
REVIEW Open Access

The prostaglandin D2 receptor 2 pathway
in asthma: a key player in airway
inflammation
Christian Domingo1,2, Oscar Palomares3, David A. Sandham4, Veit J. Erpenbeck5 and Pablo Altman6*

Abstract

Asthma is characterised by chronic airway inflammation, airway obstruction and hyper-responsiveness. The
inflammatory cascade in asthma comprises a complex interplay of genetic factors, the airway epithelium, and
dysregulation of the immune response.
Prostaglandin D2 (PGD2) is a lipid mediator, predominantly released from mast cells, but also by other immune cells
such as TH2 cells and dendritic cells, which plays a significant role in the pathophysiology of asthma. PGD2 mainly
exerts its biological functions via two G-protein-coupled receptors, the PGD2 receptor 1 (DP1) and 2 (DP2). The DP2
receptor is mainly expressed by the key cells involved in type 2 immune responses, including TH2 cells, type 2
innate lymphoid cells and eosinophils. The DP2 receptor pathway is a novel and important therapeutic target for
asthma, because increased PGD2 production induces significant inflammatory cell chemotaxis and degranulation via
its interaction with the DP2 receptor. This interaction has serious consequences in the pulmonary milieu, including
the release of pro-inflammatory cytokines and harmful cationic proteases, leading to tissue remodelling, mucus
production, structural damage, and compromised lung function. This review will discuss the importance of the DP2
receptor pathway and the current understanding of its role in asthma.
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Background
Asthma affects approximately 358 million people
worldwide [1], and is characterised by chronic airway
inflammation, reversible airway obstruction and hyper-re-
sponsiveness. The heterogeneous nature of this condition
may cause difficulty in predicting response to treatment in
a particular patient [2, 3].
Despite the availability of clinical practice guidelines

and standard-of-care therapy, a large proportion of
asthma patients remain symptomatic and experience
poor quality-of-life [4, 5]. There is a high unmet need
for novel asthma therapies, especially for patients with
severe disease. Effective disease control is dependent in
part by treatment adherence [6], which can be influ-
enced by route of administration. Adherence to inhaled
therapies, particularly maintenance therapies such as

inhaled corticosteroids, is often poor, and is driven by
the complexity of the inhaler, as well as errors during de-
vice use, such as improper actuation–inhalation coordin-
ation [7]. A clinical consequence of poor or non-adherence
to inhaled therapies is increase of symptoms and eventually
the occurrence of exacerbations [8]. Adherence to oral
asthma treatment has been shown to be superior to that of
inhaled therapies [9, 10], however oral therapy options for
the management of asthma are presently quite limited.
Hence, effective new oral therapies may help the manage-
ment of severe or insufficiently controlled asthma [11, 12],
as has been the case with the recent introduction of
biological therapies via subcutaneous injection.
A treatment target with a novel mechanism of action

that has gained significant interest in recent years and
which has promise to be accessible by small molecule-
based oral therapies, is the receptor 2 (DP2) of prosta-
glandin D2 (PGD2). This receptor is also referred to in
the literature as the chemoattractant receptor homolo-
gous molecule expressed on TH2 cells (CRTH2) [13], and
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is expressed on the membrane surface of TH2 cells, type
2 innate lymphoid cells (ILC2), mast cells and eosino-
phils [14–16]. This review aims to discuss the current
understanding of the DP2 receptor signalling pathway in
asthma.

Allergen-dependant and non-allergen-dependent
stimulation
The inflammatory cascade in asthma comprises a com-
plex interplay of factors. In a large proportion of
patients, asthma is associated with a type 2 immune
response (Type 2-high asthma) [17, 18]. Until recently,
only the allergen-dependent immune pathway was con-
sidered to be an important target for asthma treatment.
However, it is now clear that both the non-allergen- and
allergen-dependent immune pathways are involved in
the pathophysiological and immunological responses in
asthma [19]. As PGD2, a pro-inflammatory lipid medi-
ator, release is stimulated following both non-allergen-
dependent (infections, physical stimuli or chemical
stimuli) and allergen-dependent immune activation, the
DP2 receptor pathway has relevance in both atopic and
non-atopic asthma (Fig. 1) [16, 20].

PGD2 release from immune cells
PGD2 is released following activation of the immune
system, which can be either non-allergen- or allergen-
dependent (Fig. 1); the non-allergen-dependent pathway
comprises indirect activation of mast cells via the pro-
cessing of physical agents, chemical agents or infections
by antigen presenting cells, or direct activation via
complement, sphingolipids and others. Through the
allergen-dependent pathway, inhaled allergens trigger a
cascade of events that provoke the release of PGD2, initi-
ating a signalling cascade through the DP2 receptor in
target cells (TH2 cells, ILC2 and eosinophils). Inhaled
antigens are presented to CD4+ T lymphocytes by
allergen presenting cells. In allergic patients, these T
lymphocytes differentiate to acquire a TH2 cell profile,
producing significant amounts of IL-4 and IL-13, which
promote IgE class-switching in B lymphocytes [21–23].
Mast cells are subsequently activated upon allergen-in-
duced cross-linking of adjacent high-affinity IgE Fc recep-
tor (FcεRI)-bound IgE at the cell surface [24].
PGD2 is primarily released from mast cells through

activation of hematopoietic PGD synthase, resulting in
nanomolar local concentrations of the mediator [25].
Mast cells are tissue-resident cells that can be activated
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Fig. 1 Overview of the DP2 receptor-mediated response of immune cells in the inflammatory pathway. Proposed schematic providing an overview of
the DP2 receptor-mediated response of various immune cells, including mast cells, TH2 cells, ILC2 and eosinophils, and the subsequent effect on
inflammation in the asthmatic airways through increased inflammatory cell chemotaxis and cytokine production. Abbreviations, APC: antigen
presenting cell; DP2: prostaglandin D2 receptor 2; IgE: immunoglobulin E; IL: interleukin; ILC2: type 2 innate lymphoid cell; PGD2: prostaglandin D2
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and degranulated in minutes [26]. They are widely dis-
tributed at mucosal surfaces and in tissues throughout
the body, and play a central role in the pathophysiology
of asthma, not only by mediating immunoglobulin E
(IgE)-dependent allergic responses, but also in non-IgE-
mediated mechanisms [27, 28]. Mast cell numbers are
similarly increased in both allergic and non-allergic
asthma, although response to cyclic adenosine mono-
phosphate (cAMP) is higher in allergic than in non-aller-
gic patients [29].
Aside from mast cells, other cell types can also pro-

duce PGD2 under certain conditions, including biologic-
ally meaningful quantities in TH2 cells [13, 30, 31].
Macrophages [32], and dendritic cells [33, 34] also pro-
duce small amounts of PGD2.

PGD2 receptors
PGD2 mainly exerts its biological effect via high affinity
interactions with two structurally and pharmacologically
distinct receptors (the prostaglandin D2 receptor 1 [DP1]
and the DP2 receptor) [13]. At micromolar concentrations,
PGD2 can also stimulate the thromboxane receptor [35].
DP1, a 359 amino acid, ~40 kDa G-protein-coupled

prostaglandin receptor, was the first PGD2 receptor to
be identified [36, 37]. It mediates a range of effects,
which are mostly non-inflammatory in nature; vasodila-
tion, inhibition of cell migration, relaxation of smooth
muscle, and eosinophil apoptosis [38].
The DP2 receptor is a 395 amino acid, 43 kDa

G-protein-coupled prostaglandin receptor. Binding of
PGD2 to the DP2 receptor on immune cells induces a
myriad of pro-inflammatory downstream effects, which
significantly contribute to the recruitment, activation
and/or migration of TH2 cells, ILC2, and eosinophils,
thereby fuelling the inflammatory cascade in asthma
[14, 38–41]. PGD2 metabolites (DK-PGD2, Δ12PGJ2,
15-deoxy- Δ12,14PGD2, and deoxy- Δ12,14PGJ2) also
activate the DP2 receptor [42–44].

Cells expressing the DP2 receptor
The DP2 receptor plays a key role in the pathophysiology
of asthma: it induces and amplifies the inflammatory
cascade [16, 25, 45, 46]. This type of receptor can be
found in many cell types, however the key cells of the
DP2 receptor pathway include TH2 cells, ILC2 cells and
eosinophils, suggesting a homeostatic role for this recep-
tor (Fig. 1) [14–16, 47]. In addition, type 2 cytotoxic T
(Tc2) lymphocytes were recently shown to be activated
by PGD2 acting via the DP2 receptor, thus contributing
to the pathogenesis of eosinophilic asthma [41].

Effects of the DP2 receptor on TH2 cells
PGD2 preferentially upregulates IL-4, IL-5 and IL-13
expression (type 2 cytokines) in TH2 cells in a

dose-dependent manner [48] and induces TH2 cell mi-
gration [46] via its high affinity interaction with the DP2
receptor (Fig. 1).
DP2 receptor activation has shown a potent effect on

TH2 cell migration in vitro, highlighting a key function
of this receptor in mediating the chemotaxis of TH2
lymphocytes [49]. As elevated levels of circulating
DP2

+CD4
+ T cells is a hallmark feature of severe asthma

[50], this provides a DP2 receptor-rich environment
upon which already increased levels of PGD2 levels may
act, further perpetuating the inflammatory cascade.

Effects of the DP2 receptor on ILC2 cells
ILC2 is a cell type that may link the non-allergen- and
allergen-dependent responses in asthma. ILC2 cell acti-
vation is triggered by inflammatory mediators released
from epithelial and immune cells (e.g. IL-33 and PGD2),
and is associated with increased production of type 2
cytokines [51]. Thus, ILC2 cells facilitate a TH2 immune
response that can be independent of the allergen [52].
Secretion of IL-4, IL-5 and IL-13 from ILC2 cells is

increased in response to DP2 receptor stimulation in a
dose-dependent manner [16].
In response to IL-33, ILC2 cell activation was initially

reported to produce high levels of IL-5 and IL-13 in
vitro, but very low levels of IL-4. Interestingly, recent
studies have shown that when their DP2 receptor is
stimulated, ILC2 cells produce higher levels of IL-4 [53].
Meanwhile, DP2 stimulation alone remarkably in-

creases ILC2 cell migration, which is 4.75-fold greater
than that of IL-33 [16].

Effects of the DP2 receptor on eosinophils
Eosinophils are involved in airway hyper-responsiveness,
mucus hypersecretion, tissue damage and airway remod-
elling in asthma. Eosinophil activation is also associated
with increased cytokine production, which has various
downstream immunomodulatory effects [54]. DP2 recep-
tor activation at the eosinophil surface facilitates the
trans-endothelial migration and influx of eosinophils,
increases eosinophil degranulation and induces eosino-
phil shape change [40, 55, 56]. Eosinophil shape change
in response to DP2 activation [57] is similar to that
visualised previously with eotaxin stimulation [58].
Eosinophil influx and activation can cause detrimental

effects on the epithelial lining of the lungs of asthma
patients. This happens through degranulation and re-
lease of harmful mediators such as eosinophil cationic
protein, eosinophil peroxidase, eosinophil protein X and
cytotoxic major basic protein [19, 59, 60]. Additionally,
eosinophils release transforming growth factor (TGF)-ß
which induces apoptotic effects upon airway epithelial
cells, contributing to airway tissue denudation. More-
over, eosinophils enhance airway smooth muscle cell
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proliferation, further contributing to structural remodel-
ling of the pulmonary architecture [61]. Charcot-Leyden
crystals, a product of activated eosinophils, are detectable
in expectorated sputum samples from asthma patients
[62]. These crystals are largely comprised of the toxic
enzyme lysophospholipase (also known as phospholipase
B), and may contribute to eosinophil-driven tissue
denudation in the lungs [63].
As mentioned previously, in addition to the direct

effects, DP2 receptor activation also has indirect effects
on eosinophils by inducing the release of IL-4, IL-5 and
IL-13 from TH2 cells and ILC2, which affect eosinophil
maturation, apoptosis and migration to the lungs.

Effects of DP2-mediated cytokine release
DP2 receptor activation increases release of cytokines
from ILC2 and TH2 cells. These cytokines cause some of
the characteristic features of asthma, including airway
inflammation, IgE production, mucus metaplasia, airway
hyper-reactivity, smooth muscle remodelling and eosino-
philia [52, 64]. We will review the effects of the key cyto-
kines released:

� IL-4 enhances the migration of eosinophils, which is
a key step in the inflammatory cascade. To do this,
in synergy with tumour necrosis factor (TNF)-α, IL-
4 increases the expression of vascular cell adhesion
molecule-1 (VCAM-1) and P selectin on the surface
of the vascular endothelium, which facilitates the
trans-endothelial passage of eosinophils from the
bloodstream into the lung parenchyma [19, 65].
Meanwhile, IL-4 also stimulates the release of
eotaxin, a potent and selective eosinophil chemo-
attractant, from the vascular endothelium (Fig. 1).
Eotaxin facilitates eosinophil migration [66, 67].
Differentiation and proliferation of TH2 cells is also
promoted by IL-4 [39].

� IL-5 is directly involved in the differentiation and
maturation of eosinophils in the bone marrow,
eosinophil chemotaxis to sites of inflammation,
and local eosinophilopoiesis [68, 69]. It also
inhibits eosinophil apoptosis, leading to the
accumulation of these cells at sites of
inflammation, which in turn perpetuates and
prolongs the inflammatory cycle [70].

� IL-13 is known to induce goblet cell hyperplasia,
mucus production, and airway hyper-responsiveness,
leading to airway inflammation and tissue remodel-
ling [39, 64]. Furthermore, IL-4 and IL-13 released
from TH2 and ILC2 in response to DP2 receptor ac-
tivation promote immunoglobulin class switching
from IgM to IgE antibodies in B cells and plasma
cells, which leads to further mast cell recruitment,
activation and PGD2 release at sites of inflammation

[16, 20, 71, 72]. It also contributes to the release of
eotaxin (together with IL-4), which as mentioned
above, facilitates eosinophil migration.

� Levels of other pro-inflammatory cytokines are also
increased upon activation of DP2 receptors, includ-
ing IL-8, IL-9 and granulocyte–macrophage colony-
stimulating factor, which may additionally contribute
to excessive immune cell chemotaxis, associated
proteases and enhanced airway inflammation in
asthma [16].

Results from phase II clinical studies suggest that
blocking the activation of the DP2 receptor pathway with
DP2 receptor antagonists reduces the symptoms associ-
ated with asthma, improves pulmonary function and
inhibits eosinophil shape change, while showing indirect
signs (sputum eosinophil reduction) of the potential to
decrease the number of exacerbations experienced by
severe asthma patients [73–80].

Further evidence for DP2 receptor pathway importance in
asthma
PGD2 levels are increased in asthma, with increased
levels in patients with severe disease [27, 81], and in
response to allergen challenge [82, 83]. The number of
DP2 receptor-positive cells within the submucosal tissue
is also significantly higher in patients with severe asthma
compared with healthy controls [84]. Interestingly, an
association between a single nucleotide polymorphism
in the DP2 receptor (rs533116) and allergic asthma has
also been reported [85].
PGD2 protein and DP2 receptor expression levels in

bronchoalveolar lavage fluid (BALF) from severe asth-
matic patients were shown to be significantly higher
than from healthy controls or patients with mild or
moderate asthma [27, 81]. Interestingly, Murray et al.
[82] demonstrated a 150-fold increase in PGD2 levels in
BALF from asthma patients within nine minutes of local
antigen (Dermatophagoides pteronyssinus) challenge,
demonstrating that allergen-induced PGD2 release is an
early and rapid event. Furthermore, a study by Wenzel
and colleagues showed that allergen challenge in atopic
asthma patients induced a significant increase in BALF
PGD2 levels compared with atopic patients without
asthma [83].
Of significant interest is the sustained activity of

PGD2-derived metabolites despite extensive and rapid
PGD2 metabolism. The PGD2-derived metabolites PGJ2
and Δ12-PGJ2, are themselves known to be potent DP2
receptor agonists, thereby demonstrating the sustained
and prolonged activity of the DP2 receptor via the me-
tabolites of PGD2 [45]. Despite the short half-life of
PGD2 in plasma (~30 min), its biological activity towards
the DP2 receptor is maintained through the formation of
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these metabolites, which are more stable than the parent
compound, highlighting their potential role in perpetuat-
ing the inflammatory cascade [45].
Blockage of PGD2 via DP2 receptor antagonism in-

hibits inflammatory cell chemotaxis and also reduces
type 2 pro-inflammatory cytokine production, which
provides further evidence of the vital role played by
PGD2 and its interaction with the DP2 receptor in
asthma [46]. Of note, DP2 receptor antagonism has also
been shown to decrease airway smooth muscle cell mass
and chemotaxis of these cells towards PGD2 [86, 87].

Role of the DP2 receptor pathway in virus-induced
asthma
Viruses, such as rhinovirus (RV), influenza A, and respira-
tory syncytial virus (RSV), are a major cause of asthma
exacerbations and can activate the DP2 receptor pathway
[88]. These respiratory viruses produce double-stranded
RNA (dsRNA) during replication, which activates the
non-allergen-dependent immune response and results in
increased chemokine synthesis from airway epithelial and
innate immune cells [88, 89]. A recent study also suggests
the involvement of the DP2 receptor pathway in aug-
menting virus-mediated airway eosinophilic inflamma-
tion [88]. It shows that DP2 receptor stimulation
followed by eosinophil recruitment into the airways is
a major pathogenic factor in the dsRNA-induced
enhancement of airway inflammation and bronchial
hyper-responsiveness [88].
PGD2 levels have also been found to be increased after

viral challenge in asthma patients, which may act syner-
gistically with IL-33 to further drive type 2 cytokine
production [90, 91]. The role of PGD2 in RV16-induced
asthma exacerbations was recently investigated in atopic
asthma patients [91]. In this study, baseline PGD2 levels
were higher in asthmatic patients versus healthy con-
trols. Furthermore, RV16 infection induced a greater
PGD2 increase in asthmatic patients compared with the
healthy participants. The largest RV16-mediated PGD2

increase was observed in those with severe and poorly-
controlled asthma, suggesting a potential role for PGD2

in driving asthma exacerbations [91].
Polyinosinic:polycytidylic acid (poly I:C) is an immu-

nostimulant; it is structurally similar to double-stranded
RNA, which is present in some viruses and is a “natural”
stimulant of toll-like receptor 3 (TLR3), which is
expressed in the membrane of B-cells, macrophages and
dendritic cells. Thus, poly I:C can be considered a
synthetic analogue of double-stranded RNA and can
simulate viral infections. Early evidence from poly I:C
murine asthma models suggests that a selective DP2
receptor antagonist may dose-dependently block the
aforementioned virus-induced T2 response, and may

help to reduce the inflammation caused by virus-medi-
ated asthma exacerbations [92].

Conclusions
The DP2 receptor pathway is known to play a key role in
the pathophysiology of asthma via induction and ampli-
fication of the inflammatory cascade by exerting direct
effects on immune cells, including TH2 cella, ILC2 and
eosinophils [16, 46, 55]. IL-4, IL-5 and IL-13 release
from DP2 receptor-activated immune cells can have
significant effects on immune cell influx, degranulation,
tissue remodelling and mucus production in the airways,
leading to structural damage, fibrosis and reduced
pulmonary function [64]. Additionally, the effect of DP2
receptor activation on eosinophil activation and migra-
tion leads to tissue damage, through release of harmful
cationic proteins and enhanced proliferation of airway
smooth muscle cells [93].
This review highlights the important pro-inflammatory

role of the DP2 receptor pathway in asthma. Further-
more, multiple DP2 receptor antagonists are currently
under clinical investigation [73–75, 77–80], for asthma
therapies. Indeed, in a 12-week study in patients with al-
lergic asthma that was uncontrolled by low-dose ICS,
the oral DP2 receptor antagonist fevipiprant (150 mg
once daily or 75 mg twice daily) produced significant
improvements in pre-dose FEV1 compared with placebo
[73]. Further, in patients with moderate to severe eosino-
philic asthma, fevipiprant significantly reduced mean
sputum eosinophil percentage compared with placebo
[80]. Initial positive findings have also been reported
with timapiprant (OC00459) [78], BI 671800 [77], seti-
piprant [94] , MK-1029 and ADC-3680 [95] , but not
with AZD1981 [75]. Hence, the clinical outcomes of
larger, phase III clinical studies involving DP2 receptor
antagonists are eagerly awaited.
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