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Background: Individuals with major depressive disorder (MDD) vary in their response to

antidepressants. However, identifying objective biomarkers, prior to or early in the course

of treatment that can predict antidepressant efficacy, remains a challenge.

Methods: Individuals with MDD participated in a 12-week antidepressant

pharmacotherapy trial. Electroencephalographic (EEG) data was collected before

and 1 week post-treatment initiation in 51 patients. Response status at week 12 was

established with the Montgomery-Asberg Depression Scale (MADRS), with a ≥50%

decrease characterizing responders (N = 27/24 responders/non-responders). We

used a machine learning (ML)-approach for predicting response status. We focused

on Random Forests, though other ML methods were compared. First, we used a

tree-based estimator to select a relatively small number of significant features from: (a)

demographic/clinical data (age, sex, individual item/total MADRS scores at baseline,

week 1, change scores); (b) scalp-level EEG power; (c) source-localized current density

(via exact low-resolution electromagnetic tomography [eLORETA] software). Second,

we applied kernel principal component analysis to reduce and map important features.

Third, a set of ML models were constructed to classify response outcome based on

mapped features. For each dataset, predictive features were extracted, followed by a

model of all predictive features, and finally by a model of the most predictive features.

Results: Fifty eLORETA features were predictive of response (across bands, both

time-points); alpha1/theta eLORETA features showed the highest predictive value.

Eighty-eight scalp EEG features were predictive of response (across bands, both

time-points), with theta/alpha2 being most predictive. Clinical/demographic data

consisted of 31 features, with the most important being week 1 “concentration

difficulty” scores. When all features were included into one model, its predictive

utility was high (88% accuracy). When the most important features were extracted

in the final model, 12 predictive features emerged (78% accuracy), including

baseline scalp-EEG frontopolar theta, parietal alpha2 and frontopolar alpha1.
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Conclusions: These findings suggest that ML models of pre- and early treatment-

emergent EEG profiles and clinical features can serve as tools for predicting

antidepressant response.While this must be replicated using large independent samples,

it lays the groundwork for research on personalized, “biomarker”-based treatment

approaches.

Keywords: major depressive disorder (MDD), antidepressants, biomarker, quantitative EEG, machine learning

(ML), classification and regression trees, predictive models, personalized treatment

INTRODUCTION

Worldwide, major depressive disorder (MDD) carries a
large burden of disease (1), is associated with impaired
daily functioning (2), and worsening of co-morbid medical
illness (3, 4). It is also linked with shorter life expectancies

(5), including increased death by suicide. However, one
of the largest naturalistic clinical trials assessing treatment
outcomes in depressed patients found that fewer than ∼50%
responded (>50% symptom decreases), and only∼30% remitted
(absence/near absence of symptoms), to intervention with a

serotonin reuptake inhibitor (SSRI) antidepressant (6, 7); SSRIs
are the most common antidepressant pharmacotherapy for
treating MDD. Unfortunately, partial or inadequate response

carries serious consequences, as each attempt to improve
outcome either by switching or combining pharmacotherapies
may require weeks to evaluate effectiveness (8, 9). This represents
a substantial amount of time during which patients live with
lingering, debilitating and even fatal symptoms.

Current approaches for treating MDD rely on trial-and-
error sequential treatment strategies, as there is currently no
established method of predicting whether a medication will
lead to response. Identifying markers of response, either by
a priori prediction or by distinguishing eventual responders
from non-responders shortly after commencing treatment,
would significantly increase the efficiency and efficacy of MDD
interventions. Evidenced-based decision-making regarding
treatment selection may be aided by biomarkers. Biomarkers are
measurable and objective indicators of biological processes, or
biological responses to interventions (10). To date, there have
been no identified biomarkers of sufficient clinical utility to
inform antidepressant treatment selection (11, 12). Nevertheless,
growing evidence supporting mood disorders as brain disorders
with putative structural and functional abnormalities in certain
neural circuits (13) has positioned neuroimaging techniques as
candidates for prognostic biomarkers in MDD (14–21), and as
potential indices of treatment response prediction.

For routine clinical use, predictive biomarkers must
have a high specificity/sensitivity, be reproducible, yet
also be relatively inexpensive, non-invasive and accessible
(22). Although not possessing the same spatial resolution as
functional magnetic resonance imaging (fMRI), quantitative
measures of brain electrical signals derived from scalp-
recorded electroencephalograms (EEG) provide superb temporal
resolution of brain activity. Further, EEG offers many of the
outlined practical advantages [e.g., easy-to-administer, low-cost;

(23)]. Power spectral measures of resting-state EEG activity
have been found to be sensitive to both acute and chronic
effects of antidepressant pharmacotherapies in MDD (24, 25).
Additionally, members by our own group and others have
found that when EEG profiles are assessed before or early
in the course of treatment (≤1 week), they are predictive
of/associated with antidepressant response (e.g., theta EEG
source-localized to the anterior cingulate cortex [ACC] or
alpha EEG/frontal alpha asymmetry) (26–29). Alpha power is
thought to be inversely related to cortical arousal (30), therefore,
excess alpha power may represent decreased cortical arousal
(though alpha presence should not be thought of as reflecting
an “idle”/inactive brain state). Measures of prefrontal theta
cordance, which is a combination of absolute and relative EEG
power, have been shown to correlate strongly with cerebral
perfusion (31), and have also been associated with treatment
response. In other words, theta cordance appears to be an
electrocortical proxy of fronto-cortical activity as indexed by
cerebral blood flow. Several groups have noted that initial (32)
or rapid decreases in prefrontal theta cordance were associated
with a positive response to treatment with various antidepressant
pharmacotherapies (33, 34). However, these predictive EEG
profiles tend to be limited to group-level comparisons, which
may obscure potentially useful information at the individual-
level. Importantly, individual EEG-based biomarkers would be
most useful clinically.

The complexity/dimensionality of EEG data lends itself to
the use of machine learning (ML) approaches which, unlike
conventional analyses, are designed to deal with multivariate
inputs. ML can treat EEG measures as patterns rather than
considering each measure in isolation, which could potentially
be a more informative analytic approach (35, 36). Further,
ML approaches may be more conducive to extracting response
prediction data at the individual-level (after we are sufficiently
confident that we input appropriate information). While there
have been several ML-based studies using EEG data to separate
individuals with and without MDD (37), including work
from our own group (38), there have only been a handful
of studies utilizing ML-based approaches of EEG data for
response prediction (see Supplementary Table 1 for a summary).
However, the few that exist have yielded relatively high prediction
accuracies of response to SSRI treatment based on pre-treatment
EEG features (39), and appear to be more accurate than
prediction models based on clinician ratings (40). A recent
study of depressed individuals treated with repeated transcranial
magnetic stimulation (rTMS) assessed baseline and week 1 EEG
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profiles, including theta and alpha power and connectivity,
frontal theta cordance and alpha peak frequency (41). A ML
approach was used to differentiate responders/non-responders
using these measures, coupled with depression change scores.
The 12 eventual rTMS responders were separated from non-
responders (N = 30) based on elevated theta connectivity at
baseline and week 1 (sensitivity: 0.84; specificity: 0.89). The
same group also found that a ML model consisting of 30
features, collected during a working memory task (including
baseline/week 1/changes in theta, upper alpha & gamma power,
connectivity, theta-gamma coupling), could distinguish rTMS
responders/non-responders [sensitivity: 0.90; specificity: 0.92;
(42)]. In addition to the SSRI and rTMS findings, frontal EEG
sites have been shown to be most predictive of clinical and
cognitive outcome in MDD patients following transcranial direct
current stimulation (tDCS) treatment using ML approaches (43).

Despite the promise shown by the application of ML for
predicting antidepressant treatment response, logistical obstacles
exist (e.g., ethics/privacy concerns, technical expertise). Other
challenges which impede ML from being used in predictive
psychiatry include the relatively small sizes (though that is
not an inherent limitation per se) of many clinical/biological
datasets. A further challenge is that that data may be lacking/are
incomplete, or datasets require considerable processing prior
to analyses (therefore, the preparation of the data for analysis
can be onerous). Further, ML sometimes focuses on the most
efficient use of data rather than the most valuable, which
leads to variability in ML approaches (including biases), and
the tendency to overfit data (44). Additionally, many studies
using ML on EEG data in antidepressant response prediction
tend to be based on unequal responder/non-responder samples,
which requires over/under sampling techniques (e.g., Synthetic
Minority Oversampling Technique [SMOTE] or weighting
subjects by their inverse proportion of being responders or
non-responders); whether this is applied is generally not stated
in the methodology. Under-sampling may lead to discarding
potentially useful data while over-sampling duplicates samples,
which could greatly increase the possibility of overfitting. As
a result, ML-derived results can sometimes be difficult to
replicate, and comparisons between various ML approaches
in one study are rare. We are also not aware of any
studies that have assessed whether source-localized EEG activity
using approaches such as low-resolution brain electromagnetic
tomography [LORETA; (45)] contribute to antidepressant
response prediction with ML, despite the fact that this has
shown predictive promise using non-ML analyses. Finally, the
contribution of specific depression symptom scores [e.g., items
of the Montgomery-Asberg Depression Rating Scale [MADRS];
(46)] and demographic features (e.g., age, sex), are generally not
included in ML approaches utilizing EEG data for predicting
response. This is despite the fact that specific symptom profiles
and demographic variables have been shown to be predictive of
response (47).

As such, in the present study we carried out several
experiments addressing the outlined gaps. First, we explored
the utility of exact low-resolution electromagnetic tomography
software (eLORETA)-localized EEG data at baseline and at week

1 of antidepressant pharmacotherapy in predicting responder (N
= 27)/non-responder (N = 24) status (i.e., balanced sample)
in depressed adults at week 12 of treatment using several ML
approaches, with a focus on Random Forest. In other words, we
extracted predictive features of response from eLORETA data
(Experiment A). Second, the same ML approaches were applied
to scalp-level EEG power in order to extract pertinent predictive
features from this dataset (Experiment B). Third,MLwas applied
to clinical and demographic data to extract predictive features
of response (i.e., sex, age, individual/total MADRS score items
at baseline/week 1, score changes; Experiment C). Subsequently,
all of the relevant predictive features were put into a combined
ML model, and prefrontal theta cordance data was included
(Experiment D), this was followed by a final analysis that
identified the most relevant predictive features of antidepressant
response (Experiment E). We expected that ML approaches
would be useful for predicating antidepressant response, and that
the combined model would yield superior prediction values as
compared to each individual model.

METHODS

Participants
In total, 51 adults (18–60 years) with a primary diagnosis of
MDD, and enrolled in a clinical trial assessing antidepressant
pharmacotherapies [details below; (48)], participated in this
EEG study. As previously outlined (49), psychiatrists ascertained
the diagnosis with the Structured Clinical Interview for DSM
(Diagnostic & Statistical Manual of Mental Disorders) IV-TR
Diagnoses, Axis I, Patient Version [SCID-I/P; (50)]. Symptom
severity was evaluated using the MADRS (46), with scores ≥22
at enrollment. A secondary diagnosis of an anxiety disorder
was permitted. Patients with Bipolar Disorder (BP I/II or NOS),
psychosis history, current (<6 months) drug/alcohol abuse or
dependence, history of seizures, unstable (≥3 months) medical
condition(s) and history of anorexia/bulimia were excluded.
Patients were not taking psychoactive drugs at the time of
randomization, and appropriate drug washout periods were
applied prior to enrollment. EEG testing occurred pre- and
1-week post-treatment. Participants provided written informed
consent, and the study was approved by the Royal Ottawa Health
Care Group Research Ethics Board.

Clinical Trial Design
As part of a larger clinical trial (48), patients were randomized
(double-blind) to one of three antidepressant regimens:
escitalopram + bupropion (ESC+BUP), escitalopram (ESC)
+ placebo or bupropion (BUP) + placebo. Treatments were
initiated at recommended starting doses, and raised only
if tolerated. MADRS assessments were conducted prior to
treatment, weekly for the first 4 weeks, and then bi-weekly until
week 12. Change in MADRS scores from baseline to week 12
were used to categorize patients as responders (N = 27; ≥50%
MADRS score reduction) or non-responders (N = 24; <49%
MADRS score reduction). Responder groups were similar on
demographic and clinical parameters at baseline (Table 1).
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TABLE 1 | Clinical characteristics and demographics of participants (Means ±

S.D.).

All Treatment Treatment

participants responders non-responders

(N = 51) (N = 27) (N = 24)

Sex (M/F) 24/27 12/15 11/13

Age 40.2 (±11.8) 35.9 (±11.3) 45 (±10.6)

Total baseline

MADRS scores

30.6 (±5.2) 29.6 (±4.5) 31.6 (±5.8)

Total week 1

MADRS scores

26.2 (8.7) 22.7 (7.9) 30.2 (7.9)

Total week 12

MADRS scores

15.9 (12.5) 6.2 (5.2) 26.8 (8.6)

% Change (week

1-baseline)

−13.7 (27.5) ±23.2 (24.6) −3.1 (27.1)

% Change (week

12-baseline)

−48.8 (37.9) −79.0 (17.0) −14.9 (22.9)

MADRS, Montgomery-Asberg Depression Rating Scale.

EEG Recordings and EEG Data Processing
As described elsewhere (49), prior to each EEG session,
participants abstained for >3 h from caffeine and/or nicotine,
as well as from alcohol/drugs (excluding prescribed drugs) as of
midnight. Using an average scalp reference, AFz ground, and a
sampling rate of 500Hz, EEG recordings were obtained from
32 sites using the 10–20 system (see Supplementary Figure 1)
by way of Ag/AgCl electrodes embedded in a cap (EasyCap,
Inning A. Ammersee, Germany). Additional electrodes were
used to monitor vertical and horizontal electrooculographic
(EOG) activity. Amplifier filters were 0.1–80Hz, and electrode
impedance was ≤5 k� during recordings (Brain Vision
Quickamp R©; Brain Products, Gilching, Germany). Vigilance-
controlled resting-state EEG activity was recorded for 3min
during the eyes-closed (EC) condition (BrainVision Recorder R©,
Brain Products, Gilching, Germany).

EEG processing included re-referencing with averaged
mastoid electrodes (TP9/10), filtering (0.1–30Hz) and
segmentation (2 s; Brain Vision Analyzer R© Software, Brain
Products, Gilching, Germany). Ocular-corrected [Gratton &
Coles method; (51)] epochs were excluded if voltages exceeded
±75 µV. A minimum of 100 s of artifact-free data were subjected
to a Fast Fourier Transform algorithm (Hanning Window;
5% cosine taper) for computation of absolute (µV2) power
in frequency bands of interest (delta: 1–4Hz, theta: 4–8Hz,
alpha1: 8–10.5Hz, alpha2: 10.5–13Hz, beta: 13–30Hz) at 28 sites
(mastoids, ground, reference electrode sites excluded). EEG data
was ln-transformed prior to analyses to ensure normality. The
ln-transformation minimizes the influence of extreme values
(i.e., skewness) within the dataset.

eLORETA Analyses
EC ln-normalized EEG data in each frequency band (mastoid-
referenced) was subjected to analysis with eLORETA (45)
software (v. 2081104). eLORETA analysis estimates neural
activity as current density based on the Montreal Neurological

Institute-152 template creating a low-resolution activation image.
The solution space consists of 6,239 voxels (5 mm3 voxel)
restricted to gray matter. Current source density is calculated
from a linear, weighted sum of scalp potentials. This value is
then squared per voxel, yielding current density power measures
(A/m2). Its validation has been independently replicated (52),
and cross-validated (53, 54). Current source density measures
from 84 Brodmann areas (BA; 42/hemisphere), available through
the eLORETA software, were extracted (single voxel at the
centroid of each BA).

Theta Cordance Analyses
Theta EEG cordance values were calculated using an algorithm
provided by the UCLA Laboratory of Brain, Behavior, and
Pharmacology (55). Briefly, values were computed by
normalizing theta power across electrode sites (calculated
using 19 electrodes, 30 bipolar pairings) and then combining
absolute and relative theta power values. Average cordance
values from prefrontal electrodes (Fp1, Fp2) at baseline and week
1 were extracted, as these two sites have been shown to be most
predictive of response outcome in the past (33, 34).

Machine Learning (ML) Methodology
As outlined, patients were classified into responders (N = 27) and
non-responders (N = 24, i.e., this was the dependent/outcome
feature) based on their clinical outcome by week 12 (Table 1),
thus, this ML problem was a binary classification problem. To
achieve our objective, which was to assess the utility of the
datasets for predicting week 12 response, we started by pre-
processing the data.

Data Preprocessing
Initially, we prepared and structured the raw data in order to
obtain the final datasets that could be used to build predictive
ML models. The preprocessing of data consisted of the following
steps:

a) Construction of Analytical Base Tables
We constructed the following analytical base tables (ABT):
(1). ln-normalized absolute EEG power from 28 electrodes
(mastoid-referenced/EC data) at baseline and after week 1 of
treatment for each of delta, theta, alpha1, alpha2, and beta
bands. (2). eLORETA-localized power values (ln-normalized
mastoid-referenced/EC data) at 84 BAs at baseline and week
1 for each band. (3). theta cordance data (EC data from
left and right prefrontal sites) at baseline and week 1. (4).
clinical/demographic data consisting of age, sex, each item
of the MADRS (10 items) as well as total MADRS scores at
baseline and week 1 as well as change scores for each MADRS
item (i.e., difference from baseline to week 1).

b) Data Clean Up
Individuals with missing data (i.e.. those without week 1 data)
were removed from the final ATB tables (N = 2). As such, the
final sample per ATB table included N = 27 responders andN
= 24 non-responders (N = 51 total).

c) Data/Feature Scaling & Normalization
Subsequently a scaling technique, called Min-Max scaling
(56), was applied to normalize the data (also referred to as data
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features or attributes) to a fixed range between minimum and
maximum values. Given a feature/attribute “A,” the Min-Max
scaling value xnorm of a value x in “A” is done via the following
equation:

xnorm =

(

x− xmin

xmax − xmin

)

×
(

x́max − x́min

)

+ x́min

Where xmin and xmax are the minimum and maximum values
in features “A” respectively, and x́min and x́max are the new
minimum and maximum values of “A” after scaling. As such,
if x́min = 0 and x́max = 1, then the maximum absolute
value of “A” is scaled to unit size. In practice, scaling plays an
important role for improving predictive models’ performance
(57, 58). The motivation to use this form of data standardization
is due to its robustness to small standard deviations of features,
and preserving zero (or near zero) entries in relatively sparse
datasets. Further, standardization brings all features into the
same range, allowing for scale-invariant features. Generally, ML
algorithms benefit from data standardization to efficiently reduce
data dimensionality, which aids with learning algorithms and
prediction.

Machine Learning Strategy: Three Stages
Although there are numerous ML approaches we could have
adopted, we focused on results obtained using Random Forests
(RF). As such, all of the steps are described in relation to RF.

a) Stage 1: Tree-Based Feature Selection
As the large number of features involved in the structured
ABTs (i.e., datasets) can represent a bottleneck for building
efficient predictive models, we applied the extremely
randomized trees (ERT) algorithm (59) to simplify the
ABTs by discarding irrelevant features. Irrelevant features
frequently capture unnecessary/redundant and noisy data.
ERT is a tree-based feature selection algorithm that can be
used to rank features using an importance measure (e.g.,
average Gini impurity reduction score). Relevant features
are obtained by discarding irrelevant features that have an
importance score less than a certain threshold (e.g., average
impurity reduction ≥0.01). Strictly speaking, ERT builds an
ensemble of unpruned decision trees and aggregates their
outputs for prediction. When building each decision tree in
ERT, every node uses Gini impurity measures (60) as a locally
optimal condition on a single feature to split the ABT into
two subsets such that the samples with identical classes (i.e.,
target value – in this case, responders and non-responders)
end up being in the same subset. Gini impurity measure can
be computed as follows:

Gini_impurity (ABT) =

K
∑

i=1

pi ×
(

1− pi
)

Where K is the number of class labels (target values:
responders/non-responders), and pi is the probability of a
certain classification i in K. Thus, G (ABT) measures the
likelihood of an incorrect classification of a new sample of a

random feature, if that new instance were randomly classified
according to the distribution of class labels from the dataset.
Thus, during the training of each tree, we can quantify how
each feature decreases the weighted impurity in this tree (i.e.,
with every split made of a node on a feature, the Gini impurity
measures of the two descendent nodes should be less than
the parent node). Thus, averaging the Gini impurity reduction
for each single feature over all trees in the forest provides its
importance, which allows us to rank the features based on
their relevance. It is worth noting that using only a relatively
small number of important features can dramatically enhance
the generalization of the constructed predictive models (i.e.,
classifiers) by reducing overfitting. This is why we ran feature
selection per dataset (vs. on all of the data).

b) Stage 2: Feature Mapping
We then applied kernel principal component analysis (KPCA)
on the purified ABTs after removing irrelevant features tomap
relevant features and reduce dimensionality (61, 62). That is,
KPCA is a method that uses a kernel function κ to project
the important features data onto a new space. This space
often contains a small number of features (compared to the
original datasets) and where the samples in the purified ABTs
become linearly separable and can be discriminated by finding
a decision between the given classes (i.e., responders/non-
responders) in the newly mapped space that best maximizes
class separation.
In KPCA, the kernel is a nonlinear function κ such that for all
samples xi, xj ∈ purified ABT, we have that κ

〈

ϕ (xi) ,ϕ
(

xj
)〉

,
where ϕ is a mapping from purified ABTs to an inner product
feature space (e.g., dot product space). While several kernel
functions can be used, such as polynomial and sigmoid, we
frequently obtained our best results when applying the radial
basis function (RBF) Gaussian kernel, which can be calculated

on two samples as follows:
〈

xi, xj
〉

= exp

{

−
‖xi−xj‖

2

2 σ 2

}

, where

σ is a free parameter. Thus, in the current work, we used the
RBF.
Other commonly used feature mapping methods, such as
Linear Discriminant Analysis (LDA) and standard PCA, often
only allows linear dimensionality reduction. Thus, if the data
has more complicated structures, which normally cannot be
represented in a linear subspace, such methods will produce
poor mapping. Thus, one key advantage of using KPCA in the
current work is that it allows us to generalize standard PCA to
nonlinear dimensionality reduction (63) and could therefore
provide efficient mapping of complicated data.

c) Stage 3: Predictive Data Modeling
At this point, the purified mapped ABT datasets could be
classified by building classification models, such as Random
Forest [RF; (64, 65)]. RF is a tree-based ensemble learning
method that operates by constructing a forest of decision trees
at the training phase. That is, we used the mapped purified
ABTs to create a number of decision trees. For each sample,
RF aggregates the predicted class labels (responder or non-
responder) of the individual trees. It then performs a mode
vote among all trees to produce the final class prediction. In
RF, we created a number of decision trees (i.e., estimators)
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in the forest in the domain of {10, 50, 100, 500}. Since we
obtained slightly better classification error rates when using
approximately 100 estimators this was what was used in the
current study [i.e., where the asymptote in the error rate
reduction occurred; (66)]. In other words, the classification
error rates stabilized with ∼100 decision trees (no notable
improvement was noted with 500 decision trees), which is
consistent with what others have suggested for RF (67).
Since we have a forest of decision trees to be trained, we
considered the best random split using the Gini measurement.
We chose a minimum impurity split of zero for early stopping
of the tree growth (64). We conducted a 10-fold cross
validation to increase the accuracy of the classification process
and applied regularization methods within our classification
models. Summary of the best parameter values that were
obtained for each ML method and dimensionality of data
matrices can be found in Supplementary Tables 5 and 6,
respectively.

Experimental Evaluation
We ran three experiments for RF classifier on each of the
following purified mapped ABTs: (a) eLORETA dataset
(Experiment A); (b) EEG dataset (Experiment B); (c)
clinical/demographic dataset (Experiment C). Subsequently,
all relevant features were combined into one predictive ML
model that also included the cordance dataset, which, given
the low-dimensionality of the data, did not undergo feature
selection (Experiment D). This was followed by a model
extracting themost predictive features of response/non-response
(Experiment E).

In order to guarantee a robust study/compare other ML
approaches, we additionally explored the following prominent
ML predictive models: (1). Classification and Regression
Tree [CART; (40, 68, 69)]; (2). Support Vector Machine
[SVM; (70)]; (3). Adaboost (71); (4). Multilayer Perceptron
(MLP) (72); and (5). Gaussian Naïve Bayes (73). Please
see Supplementary Information for further details on these
methodologies.

All ML predictive models were implemented, learned and
tested using Python programming language and Scikit-learn
toolkit package on an Intel(R) Core(TM) i7-2600 CPU @ 3.20
GHz computer with 16 GB of memory running on Windows 10.

Experimental Setting
We trained RF models using a 10-folds cross-validation
for predicting response (responder/non-responder) on the
underlying sub-datasets. That is, in the training phase, we
iteratively learned the parameters of models using nine out of the
10-folds in the sub-dataset. Additionally, and to avoid overfitting,
we applied regularization methods within our classification
models by adding penalty terms for extreme parameters in their
objective functions. Specifically, we pruned the tree in RF (and
also CART classifier) by penalizing the selection of features and
limiting the maximum allowable tree depth (we used L2-norm
regularization for SVM).

Evaluation Metrics
In order to judge the performance of the ML classification
algorithms, during the testing phase, and using the learned
models, we carried out response prediction on all patients
by conducting the following: We ran all algorithms until
convergence, and then recorded their confusion matrices on the
leave-out fold by calculating: (1). The proportion of responders
that were correctly classified (i.e., true positives [TP]); (2). The
proportion of non-responders that were correctly classified (i.e.,
true negatives [TN]); (3). The proportion of responders that were
misclassified as non-responders (i.e., false positive [FP]); and
(4). The portion of non-responders that were misclassified as
responders (i.e., false negative [FN]). Based on such confusion
matrices, we compared the accuracy of all tested ML predictive
models by computing the following evaluation metrics: (a)
Receiver Operating Characteristic (ROC) Curves (74)—These plot
the true positive rate (TPR or sensitivity/recall = TP

TP+FN : the
probability of the correct identification of the presence of a
disorder) against the true negative rate (TNR or specificity =

TN
TN+FP : the probability of the correct identification of the absence
of a disorder) at various thresholds. The closer the ROC curve
is to the diagonal, the less accurate the prediction. Thus, a ROC
is commonly used as a robust metric to compare diagnostic
accuracy of classification methods. (b) Average F1-Score (75)—
This score measures the harmonic mean of recall and positive
predictive value (PPV or precision = TP

TP+FP : the probability
that the presence of a disorder in a given patient is correctly
identified). In this case, if the prediction probability is >0.5, then
the person is predicted to be a responder, otherwise, the person
is predicted to be a non-responder. F1-scores are insensitive to
FN, and therefore, it quantifies the quality of an algorithm for
predicting the true positives. (c) Area Under the Curve (AUC)-In
the context of the current study, AUC quantifies the overall ability
of the classification model to discriminate responders/non-
responders (76). The greater the area under the curve (i.e., closer
it is to 1), the more accurate the prediction (chance is 0.5).
Additional evaluation metrics which were computed were the
negative predictive value (NPV) = TN

FN+TN : the probability that
the absence of a disorder in a given patient is correctly identified,
as well as overall accuracy= TP+TN

TP+TN+FP+FN .

RESULTS

Characteristics of the entire patient sample as well as
responders/non-responders are summarized in Table 1.

Experiment A: eLORETA ML Predictive
Results
Feature selection indicated that the most predictive features of
week 12 response/non-response using eLORETA data were: 6
features wherein source-localization was specific to delta, 10
to theta, 13 to alpha1, 9 to alpha2, and 12 beta. The average
impurity reduction score of ≥0.01 was used to determine the
importance of a feature (for all bands) in the eLORETA dataset.
Delta: With respect to predictive delta eLORETA features, they
were largely at baseline, right-localized and diffuse (though
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TABLE 2 | F1 scores of classifiers of source-localized (eLORETA)

electroencephalographic (EEG) band power and associated area under the curve

values (M ± S.D.) for random forest.

Alpha1 Alpha2 Beta Delta Theta

Random

forest

0.752 0.803 0.674 0.682 0.692

(AUC

values)

(0.75 ± 0.22) (0.74 ± 0.20) (0.62 ± 0.19) (0.69 ± 0.25) (0.77 ± 0.21)

Adaboost 0.694 0.748 0.648 0.661 0.725

SVM 0.757 0.695 0.507 0.659 0.690

CART 0.635 0.638 0.591 0.569 0.659

MLP 0.749 0.585 0.536 0.672 0.771

Gaussian

naive

bayes

0.756 0.619 0.497 0.718 0.629

AUC, area under the curve; CART, classification and regression trees; MLP, multilayer

perceptron; SVM, support vector machine.

not prefrontal). Baseline delta localized to the right lingual
gyrus was the most predictive delta feature. Theta: Predictive
theta features were from baseline and localized to the occipital
cortex (lingual gyri), and week 1 theta localized largely to
left-lateralized temporo-parietal regions. The most predictive
feature was week 1 theta localized to the left transverse temporal
gyrus. Alpha1: With respect to alpha1 (alpha1/2 was split based
on previous research that each band could be associated with
response (49, 77), predictive alpha1 features were largely week 1,
left-lateralized and relatively diffuse (though largely temporal).
Although, baseline prefrontal alpha1 was also found to be a
predictive feature. The most predictive feature was week 1 alpha1
localized to the left transverse temporal gyrus. Alpha2: Alpha2
predictive features were largely baseline, and localized to the
left parahippocampal gyrus, right pre/frontal regions (as well as
right subcallosal gyrus and ACC). The most predictive feature
was baseline alpha2 localized to the right subcallosal gyrus.
Beta: Predictive beta features were largely week 1 and localized
to the left precuneus and precentral gyrus as well as bilateral
posterior cingulate cortex, though baseline left-frontal beta was
also a predictive feature. The most predictive feature was week
1 beta localized to the left precuneus (Supplementary Table 2

and Supplementary Figure 2). As evidenced by F1 scores (focus
on RF), collectively, eLORETA features in the alpha1/2 bands
were most predictive (across ML approaches), followed by theta;
eLORETA-localized activity in beta/delta were less predictive of
week 12 response status (Table 2).

Experiment B: EEG ML Predictive Results
Feature selection indicated that the most predictive features of
week 12 response/non-response using surface-level EEG power
were: 17 delta EEG features, 20 theta EEG features, 14 alpha1
EEG features, 20 alpha2 EEG features, and 17 beta EEG features.
The average impurity reduction score of ≥0.02 was used to
determine the importance of a feature (for all bands) in the EEG
dataset. Delta: Regarding EEG delta features, those associated
with response prediction were largely at week 1, right-localized

TABLE 3 | F1-scores of classifiers of electroencephalographic (EEG) band power

and associated area under the curve values for random forest (M ± S.D.).

Alpha1 Alpha2 Beta Delta Theta

Random

forest

0.721 0.783 0.701 0.676 0.727

(AUC

values)

(0.70 ± 0.2) (0.80 ± 0.23) (0.67 ± 0.29) (0.72 ± 0.22) (0.71 ± 0.34)

Adaboost 0.674 0.775 0.643 0.576 0.752

SVM 0.612 0.768 0.521 0.657 0.691

CART 0.624 0.757 0.595 0.560 0.680

MLP 0.653 0.689 0.533 0.589 0.664

Gaussian

naive

bayes

0.719 0.697 0.599 0.646 0.718

AUC, area under the curve; CART, classification and regression trees; MLP, multilayer

perceptron; SVM, support vector machine.

and diffuse, with a handful of predictive features at baseline
(which were also predictive at week 1). The most predictive
features were EEG delta power at week 1 at T8 followed by
power at CP6. Theta: Predictive baseline EEG theta features
were generally frontal and occipital; week 1 predictive EEG theta
features were diffuse, though not occipital. The most predictive
features were baseline EEG theta power at Fp2 and week 1
EEG theta power at FC2. Alpha1: With respect to EEG alpha1,
predictive features were predominantly baseline and frontal.
The most predictive EEG alpha1 feature was baseline power
at F7/8. Alpha2: Baseline EEG alpha2 predictive features were
diffuse, while week 1 alpha2 predictive features were parietal and
occipital. The most predictive EEG alpha2 features were baseline
power at P8 and week 1 power at O1. Beta: Finally, predictive
EEG beta features existed at both baseline and week 1, and were
diffuse. The most predictive features were baseline EEG beta
power at T7 and week 1 power at Fz (Supplementary Table 3,
Supplementary Figure 3, and Table 3). As evidenced by F1
scores (focus on RF), overall, features in EEG alpha2 (followed by
theta) were most predictive of response (across ML approaches)
while beta/delta were least predictive (Table 3).

Experiment C: Clinical/Demographic ML
Predictive Results
Feature selection indicated that there were 31 predictive features
of response/non-response using demographic and clinical data.
The average impurity reduction score of ≥0.02 was used to
determine the importance of a feature. Age and sex were found
to be predictive features (with comparable predictive value).
Baseline, week 1 and score changes (week 1-baseline) were all
predictive features for MADRS items #2 (sadness), #5 (reduced
appetite), #6 (concentration difficulty), #8 (inability to feel),
#9 (pessimistic thoughts), #10 (suicidal thoughts) and total
MADRS score. Change scores were also predictive for items #1
(apparent sadness), #3 (inner tension), #4 (reduced sleep) and
#7 (lassitude), as were week 1 scores for #1 and #7, as well as
baseline scores for #3 and #4. Interestingly, the strongest feature

Frontiers in Psychiatry | www.frontiersin.org 7 January 2019 | Volume 9 | Article 768

https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Jaworska et al. Antidepressant Response EEG Machine Learning

TABLE 4 | F1-scores of classifiers of clinical and demographic data as well as

associated area under the curve values for random forest (M ± S.D.).

Random forest 0.737

(AUC values) (0.74 ± 0.23)

Adaboost 0.715

SVM 0.620

CART 0.652

MLP 0.544

Gaussian naive bayes 0.534

AUC, area under the curve; CART, classification and regression trees; MLP, multilayer

perceptron; SVM, support vector machine.

TABLE 5 | F1-scores of classifiers of important features extracted from

source-localization (eLORETA) and surface-level EEG power in various bands,

demographic/clinical as well as cordance data.

Random forest 0.901

(AUC values) (0.90 ± 0.14)

Adaboost 0.838

SVM 0.716

CART 0.791

MLP 0.687

Gaussian naive bayes 0.775

Associated area under the curve values for random forest (M ± S.D.) are presented.

AUC, area under the curve; CART, classification and regression trees; MLP, multilayer

perceptron; SVM, support vector machine.

predictive of response, by far, was the “concentration difficulty”
score (MADRS #6) at week 1, followed by “sadness” score
(#2) changes, and total MADRS score (Supplementary Table 4,
Supplementary Figure 4 and Table 4).

Experiment D: Combined ML Models
Subsequently, all of the most predictive features from the above
sections (Experiments A–C) were included in another ML
experiment, to which cordance data (theta EC from baseline and
week 1) was included, and the F1 values are presented in Table 5

(Figure 1). At a sensitivity of 0.77 and specificity of 0.99, the
model has a PPV of 0.99, NPV of 0.81, and overall classification
accuracy of 0.88.

Experiment E: ML Model of Most Important
Features
Finally, the last step was to combine all of the predictive features
from above, and extract the most predictive features of response.
The average impurity reduction score of ≥0.01 was used to
determine the importance of a feature. As is evident from
Table 6, baseline alpha1 power in frontopolar electrodes, baseline
alpha2 in the right parietal electrode as well as lower frequency
(delta/theta) power at the right parietal electrode at week 1 were
significant features associated with response. With respect to the
eLORETA data, baseline alpha2 localized to the ACC as well
as week 1 alpha1/theta data localized to left temporal/auditory
region were the features which most strongly contributed to

response. Finally, concentration difficulties at week 1 and change
in reported sadness from baseline to week 1 were the clinical
features associated with response. The most predictive feature
within this model was baseline theta EEG power at Fp2, followed
closely by baseline EEG alpha alpha2 at P8, and by baseline
EEG alpha1 power at Fp2. Together, these 12 features strongly
predicted response status as exemplified by the F scores (Tables 6,
7 and Figure 2). At a sensitivity of 0.65 and specificity of 0.99,
the model has a PPV of 0.98, NPV of 0.74, and an overall
classification accuracy of 0.78.

DISCUSSION

This study aimed to assess the utility of pre-treatment and week
1 clinical information as well as various types of EEG data
(source-localized current density, scalp-level power, prefrontal
theta cordance), alone and in combination, in predicting
antidepressant response at week 12 of pharmacotherapy
treatment using ML. In this study, comprised of a balanced
sample of eventual antidepressant treatment responders/non-
responders, we focused on Random Forest, though six other
ML approaches were compared (such comparisons are currently
lacking). To our knowledge, this is the first known study assessing
the predictive utility of source-localized EEG current density
across brain regions using ML. Further, in addition to sex and
age, individual depression symptom questionnaire item scores
were assessed in predicting antidepressant response (alone/in
combination with EEG data). Most comparable work generally
includes only total scores. This work expands on the ever-
growing body of research investigating the utility of ML tools in
aiding with antidepressant response prediction, with the broader
aim of improving clinical care by integrating precision-based and
personalized interventions in treating MDD.

Briefly, when considering each dataset separately, we found
50 eLORETA features to be predictive of response. Predictive
delta eLORETA features were largely baseline and right-
localized; those of theta were mainly baseline occipital and
week 1 left temporo-parietal. Predictive eLORETA alpha1
features were mainly week 1 and left temporally-localized, while
predictive alpha2 features were baseline and localized to the
left parahippocampal and right pre/frontal cortex. Predictive
eLORETA beta features were localized to the precentral gyrus and
posterior regions at week 1. Overall, fewest predictive eLORETA
features exited for delta, and most for alpha1/theta. Regarding
scalp EEG power, 88 features were predictive. Predictive EEG
delta features were largely week 1 and right-localized; those of
EEG theta were generally baseline frontal and occipital, while
week 1 were diffuse (not occipital). EEG alpha1 predictive
features were generally baseline and frontal, while those of alpha2
were diffuse at baseline, and parieto-occipital at week 1. Diffuse
predictive EEG beta features existed at both timepoints. Theta
and alpha2 were the most predictive scalp EEG features. Clinical
and demographic data consisted of 31 predictive features; the
most salient being “concentration difficulty” score at week 1,
followed by “sadness” score and total MADRS score changes
from baseline to week 1. When all of the features were included
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FIGURE 1 | Receiver operator curve (ROC) & area under the curve (AUC) scores for all important features extracted from all datasets (source-localized EEG current

density, scalp-level EEG power, clinical/demographic data & theta cordance) random forest.

into one ML experiment, the predictive utility of this model
was high (PPV: 0.99; NPV: 0.81). When the most important
features were identified in the final experiment, 12 predictive
features were extracted, with the most predictive being baseline
scalp EEG theta at Fp2, followed by baseline scalp EEG alpha2
at P8, and baseline scalp EEG alpha1 at Fp2. We found that a
model combining all important features (Experiment D) had
very high specificity (0.99), i.e., true negative rate, with a modest
sensitivity (0.77), i.e., true positive rate, and a classification
accuracy of 0.88. The high PPV indicates that the model is able
to predict, with a high degree of certainty, that a given patient
will truly be an eventual responder by week 12. The model which
contains themost important features (Experiment E) had similar
accuracy measures, however, the sensitivity, NPV, and overall
accuracy were lower than those in Experiment D. However,
this can be explained by the feature extraction process (we are
reducing the number of features from 171 to 12). These data
support the utility of EEG biomarkers in antidepressant response
prediction.

The majority of studies using non-ML approaches assessing
the predictive utility of EEG data have focused on midline,
generally rostral anterior cingulate cortex (ACC)-localized theta
current density. The rACC is known to be a region critical in
conflict resolution as well as in coordinating the physiological
response to conflict. Several studies have shown that higher pre-
treatment rACC-theta tends to be associated with a favorable
antidepressant response (78–81), though notable exceptions exist
(82, 83). There is also work suggesting that early changes in
rACC-theta may be associated with antidepressant response
(49). Further, pre-treatment rACC theta has been shown to
be predictive of placebo response. As such, activity in this
region and frequency band may be reflective of “response
readiness” (or malleability within a region highly implicated
in MDD) rather than solely physiological changes induced
by antidepressant drugs (84). In fact, the possibility of a

TABLE 6 | Features most predictive of antidepressant response laid out in order

of importance (as indexed by average impurity reduction scores; with the

top-most features having the most impact on the predictive values).

Dataset Features (in order of importance)

EEG Baseline Fp2 theta

Baseline P8 alpha2

Baseline Fp2 alpha1

eLORETA Baseline alpha1 localized to the right subcallosal gyrus (BA25)

Clinical Concentration difficulties at week 1

EEG Week 1 P8 theta

eLORETA Week 1 alpha1 localized to the left middle temporal gyrus (BA21)

eLORETA Week 1 alpha1 localized to the left transverse temporal gyrus (BA41)

EEG Week 1 P8 delta

Clinical Reported sadness change score (baseline to week 1)

EEG Baseline Fp1 alpha1

eLORETA Week 1 theta localized to the left transverse temporal gyrus (BA41)

TABLE 7 | F1-scores of classifiers of the most important features across all of the

datasets and associated area under the curve values for random forest (M ± S.D.).

Random forest 0.827

(AUC values) (0.83 ± 0.23)

Adaboost 0.815

SVM 0.730

CART 0.762

MLP 0.625

Gaussian naive bayes 0.731

AUC, area under the curve; CART, classification and regression trees; MLP, multilayer

perceptron; SVM, support vector machine.

placebo response driving some of the findings reported herein
cannot be discounted. Interestingly, one group noted that
rACC-delta was predictive of response (85), though a high
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FIGURE 2 | Receiver operator curve (ROC) using random forest when only the most important features are imputed into the model.

correlation existed between delta and theta current density.
Thus, although the rACC appears to be an important nexus
in antidepressant response prediction, is seems worthwhile to
investigate current density across all EEG bands and brain
regions in relation to response (as was done in the current
study), in order to identify other potentially predictive features
of response.

In the eLORETA dataset, we found many features -across
all bands, in diffuse brain areas, and at both timepoints- to
be associated with response. Further, in this study, rACC-
theta was not a predictive feature of response, though baseline
alpha2 current density in this region was. Overall, the response
predictive regions that alpha2 current density was localized to
are regions typically associated with structural and functional
alterations in MDD, such as the subgenual ACC [sgACC; (81)],
parahippocampal regions (86) and pre/frontal regions (87). In
the final model of most relevant features, only baseline sgACC-
alpha2, week 1 alpha1 in the left middle temporal gyrus and
alpha1/theta localized to the left auditory cortex contributed to
response prediction. This is in keeping with the importance of
the sgACC in response prediction (though not necessarily theta-
localized), while the implication of the auditory cortex may be
related to its high innervation by serotonergic fibers (88), though,
this interpretation is speculative.

When considering the literature on the utility of resting-state
scalp EEG in predicting response using non-ML approaches,
the literature -while extensive- is rather inconsistent. In general,
pre-treatment alpha power has been shown to differentiate
responders and non-responders (49, 78, 89–92). However,
in a large sample of depressed patients, the International
Study to Predict Optimized Treatment in Depression (iSPOT-
D) did not observe this [frontal alpha asymmetry was
predictive of response in females; (82)]. Similarly, there
has been an association between treatment response and

baseline scalp EEG theta activity. Several groups reported
that increased frontal/diffuse scalp-level theta was associated
with antidepressant non-response (92–94) while others noted
the opposite (95, 96) (i.e., increased fronto-midline theta was
associated with a favorable outcome). As outlined in the
introduction, several studies exist with respect to the predictive
abilities of prefrontal theta cordance, wherein decreases in
prefrontal theta cordance early in the course of antidepressant
treatment tend to be associated with treatment outcome (32–
34). Further, combining theta cordance data with clinical
scores strengthened response predication (97). Such work
underscores the importance of diverse data in improving
predictive algorithms.

Assessments of the scalp-level EEG dataset revealed a degree
of similarly between the scalp-level and eLORETA predictive
features; though the overlap was far from perfect. Further, in the
final predictive experiment of most relevant features, more scalp-
level EEG features were predictive of response. In the current
study, ML indicated that alpha was one of the most predictive
bands of antidepressant response outcome, replicating previous
work (49, 78, 89–92). Indeed, in the final model, alpha1/2 power
at frontopolar electrodes and alpha/delta/theta power at P8
were most predictive scalp-level EEG features. The predictive
utility of frontopolar electrodes fits with the findings of Al-Kaysi
et al. (43), who found that frontal sites were most predictive
of depression symptom and cognitive improvement (vs. non-
improvement) following tDCS using ML approaches (i.e., SVM,
linear discriminate analysis, extreme learning machine). The
importance of frontopolar electrodes is also in keeping with the
work on frontal theta cordance, which focuses on pre/frontal
sites. The importance of the P8 site fits with the work associating
the parietal region with anxious arousal (76, 98, 99). Most
individuals with depression exhibit heighted anxiety, either at
sub-clinical or clinical levels (a handful of our participants had
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co-morbid anxiety, and many had sub-clinical anxiety features).
Finally, alterations in fronto-parietal networks are implicated in
MDD (100), thus, predictive scalp-level EEG features at these
sites may reflect this. Indeed, future work should investigate the
utility of EEG connectivity (particularly between fronto-parietal
regions) whichmay also have predictive value, as shown by others
(41, 42).

Early depression symptom changes have been associated with
eventual response. A meta-analysis found that a 20% reduction
on the Hamilton Rating Scale for Depression (HAMD-17) within
2 weeks post-treatment initiation was predictive of later response
and remission with a high sensitivity [81–87%; (101)]. In another
meta-analysis, Wagner et al. (102) found that early improvement
(>20/25% HAMD/MADRS reductions from baseline to week
1 or 2) predicted later response with high sensitivity (85%),
but lower specificity (54%). However, analyses of individual
trajectories of symptom change found that both early and delayed
improvement are equally common (51% showed a delayed
response); thus, eventual response cannot be predicted from
early assessments in all patients (103). In terms of specific or
individual symptom score changes being predictive of response,
one study found that individual symptoms performed better
than total improvement scores, though the difference was small
(104). Such findings suggest that both total depression symptom
scores or individual items cannot be solely relied upon as a
predictive tool of response; thus, combining clinical measures
with EEG may yield higher predictive accuracy. Interestingly, we
found that “concentration difficulty” scores at week 1, as well as
“sadness” and total MADRS score changes were most predictive;
the “sadness” change scores and “concentration difficulty” scores
at week 1 were also included in the most predictive/final
feature model. Concentration difficulties and general cognitive
dysfunction are potential risk factors for MDD relapse, as
well as being associated with psychosocial and impaired daily
functioning in the disorder (105). As such, the importance of
concentration difficulties in relation to response prediction is
noteworthy.

Early prediction of a negative response/non-response is just
as important as positive response prediction. For instance, if
one could predict -with a high degree of certainty- that a given
patient will not respond to a particular treatment shortly after
treatment initiation, then an adjunctive or alternative treatment
could be offered. Indeed, there are EEG-based ML initiatives that
attempt to do just that: characterize the probability of response
and non-response to antidepressant interventions, and provide
treatment recommendations. For instance, PEER (Psychiatric
Electroencephalography Evaluation Registry) is a registry which
selects an individual’s medication class, independent of diagnosis,
based on a pre-treatment EEG indices (the PEER database
consists of EEG data from thousands of patients and associated
clinical outcomes). The PEER report provides the probability
of both response and non-response to medication classes.
Preliminary data from PEER trials show promise [e.g., (106)].

There is limited published data to which we can directly
compare our findings. Khodayari-Rostamabad et al. (39), who
carried out ML using EEG to predict antidepressant treatment
outcome at 2-weeks post-treatment initiation, found similar

prediction accuracy [though the ML techniques were different
and they did not report F1-scores; further, their sample was
smaller (N = 22)]. However, different features were selected
in the two studies, as we did not include coherence measures,
which were found to be the most predictive features by
Khodayari-Rostamabad et al. Another group that used ML
techniques for predicting antidepressant response following
rTMS found that elevated theta connectivity (particularly frontal
to posterior connectivity) at baseline and week 1 was most
predictive, with relatively high sensitivity (0.84) and specificity
(0.89). Al-Kaysi et al. (43) used ML approaches to predict which
MDD patients would respond to tDCS-induced cognitive and
depressive symptom changes (MADRS total score) found that
frontal electrodes were most useful (and that fronto-central
connectivity was highly predictive). Despite a small sample size,
they were able to correctly classify a substantial proportion of
their patients correctly with respect to response (frequency bands
were considered together).

FUTURE DIRECTIONS AND LIMITATIONS

While existing research, coupled with data from the current
study, is difficult to synthesize, certain themes exist. First, the
most predictive emergent features of antidepressant response
using ML (and non-ML) approaches tend to be either from alpha
and/or theta EEG bands. While features from other bands are
also valuable, discarding them seems to be helpful in tackling the
problem of dimensionality and building generalizable predictive
models, and therefore improving response prediction. Thus,
focusing on alpha/theta bands may be reasonable. Second,
pre/frontal regions tend to be most associated with response,
though the contribution of parietal regions is also notable. Third,
combining various EEG measures (e.g., connectivity, coherence,
power) may yield the most powerful ML predictive models. A
recent ML study, which employed a wavelet-based technique
for predicting response to SSRI treatment in MDD, found a
classification accuracy of 87.5% using pre-treatment wavelet data
in delta and theta frequencies in frontal and temporal regions
(107). Thus, this method may be another useful contributor of
response prediction in comparable future ML work. However,
the utility of these measures has to be balanced with practical
considerations. For example, the time associated with extracting
eLORETA current density is substantial; further, localization
of sources using eLORETA is based on several assumptions-
when these are violated, source-localization can be flawed. While
we found that eLORETA features added predictive value, the
contribution of scalp-level EEG power was greater. Moving
forward, if ML approaches using EEG data are to be viable tools
for antidepressant response prediction, input features should
require limited data clean-up and pre-processing. As such,
source-localized EEG features (as well as wavelet analyses) may
be less practical when considering clinical applications. Our
selection of frequency band cut-offs (though not atypical) may
also vary from published work (the same is true for our filter
parameters). Specifically, with respect to the beta band, we
analyzed frequencies ranging for 13–30Hz (with a 0.1–30Hz
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bandpass filter); as such, the influence of upper beta values (i.e.,
closer to 30Hz) may have been attenuated. This, in turn, could
have altered the prediction results from the beta band. Similarly,
the predictive utility of gamma was not considered. Another
methodological consideration is reference choice [e.g., average,
linked-mastoid, reference electrode standardization technique
[REST]; (108)]. In the current study, linked-mastoids were
used as the reference. However, we acknowledge that this may
introduce a degree of physiological noise that may have altered
the data and thus classification accuracies. Future ML studies
may benefit from constructing datasets with different reference
montages, and comparing accuracy. This would also aid in
potentially standardizing reference choice in the context of ML.
In a similar vein, there is a need for combining datasets from
a large number of centers/different groups to ensure that ML-
identified response prediction features are properly tested on
independent cases (i.e., models built on one large dataset but
tested on another large dataset). Further, large datasets are
required to extract features predictive of response to various
antidepressant medication classes, which is critical information
for personalized care. Such initiatives are already in place, and
the results of such efforts are eagerly awaited. A final point is
that the measures included in the current study were based on
commonly-employed EEG features (i.e., power, source-localized
activity, cordance). However, this approach may be obscuring
potentially useful information that we did not think to include.
Therefore, future studies may be optimized by employing a
more data-driven process of feature extraction (though, there are
practical considerations that must be considered).

It is also worth commenting on the value of including
clinical features in predictive ML algorithms using EEG data.
In the current work, we found that both individual item
scores and total scores were predictive of response. Further, it
seems that cognitive symptom scores, such as concentration,
may be particularly important. Interestingly, in the current
study, age and sex did not have as high a predictive value;
however, given that this information is not difficult to obtain,
it should be included in future predictive ML work (but,
is generally not). EEG features at both baseline and week
1 were predictive of response. Thus, if possible, data from
before and shortly after treatment commencement should be
included in prediction algorithms (though, from a practical
point of view, this may not always be possible). We also
did not include changes in theta cordance from baseline
to week 1, which has been more consistently utilized in
differentiating antidepressant responders/non-responders; this
may have contributed to improving our final predictive models.
Finally, while our prediction accuracy scores for eachMLmethod
were derived from ROC curves, it has been suggested that
meaningful qualitative conclusions should be drawn from ROC
analyses that include >100 cases. This is especially important
when differences between categories are subtle (109). As such,
in the context of the current and future work, a larger
sample size would be optimal for drawing values from ROC
curves. In other words, larger samples (N > 100 participants)
would ostensibly yield more valid sensitivity and specificity
values.

There are several considerations that warrant discussion
from a ML perspective. First, there is no hard-and-fast rule
to determine a specific sample size for building a stable
predictive model. Traditionally, this is based on the trade-off
between factors such as feature (dimension) space, sample size,
distribution of samples across classes, the nature of the data,
and whether the problem is a binary or a complex multi-
classification problem. Hence, while a larger sample size is
always preferable, and is certainly recommended for comparable
future work (i.e. multi-center, multi-group data), our predictive
models should be considered appropriate in this context for
the following reasons: First, the ML approaches we used were
based on a simple binary classification problem, and the number
of features was generally less than the sample size (which aids
with the issue of overfitting; see Supplementary Information).
Further, the target feature was balanced in terms of the number
of responders/non-responders. Finally, we also attempted to
avoid overfitting by applying cross-validation and regularization
methods.

Additionally, although there are positive aspects to using
Random Forests, which was our primary ML focus (e.g., easy
to apply), there are caveats which must be considered. Namely,
features can be correlated, and any of these correlated features
can be used as a predictor in the model. As a result, once a
predictive feature is selected, the importance of other correlated
features decreases, which means that even strong features can be
ranked with a lower importance. While this reduces overfitting, it
may lead to the erroneous assumption that the certain predictors
are significantly less important (65). We attempted to deal with
this by including various other ML approaches in the current
paper. Generally, if a specific set of features was ranked as
having high predictive utility (e.g., alpha/theta scalp-level EEG)
with RF, it tended to be highly predictive using the other
approaches.

CONCLUSION

In conclusion, a set of predictive methods in ML applied to our
resting-state EEG dataset proved to be a viable approach for
extracting salient predictive features of antidepressant treatment
efficacy in patients with MDD. Importantly, the combination of
datasets seems to provide enhanced predictive ability. A recent
meta-analysis found that, as of now, quantitative EEG does not
appear to be clinically reliable in the prediction of antidepressant
treatment response; one suggested explanation is that depression
itself is heterogeneous, therefore, the prediction of response via
EEG may be clouded by differences in patient sub-groups or
characteristics (110). This supports the combination of both
electrophysiological as well as individual depression symptoms
to improve predictive ability and future reliability. However,
the generalizability of the current findings needs to be assessed
in larger populations, and with different pharmacological
antidepressant agents and/or other forms of antidepressant
interventions. While it is premature to conclude whether
this EEG-based technology will be suitable for integration in
daily clinical practice, our data, along with those of others,
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suggests that the use of ML approaches with scalp-level EEG,
clinical/demographic features, and EEG source-localization,
may have significant potential in defining optimal predictors
which can be used to guide and personalize antidepressant
treatment.
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