. Cell. Biochem. 2014, 115,
1269–1276. [CrossRef] [PubMed]

24. Gil-Henn, H.; Patsialou, A.; Wang, Y.; Warren, M.S.; Condeelis, J.S.; Koleske, A.J. Arg/Abl2 promotes
invasion and attenuates proliferation of breast cancer in vivo. Oncogene 2013, 32, 2622–2630. [CrossRef]
[PubMed]

25. Gregory, S.G.; Schmidt, S.; Seth, P.; Oksenberg, J.R.; Hart, J.; Prokop, A.; Caillier, S.J.; Ban, M.; Goris, A.;
Barcellos, L.F.; et al. Interleukin 7 receptor a chain (IL7R) shows allelic and functional association with
multiple sclerosis. Nat. Genet. 2007, 39, 1083–1091. [CrossRef] [PubMed]

26. Puel, A.; Ziegler, S.F.; Buckley, R.H.; Leonard, W.J. Defective IL7R expression in T−B+NK+ severe combined
immunodeficiency. Nat. Genet. 1998, 20, 394–397. [CrossRef] [PubMed]

27. Zenatti, P.P.; Ribeiro, D.; Li, W.Q.; Zuurbier, L.; Silva, M.C.; Paganin, M.; Tritapoe, J.; Hixon, J.A.; Silveira, A.B.;
Cardoso, B.A.; et al. Oncogenic IL7R gain-of-function mutations in childhood T-cell acute lymphoblastic
leukemia. Nat. Genet. 2011, 43, 932. [CrossRef] [PubMed]

28. Sanyal, M.; Morimoto, M.; Baradaran-Heravi, A.; Choi, K.; Kambham, N.; Jensen, K.; Dutt, S.;
Dionis-Petersen, K.Y.; Liu, L.X.; Felix, K.; et al. Lack of IL7R alpha expression in T cells is a hallmark
of T-cell immunodeficiency in Schimke immuno-osseous dysplasia (SIOD). Clin. Immunol. 2015, 161, 355–365.
[CrossRef] [PubMed]

29. Yang, T.; Chen, J.Y. Identification and cellular localization of human PFTAIRE1. Gene 2001, 267, 165–172.
[CrossRef]

30. Ji, Q.B.; Xu, X.J.; Li, L.; Goodman, S.B.; Bi, W.Z.; Xu, M.; Xu, Y.M.; Fan, Z.Y.; Maloney, W.J.; Ye, Q.N.;
et al. miR-216a inhibits osteosarcoma cell proliferation, invasion and metastasis by targeting CDK14.
Cell Death Dis. 2017, 8, e3103. [CrossRef] [PubMed]

31. Shia, W.; Chen, D. The allele-specific copy number imbalance in CDK14/RABGAP1L/SH3BP5L and the
relation to the poor prognosis in breast cancer. Breast 2017, 32, S104–S105. [CrossRef]

32. Li, L.W.; Li, X.Y.; Wang, W.Y.; Gao, T.H.; Zhou, Y.; Lu, S.X. Soluble purified recombinant C2ORF40 protein
inhibits tumor cell growth in vivo by decreasing telomerase activity in esophageal squamous cell carcinoma.
Oncol. Lett. 2016, 12, 2820–2824. [CrossRef] [PubMed]

33. Li, X.Y.; Li, L.W.; Wang, W.Y.; Yang, Y.; Zhou, Y.; Lu, S.X. Soluble purified recombinant C2ORF40 protein
inhibits esophageal cancer cell proliferation by inducing cell cycle G1 phase block. Oncol. Lett. 2015, 10,
1593–1596. [CrossRef] [PubMed]

34. Li, X.H.; Zhang, Y.; Zhang, H.W.; Liu, X.N.; Gong, T.Q.; Li, M.B.; Sun, L.; Ji, G.; Shi, Y.Q.; Han, Z.Y.; et al.
miRNA-223 promotes gastric cancer invasion and metastasis by targeting tumor suppressor EPB41L3.
Mol. Cancer Res. 2011, 9, 824–833. [CrossRef] [PubMed]

35. Zeng, R.; Liu, Y.; Jiang, Z.J.; Huang, J.P.; Wang, Y.; Li, X.F.; Xiong, W.B.; Wu, X.C.; Zhang, J.R.; Wang, Q.E.;
et al. EPB41L3 is a potential tumor suppressor gene and prognostic indicator in esophageal squamous cell
carcinoma. Int. J. Oncol. 2018, 52, 1443–1454. [CrossRef] [PubMed]

36. Zhu, L.Y.; Yang, N.H.; Chen, J.; Zeng, T.; Yan, S.Y.; Liu, Y.Y.; Yu, G.F.; Chen, Q.X.; Du, G.Q.; Pan, W.; et al.
LINC00052 upregulates EPB41L3 to inhibit migration and invasion of hepatocellular carcinoma by binding
miR-452-5p. Oncotarget 2017, 8, 63724–63737. [CrossRef] [PubMed]

http://dx.doi.org/10.2174/156800908784293659
http://dx.doi.org/10.1016/j.stem.2009.01.007
http://www.ncbi.nlm.nih.gov/pubmed/19265662
http://www.ncbi.nlm.nih.gov/pubmed/10706884
http://dx.doi.org/10.1523/JNEUROSCI.4284-12.2013
http://www.ncbi.nlm.nih.gov/pubmed/23365224
http://dx.doi.org/10.2147/OTT.S62348
http://www.ncbi.nlm.nih.gov/pubmed/24940071
http://dx.doi.org/10.1002/jcb.24778
http://www.ncbi.nlm.nih.gov/pubmed/24464651
http://dx.doi.org/10.1038/onc.2012.284
http://www.ncbi.nlm.nih.gov/pubmed/22777352
http://dx.doi.org/10.1038/ng2103
http://www.ncbi.nlm.nih.gov/pubmed/17660817
http://dx.doi.org/10.1038/3877
http://www.ncbi.nlm.nih.gov/pubmed/9843216
http://dx.doi.org/10.1038/ng.924
http://www.ncbi.nlm.nih.gov/pubmed/21892159
http://dx.doi.org/10.1016/j.clim.2015.10.005
http://www.ncbi.nlm.nih.gov/pubmed/26499378
http://dx.doi.org/10.1016/S0378-1119(01)00391-2
http://dx.doi.org/10.1038/cddis.2017.499
http://www.ncbi.nlm.nih.gov/pubmed/29022909
http://dx.doi.org/10.1016/S0960-9776(17)30333-8
http://dx.doi.org/10.3892/ol.2016.4935
http://www.ncbi.nlm.nih.gov/pubmed/27698864
http://dx.doi.org/10.3892/ol.2015.3429
http://www.ncbi.nlm.nih.gov/pubmed/26622716
http://dx.doi.org/10.1158/1541-7786.MCR-10-0529
http://www.ncbi.nlm.nih.gov/pubmed/21628394
http://dx.doi.org/10.3892/ijo.2018.4316
http://www.ncbi.nlm.nih.gov/pubmed/29568917
http://dx.doi.org/10.18632/oncotarget.18892
http://www.ncbi.nlm.nih.gov/pubmed/28969024


Int. J. Mol. Sci. 2018, 19, 1698 15 of 15

37. Chu, F.F. The human glutathione-peroxidase genes Gpx2, Gpx3, and Gpx4 map to chromosome-14,
chromosome-5, and chromosome-19, respectively. Cytogenet. Genome Res. 1994, 66, 96–98. [CrossRef]
[PubMed]

38. Zhao, H.; Li, J.Y.; Li, X.; Han, C.; Zhang, Y.; Zheng, L.L.; Guo, M.Z. Silencing GPX3 Expression promotes
tumor metastasis in human thyroid cancer. Curr. Protein Pept. Sci. 2015, 16, 316–321. [CrossRef] [PubMed]

39. Yang, Z.L.; Yang, L.P.; Zou, Q.; Yuan, Y.; Li, J.H.; Liang, L.F.; Zeng, G.X.; Chen, S.L. Positive ALDH1A3 and
negative GPX3 expressions are biomarkers for poor prognosis of gallbladder cancer. Dis. Markers 2013, 35,
163–172. [CrossRef] [PubMed]

40. Vassallo, I.; Zinn, P.; Lai, M.; Rajakannu, P.; Hamou, M.F.; Hegi, M.E. WIF1 re-expression in glioblastoma
inhibits migration through attenuation of non-canonical WNT signaling by downregulating the lncRNA
MALAT1. Oncogene 2016, 35, 12–21. [CrossRef] [PubMed]

41. Wissmann, C.; Wild, P.J.; Kaiser, S.; Roepcke, S.; Stoehr, R.; Woenckhaus, M.; Kristiansen, G.; Hsieh, J.C.;
Hofstaecter, F.; Hartmann, A.; et al. WIF1, a component of the Wnt pathway, is down-regulated in prostate,
breast, lung, and bladder cancer. J. Pathol. 2003, 201, 204–212. [CrossRef] [PubMed]

42. Tang, Y.X.; Simoneau, A.R.; Liao, W.X.; Yi, G.; Hope, C.; Liu, F.; Li, S.Q.; Xie, J.; Holcombe, R.F.; Jurnak, F.A.;
et al. WIF1, a Wnt pathway inhibitor, regulates SKP2 and c-myc expression leading to G1 arrest and growth
inhibition of human invasive urinary bladder cancer cells. Mol. Cancer Ther. 2009, 8, 458–468. [CrossRef]
[PubMed]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1159/000133675
http://www.ncbi.nlm.nih.gov/pubmed/8287691
http://dx.doi.org/10.2174/138920371604150429154840
http://www.ncbi.nlm.nih.gov/pubmed/25929866
http://dx.doi.org/10.1155/2013/187043
http://www.ncbi.nlm.nih.gov/pubmed/24167362
http://dx.doi.org/10.1038/onc.2015.61
http://www.ncbi.nlm.nih.gov/pubmed/25772239
http://dx.doi.org/10.1002/path.1449
http://www.ncbi.nlm.nih.gov/pubmed/14517837
http://dx.doi.org/10.1158/1535-7163.MCT-08-0885
http://www.ncbi.nlm.nih.gov/pubmed/19174556
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Results 
	Identification of the DEGs and DMGs in OSCCs 
	Identification of Aberrantly Methylated Differentially Expressed Genes 
	Functional Enrichment Analysis 
	PPI Network Construction 
	Identification and Validation of the Seven Selected Genes 
	Genetic Information of the Seven Genes 

	Discussion 
	Materials and Methods 
	Microarray Data Information 
	Data Processing for the Identification of DEGs and DMGs 
	Gene Ontology and Pathway Enrichment Analysis 
	Protein–Protein Interaction (PPI) Network Construction and Module Analysis 
	Validation of the Seven Genes 

	Conclusions 
	References

