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Abstract: The percentage of individuals over the age of 60 is projected to reach 22% by 2050; chronic
diseases associated with aging can present challenges for these individuals. Anthocyanins and the
gut microbiome have each been studied as independent influencers of health. Both these factors
have shown to have a positive effect on cardiovascular and bone health in individuals, as well as
on the prevention or treatment of certain forms of cancers. Anthocyanins have shown to modulate
the composition of the gut microbiome and may have overlapping mechanisms in the prevention
and treatment of cardiovascular disease, cancer, neurodegenerative disorders and aging-associated
bone loss. These health outcomes are responsible for the hospitalization and deaths of millions
of Americans every year and they cost the United States billions of dollars each year to maintain,
prevent and treat. Alternative methods of treatment and prevention are desired since conventional
methods (surgical and pharmacological methods, physical therapy, etc.) can be costly and have
significant side effects; evidence suggests that anthocyanins and the gut microbiome may be potential
avenues for this. This review evaluates the findings of existing literature on the role of anthocyanins
and the gut microbiome on health and their potential as a natural therapeutic agent or a target organ
to provide an alternative to the conventional methods of disease prevention and treatment.

Keywords: anthocyanins; inflammation; oxidative stress; gut microbiome; bone loss; cardiovascular
disease; cancer; neurodegenerative disorder

1. Introduction

By 2050, it is projected that the world’s population aged 60 years old and above will
increase to 2 billion people, comprising approximately 22% of the total population [1].
The rate of aging can be somewhat controlled through various pathways, including genetic
pathways and biochemical processes [2]. Aging is a natural, time-dependent, physiological
process that occurs in individuals, resulting in an overall functional decline [2]. That func-
tional decline can result in the development of aging-associated chronic diseases, including
cardiovascular disease (CVD), cancer, neurodegenerative disorders and osteoporosis. CVD
and cancer are the leading causes of death in older adults, while hypertension, a risk factor
for CVD development, is the most common chronic disease in the same population [3].
Alzheimer’s disease (AD) is a progressive neurological disorder which has been identified
as one of the most aging-linked diseases and is the leading cause of dementia [4]. Post-
menopausal osteoporosis is of particular concern for older women, affecting one in four
women 65 years of age and above [5].

Anthocyanins are found naturally in an abundance of dietary sources [6] and have
been noted for their possible health benefits [7]. Anthocyanins are responsible for the
pigment in many plant foods [8] and are copious in many berry varieties, including black-
berries, blueberries and cranberries [9]. Their color will change depending on the pH
of the food matrix; they can appear in foods as purple, red, or blue [10]. Pelargonidins,
cyanidins, delphinidins, peonidins, petunidins and malvidins are the common classes of
anthocyanins occurring naturally in food [11]. Anthocyanins are a class of flavonoid and
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contain a phenolic structure that contributes to their biological effects [10]. The bioavailabil-
ity of anthocyanins has been debated, with current evidence suggesting anthocyanins are
relatively more bioavailable than previously thought [6,12]. Nevertheless, researchers have
documented positive health outcomes attributed to anthocyanins, including improved
vascular function, cancer prevention [13] and bone health [14]. It has been suggested that
the anti-inflammatory and antioxidative effects of anthocyanins contribute to their ability
to prevent or delay the onset of certain adverse health conditions. In terms of their effect on
inflammation, phenolic compounds have the ability to stop pro-inflammatory mediators;
they do this by either blocking their production or their action [15]. Since anthocyanins are
found naturally in dietary sources, their use in the prevention and treatment of adverse
health events is of interest; anthocyanins could present a safe and inexpensive method for
disease prevention with minimal side effects [16].

Anthocyanin-rich foods may influence the composition of the gut microbiome and act
as a mediator for the positive health outcomes associated with anthocyanins. Anthocyanins
can be digested by various structures in the gut to form metabolites that are transferred
throughout the body and have positive biological effects [17,18]. The changes in the micro-
biome may be from other components of the food item, with some literature suggesting
that the fiber content of the anthocyanin-rich food is responsible for the alterations made in
the gut [19]. However, the metabolism of prominent anthocyanins have been documented
to have a positive effect on overall gut integrity by reducing inflammation and oxidative
stress [11]. Microorganisms residing in the gastrointestinal (GI) tract are collectively known
as the gut microbiome [20]. The gut microbiome functions as an endocrine organ and
is an integral part of food digestion, with two major catabolic pathways related to the
breakdown of food [21]. The first pathway involves breaking down carbohydrates and
producing short chain fatty acid (SCFA) metabolites [21]. The second pathway is responsi-
ble for the fermentation of proteins and also results in the production of SCFAs, as well
as the following potentially toxic cometabolites: ammonia, amines, thiols, phenols and
indoles [22]. Interindividual variations in gut microbiome composition are common [23]
and there is evidence from both human and animal models that diet can have an impact on
the diversity of the microbiome [19,24]. While these changes can occur rapidly, the effects
are temporary [25] unless continuous stimulus is applied to maintain the shift in diver-
sity [26]. This could include lifestyle changes of individuals, like strictly adhering to the
Mediterranean diet which has been shown to positively influence gut microbiota [27].

The gut microbiome can provide benefits to its host, as it may even decrease the
toxicity of cancer treatments [28] and play a key role in the immunotherapy of cancer [29].
The gut microbiota-host interaction has been studied as a potential avenue of disease
development and prevention [21]. While a healthy relationship between gut microbiome
organisms and the host can be beneficial, dysbiotic relationships can be detrimental to
the host and lead to adverse health outcomes [30–32]. This is of particular interest among
the elderly population, as the changes that occur in the gut microbiome throughout the
aging process have been linked with unhealthy aging [33], which includes the development
of chronic diseases [34]. Ensuring individuals maintain their microbial diversity may
be beneficial in delaying or preventing the onset of some diseases [35]. Aging, lifestyle,
diet and host-immune system functionality have been identified as factors that can affect
the gut microbiome composition, altering its interaction with the host [36].

There is an overlap between the health benefits of anthocyanins and an optimally
functioning microbiome. This review will examine four health outcomes prevalent in the
older adult population-CVD, various forms of cancer, neurodegenerative disorders and
aging-associated bone loss-that have shown to be influenced by anthocyanins and gut
microbiome composition. Collectively, these diseases cost the United States hundreds of
billions of dollars each year and are responsible for millions of hospitalizations and deaths
throughout the country [37–39]. The aim of this review is to examine current research
on anthocyanins not only as an independent influencer of health, but also their role in
modulating the gut microbiota to work synergistically to improve health and function and
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as potentially cheaper alternatives or adjuvants to traditional methods of chronic disease
treatment and prevention.

PubMed was used to identify articles for this review. To determine what health
benefits researchers have studied related to anthocyanins and the microbiome, the terms
“anthocyanins and health”, “microbiome and health” and “microbiome, anthocyanins
and health” were searched in the database. The following words were added to find
specific evidence as to how anthocyanins and the gut microbiome effect health: aging,
cardiometabolic effects, atherosclerosis, HDL cholesterol, blood pressure, cardiovascular
disease, cancer, colon cancer, breast cancer, neuroprotection, neurodegenerative diseases,
Alzheimer’s disease, bone and bone loss. The term “gut microbiota and anthocyanins” was
used to examine their interaction. All articles included in this review were published prior
to October 2020.

2. Bioavailability of Anthocyanins

In the case of anthocyanins, bioavailability can be defined as the fraction of antho-
cyanins that are absorbed and utilized by the body [40]. Anthocyanins have been suggested
to be minimally absorbed by GI tract through the stomach and the small intestine [8], via ac-
tive transporters at those sites and transported to other tissues in the body like the kidney
and liver [41]. After absorption, anthocyanins can also have an effect on structures in
the brain by being transported across the blood brain barrier and localizing in various
regions [42]. A large amount of the anthocyanins, however, bypass the small intestine and
make their way to the colon to be further digested through both microbiome-mediated
hydrolysis and fermentation processes [17]. The resulting colonic metabolites contribute to
the biological effect attributed to anthocyanins [18] and are transported to the liver to be
further metabolized [8,17]. There are two major methods of flavonoid excretion: urinary
excretion via the kidney and bile excretion [8], with some of the catabolized flavonoid
compounds excreted through the bile reabsorbed by the small intestine [17].

The bioavailability of anthocyanins in their native form has been suggested to be
low at 1–2% [41]. However, newly identified metabolites of anthocyanins indicate that
their bioavailability may be larger than previously suggested [43], with evidence from
Czank et al. showing a 12.38% bioavailability of cyanidin-3-glucoside (C3G) when using an
isotopically labeled tracer of the anthocyanin [44]. Anthocyanins and their catabolites are
subjected to phase 2 enzymatic metabolism, leaving their methylated, glucuronidated
and sulphated forms to be transported and utilized by the body [41]. These forms
are present in the body at a higher concentration than the native structure and have
been suggested as the compounds responsible for the health benefits associated with
anthocyanin consumption [18].

3. Anthocyanin Effect on Health

Anthocyanins have been suggested to be effective against adverse health outcomes
associated with aging, namely CVD, certain forms of cancer, neurodegenerative disorders
and aging-associated bone loss. While many of the studies discussed in this section
examine the role of dietary sources of anthocyanins at a particular point in time rather than
throughout the aging process, they can still provide insight into the potential ways that
anthocyanins could be utilized in the prevention and treatment of the health outcomes. It is
important to note that many of the studies administer a dietary intervention to see the effect
of the source’s total anthocyanins, rather than isolate a single form of anthocyanin. Dietary
sources of anthocyanins contain many different anthocyanins and the preparation of the
source will have an impact on the anthocyanin profile [45]. For example, Prior et al. outlined
the anthocyanin profile of lowbush blueberries and isolated 19 different anthocyanins in
the fruit, with contributions ranging from 1.1% to 14.4% [46]. Additionally, the harvest
season and genotype can impact the anthocyanin profile [47]. This makes it difficult
to determine the role of specific parent anthocyanins in health. Future studies need to
be conducted to further examine the potential of dietary sources of anthocyanins in the
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prevention or treatment of adverse health outcomes in the aging population, since evidence
suggests anthocyanin-rich dietary sources may be a useful intervention in four of the most
prominent health issues of this population. A summary table (Table 1) outlining common
dietary sources of anthocyanins, the prominent parent anthocyanins in those sources and
their documented role in disease prevention has been included.

Table 1. Common dietary sources of anthocyanins and their documented health outcomes related to cardiovascular disease,
cancer, neurodegenerative disorder and aging-associated bone loss.

Dietary Source Prominent Parent
Anthocyanins Suggested Health Outcomes a

Blueberry Malvidin [46,48], delphinidin,
petunidin [46]

Increases HDL-C levels [49]; decreases LDL-C, total TG and adiponectin
[50]; reduction of arterial stiffness and improvement of blood pressure [51];

inhibition of cancer cell growth [9]; improves aged rats spatial working
memory task performance [52]

Blackberry Cyanidin [48] Inhibition of cancer cell growth [9,53]; protect against LDL-C oxidation and
suppress cytokine induced MCP-1 secretion [53]

Blackcurrant Delphinidin [48,54],
cyanidin [54]

Increases HDL-C levels [49]; improves behavioral outcomes, APP
processing and Aβ accumulation [55]; increases trabecular bone mass [56];

reduces ovariectomy-induced bone loss [14]

Red Raspberry Cyanidin, pelargonidin [47] Reduction in lipid accumulation [57]; inhibition of cancer cell growth [9]

Cranberry Cyanidin, peonidin [46] Improves total cholesterol ratio [58,59]; improves vascular function [60];
Inhibition of cell cancer growth [9]

Strawberry Cyanidin, pelargonidin [61] improves lipid profile by decreasing total cholesterol and LDL-C levels
[62]; Inhibition of cancer cell growth [9]

a HDL-C: high density lipoprotein cholesterol; LDL-C: low density lipoprotein cholesterol; TG: triglycerides; MCP-1: monocyte chemotactic
protein 1; Aβ: β-amyloid; APP: amyloid precursor protein.

3.1. Cardiovascular Disease

Adverse cardiac events have been linked to reduced blood flow ability; two conditions
that capture this criterion are hypertension and atherosclerosis [13]. The effect of antho-
cyanins at managing certain risk factors for CVD has been studied, including cholesterol
levels [49,63] and blood pressure [64].

High density lipoprotein cholesterol (HDL-C) has an anti-atherosclerotic effect, with in-
creased levels associated with decreased risk of atherosclerosis [65,66]. Elevated levels of
low-density lipoprotein cholesterol (LDL-C) are associated with increased risk of atherosclero-
sis development [66]. In their placebo-controlled crossover study, Hassellund et al. found that
a four-week anthocyanin intervention significantly increased HDL-C levels in prehyperten-
sive men. The intervention capsule contained a total of 80 mg of 17 different anthocyanins
from blueberries and blackcurrants, with the majority of the capsule containing cyani-
din 3-O-β-glucosides and delphinidin 3-O-β-glucosides [49]. Interestingly, evidence from
Xie et al. displayed no difference in plasma HDL-C levels, while LDL-C levels significantly
decreased in the aronia berry extract treatment group [63]. Anthocyanins had no signif-
icant effect on biomarkers for inflammation and oxidative stress, which influence CVD
risks [49,63] and therefore the underlying mechanisms for its action on modulating lipids
is unclear.

In one study, anthocyanins reduced blood pressure by a similar magnitude as captopril,
an angiotensin-converting enzyme (ACE) inhibitor used to treat high blood pressure [64].
Herrera-Arellano et al. found no significant difference in the effectiveness of a daily 9.6 mg
anthocyanin infusion prepared from Hibiscus sabdariffa, which contains the anthocyanins
delphinidin and cyanidin as well as their glycoside forms, compared to 25 mg captopril to
decrease blood pressure in patients experiencing mild to moderate hypertension, with pa-
tients receiving the anthocyanin treatment having their average systolic and diastolic blood
pressure reduced from 139.05 to 123.73 mm Hg and from 90.81 to 79.52 mm Hg, respec-
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tively [64]; the reduced levels are below the Centers for Disease Control and Prevention’s
definition of hypertension [67].

Anthocyanin supplementation in the aging population may be relevant in the treat-
ment and prevention of CVD, as evidence suggests anthocyanins may have a positive
effect on reversing hypertension and atherosclerosis development, subsequently decreasing
overall CVD risk.

3.2. Cancer

Increased cell proliferation and decreased apoptosis are factors that lead to the de-
velopment and progression of cancer [68]; anthocyanins may have an effect on these
processes [9,13,16,69–75]. The mechanism of action is unconfirmed, with multiple mecha-
nisms likely working in tandem [71]. Seeram et al. examined this association in vitro using
human oral, breast, colon and prostate tumor cell lines and blackberry, black raspberry,
blueberry, cranberry, red raspberry and strawberry extracts at concentrations ranging from
25 to 200 µg/mL. All the cell lines responded in a similar manner, in which there was
an increased inhibition of cell growth as the concentration of berry extract increased [9].
Anthocyanins may be particularly effective against colorectal cancer [9,71–75], with evi-
dence from a meta-analysis by Wang et al. suggesting a significant inverse relationship
between total anthocyanin consumption and risk of colorectal cancer development [74].
Anthocyanins derived from the six berry species mentioned prior and the grumixama
fruit may be particularly effective against breast cancer [9,76]. Not all cancers respond
in the same way to anthocyanins. In their meta-analysis, Yang et al. concluded there
was no association between various forms of anthocyanins and the risk of developing
gastric cancer [77], indicating that anthocyanins may only be effective against certain forms
of cancer.

From 2011–2015, the rate of incidence of lung, prostate, breast and colorectal cancer
were highest among older adults and from 2012–2016 the same forms of cancer were
responsible for the highest mortality rates among the same population [78]. Of these most
prevalent cancers among older adults, anthocyanins were found to be potentially effective
against breast, colon and prostate cancers. More research needs to be completed to better
understand the mechanism of anthocyanins as it relates to cancer development in aging
and treatment, as well as outline the specific of cancers that anthocyanins may be the
most useful.

3.3. Neurodegenerative Disorder

Consumption of anthocyanin rich foods, especially foods containing cyanidin, may af-
fect neuronal apoptosis and death as well as learning and memory impairment, which are
processes that can occur with aging [79]. Factors that contribute to disease progression
include oxidative and nitrosative stress, excitotoxicity and dysregulation of calcium home-
ostasis, increased inflammation in the central nervous system (CNS) and death of spe-
cific neuronal populations [80]. Key mechanisms that have been suggested as ways an-
thocyanins exhibit neuroprotective properties are suppression of oxidative stress and
neuroinflammation [79,81]. In their review Zhang et al. also identified four additional
mechanism that may mediate the effects anthocyanins have on the CNS: suppression of
c-Jun N-terminal kinase activation, amelioration of cellular degeneration, activation of
brain-derived neurotrophic factor signaling and restoring Ca2+ and Zn2+ homeostasis [79].

Min et al. examined the neuroprotective role of the prominent anthocyanin cyanidin-
3-O-glucoside (C3OG) in mice. Researchers subjected mice to permanent middle cerebral
artery occlusion and used C3OG purified from tart cherries as the treatment. They found
that C3OG significantly reduced cerebral infarct size, strengthened neurological functional
outcome and decreased levels of superoxide in the brain [81].

Using an APP/PS1 mouse model of AD and a dietary supplementation of antho-
cyanins extracted from Korean black beans, Ali et al. found that the antioxidative effects
of anthocyanins can prevent neurodegeneration through the P13K/Akt/Nrf2 pathway,
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improve memory related pre- and postsynaptic markers and improve cognitive functions,
leading researchers to conclude that anthocyanins may be utilized as a dietary supple-
ment in the aging population to prevent neurological disorders associated with aging [82].
Vepsäläinen et al. also used a APP/PS1 mouse model of AD to evaluate the potential role
of anthocyanins in the prevention of AD. Investigators compared the efficacy of three diets-
a standard diet, a standard diet supplemented with purified bilberry anthocyanin powder
and a standard diet supplemented with purified blackcurrant anthocyanin powder- on
neuroprotection and concluded that both bilberry and blackcurrant extracts could be viable
in this regard through the beneficial effect they exert on amyloid precursor protein and
β-amyloid metabolism, which have been identified as pathogenic features of AD. The an-
thocyanin rich powders also had a positive effect on behavioral abnormalities associated
with AD [55].

Anthocyanins from the diet may have a role in the prevention of neurodegeneration
in the aging population. Their anti-oxidative properties have been suggested to be a
factor in their potential role and their ability to cross the blood brain barrier has been
attributed to their suggested beneficial effects on structures in the CNS. More research,
especially in human subjects, needs to be completed in order to evaluate the efficacy of
using anthocyanin rich foods for neuroprotection in the aging population.

3.4. Aging-Associated Bone Loss

Studies have indicated a possible beneficial relationship between anthocyanins and
bone loss [14,56,83–87], as bone loss has been linked to increased oxidative stress and
inflammation [56]. In aging, there is an acceleration in the rate of bone mass loss as
well as an overall weakening of the bone [88]. This can lead to osteoporosis development,
with osteoporotic individuals at an increased risk of fractures [38]. This may be of particular
interest for women, as their decline in estrogen levels during menopause is a risk factor for
osteoporosis development [89].

Sakaki et al. examined this relationship using a mouse model of age-related bone
loss; blackcurrant extract (BCE) was the anthocyanin rich supplementation in the chow
diet, which was compared to a standard chow diet. Trabecular bone mass increased by
43.2% in BCE-supplemented young mice, while bone mass was not significantly altered in
BCE-supplemented aged mice. These results suggest BCE supplementation can prevent
age-related bone loss, but the benefits may only be beneficial when the supplementation
happens prior to sufficient aging [56].

Bilberry extract, which contains 15 different anthocyanins, was found to not have an
effect on bone metabolism in ovariectomized (OVX) rats [90]. However, this model of bone
loss imitates the process of postmenopausal bone loss which is similar but not definitively
analogous to age-related bone loss [91]; this difference could explain the discrepancies
within the results. Interestingly, Zheng et al. found that BCE supplementation reduced
ovariectomy-induced bone loss in mice [14]. Nagaoka et al. had similar conclusions when
they used supplemented mice with maqui berry (MB) extract in an OVX model. MB is rich
in the anthocyanin delphinidin, which has been shown to inhibit osteoclast differentiation,
a bone-resorbing cell, while promoting osteoblast differentiation, a bone-synthesizing
cell [84]. Moriwaki et al. also found that delphinidin suppresses the formation of osteoclasts,
while cyanidin and peonidin did not have as strong of an effect on osteoclasts [92].

Anthocyanins may be beneficial in preventing aging-associated bone loss, especially
when consumed prior to excessive losses. However, not all studies have shown this benefit,
indicating there may be differences in anthocyanin effectiveness against age related bone
loss and postmenopausal bone loss. The dietary source of the anthocyanin may also be of
importance, as well as the specific anthocyanin compounds.

4. Anthocyanins, Microbiome Composition and Aging Related Health Effects

The microbiome changes with age, which has led to microbiome dysbiosis to be
a suggested biomarker of aging [93]. Aging has been suggested to affect microbiome
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composition [94] through physiological changes, like immunosenescence and inflammag-
ing [95], or changes in dietary patterns [96]. The exact composition of the microorgan-
isms residing in the gut varies [23]. However, the presence of a core microbiota has
been described [97,98] that encompass prevalent families of bacteria [98], including the
Lachnospiraceae, Ruminococcaeae and Bacteroidaceae families [33]. Older adults often
experience problems with frailty, which has been associated with poor microbial diver-
sity. The proportion of Bacteroidetes in frailer elderly individuals tends to be higher than
younger individuals [94]. Claesson et al. concluded there was a change in core microbial
diversity in elderly subjects because they had a distinct core microbiome. Specifically,
researchers found that there was a greater proportion of the Bacteroides species as well as
an increase in the Clostridium species [97]. Biagi et al. had similar findings and suggested
levels of the core microbiota families listed above decrease with age [98].

There may be a relationship between consumption of anthocyanin-rich foods and gut
microbiome composition, which includes increasing the overall quantity [99] as well as
increasing the growth of specific microbial substances [19] (Table 2). Anthocyanin’s effect
on microbial diversity in the gut could be particularly beneficial in reducing the risk of
developing CVD [100] and colorectal cancer [32] since risk has been linked to a lack of
microbiome diversity [15,100].

4.1. Anti-Inflammatory and Anti-Oxidative Effects of Parent Anthocyanins, Mediated by
the Microbiome

Few studies have examined the role of both the microbiome and specific anthocyanins
in health. Generally, these studies have focused on anthocyanins ability to alter the gut
microbiome, ultimately reducing inflammation status [101,102] or oxidative stress [103].
Evidence from the abundant anthocyanin cyanidin-3-glucoside (C3G) depicts a poten-
tial mechanism on the maintenance of gut integrity, which subsequently provides health
benefits. C3G catabolism in the gut microbiome results in the production of phenolic
compounds, including protocatechuic acid, vanillic acid, phloroglucinaldehyde and ferulic
acid, which have an effect on oxidative stress and inflammation on the gut [11]. Evidence
suggests that these metabolites can activate Nrf2 [11], which manages antioxidant en-
zymes and proteins [104]. They may also responsible for reducing inflammation in the gut
by affecting the TAK1-mediated MAKP and SphK/S1P mediated NF-κB pathways [11].
Thus, C3G and its metabolites play a role in reducing inflammation and oxidative stress in
the gut, which helps to provide optimal conditions for metabolism to occur. The antho-
cyanin malvidin-3-glucoside (M3G) may also be a potential mechanism on the maintenance
of gut integrity. In a batch-culture fermentation system, which modeled the human distal
large intestine, Hidalgo et al. concluded that not only a mixture of anthocyanins could
enhance Bifidobacterium and Lactobacullus-Enterococcus growth, but also that M3G could
individually have the same effect [105].
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Table 2. Significant gut microbiome alterations following consumption of anthocyanin rich foods a.

Study Subjects/Animals Intervention Observed Changes to Microbiome Composition

Lee et al. (2018) [99] Male Wistar rats
LF (10% fat), HF (45% fat), or HF with 10%

by weight blueberry powder diets for
8 weeks

• Phylum level changes: decrease in Firmicutes, Bacteriodetes, increase in Proteobacteria,
Fusobacteria compared to HF and LF groups

• SCFA changes: elevated serum levels of acetate compared to HF and LF groups,
elevated levels of propionate compared to LF group, lower serum levels of butyrate
compared to LF group

• 3-fold increase in SCFA-target receptor expression (Gpr43) compared to the LF group

Pan et al. (2017) [19] Male F-344 rats

Control diet, control diet and 5% whole
black raspberry powder, control diet and

0.2% black raspberry anthocyanins, or
control diet and 2.25% of residue fraction

for 6 weeks

• Control diet: increase in Asaccharobacter and decrease in Clostridium, Acetanaerobacterium
• 5% whole black raspberry powder: increase in Anaerostripes, Ruminococcus, Akkermansia,

Coprobacillus, decrease in Acetivibrio
• 0.2% black raspberry anthocyanins: increase in Anaerovorax, Dorea, decrease in

Bifidobacterium, Lactobacillus
• 2.25% residue fraction: increase of Anaerotruncus, Coprobacillus, Desulfovibrio, Victivallis,

Mucispirillum, decrease in Streptococcus, Turicibacter, Acetivibrio

Anhê et al. (2015) [106] Male C57BI/6 J mice
Standard chow, HFHS diet, HFHS diet
and 200 mg/kg body weight cranberry

extract for 8 weeks

• Cranberry extract group was associated with 30% increase in relative abundance
of Akkermansia

Gu et al. (2019) [107] Male C57BL/6 x FVB
F1 mice

Control diet or 10% w/w black raspberry
diet for 6 weeks

• Colon microbial α-diversity significantly greater in black raspberry fed mice
• Phylum level changes: decrease in Firmicutes, increase in Bacteroidetes black raspberry

fed mice
• Genus level changes: decrease in Clostridium, Lactobacillus, increase in Barnesiella in

black raspberry fed mice

Liu et al. (2017) [108] Male C57BL/6 mice Standard diet, HF diet, or HF diet and 300
mg/kg body weight GSPE for 7 weeks

• GSPE treated mice had a significantly different β-diversity
• Phylum level changes: decrease in Firmicutes, increase in Proteobacteria in GSPE group
• Family level changes: increase in Lachnospiraceae, Peptostreptoccaceae, Erysipelotrichaceae,

Veillonellaceae, Prevotellaceae in GSPE group
• Genus level changes: increase in Prevotella, Clostridium XIVa, Escherichia/Shigella, Blautia,

Flavonifractor, Arthrobacter, decrease in Lactococcus, Bacteroides, Roseburia in GSPE group
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Table 2. Cont.

Study Subjects/Animals Intervention Observed Changes to Microbiome Composition

Molan et al. (2014) [109] Healthy men and women
aged 20–60 years

672 mg of BCE: First Leaf (BCE powder,
lactoferrin, lutein) or Class Anthomix 30

(BCE powder) for 2 weeks

• Both treatments decreased β—glucuronidase enzyme activity and levels of Bacteroides,
Clostridia, increased levels of bifidobacteria, Lactobacillus

Petersen et al.
(2019) [110]

Control (db/+) and diabetic
mice (db/db)

Standard diet or diet supplemented with
2.35% freeze dried strawberry for

10 weeks

• α-diversity indices β-diversity were different among treatment groups and microbial
composition was significantly influenced by genotype (db/db) and strawberry
consumption

• Genus level changes: decrease in Bifidobacterium and increase in Bacteroides in mice fed
diet containing strawberries

Guglielmetti et al.
(2013) [111]

Healthy men with at least
one CVD risk factor

250 mL of wild blueberry drink for 6
weeks (crossover design) • Blueberry drink consumption selectively increased bifidobacteria

Neyrinck et al.
(2013) [112] Balb/c mice Control diet, HF diet, HF diet and

pomegranate peel extract (0.2% in water)
• Significant increase in Bifidobacterium spp., nearly significant increase in

Bacteroides-Prevotella spp.

Mayta-Apaza et al.
(2018) [113]

In vitro digestions; healthy
men and women divided
into low (LB) or high (LB)

Bacteroides groups

In vitro: 5 mL of tart cherriesHuman
participants: 8 ounces of tart cherry juice

for 5 days

• In vitro: large increase in Bacteroides, Collinsella, moderate increase in Firmicutes,
Enterobacteriaceae, Bilophila

• HB human participants: decease in, Bacteroides, increase in various Firmicutes
(Ruminococcus, Lachnospiraceae, Clostridium and Clostridium XI, Dialister, Coprococcus,
Lactobacillus, Streptococcus), some Actinobacteria, Collinsella

• LB human participants: generally opposite changes (increase in Bacteroides,
Bifidobacterium, decrease in Firmicutes)

Jakobsdottir et al.
(2013) [114] Male Wistar rats

Standard diet with freeze dried
blackcurrant, blackberry, or raspberry,

either with or without HEAL19 for 5 days

• Total cecal pool of SCFAs, acetic acid, propionic acid and butyric acid were higher in
blackcurrant group

• In proximal and distal colon, blackcurrant generally yielded higher levels of SCFAs.
• Microbial diversity of rats fed raspberries was higher

Marques et al.
(2018) [115] Male Wistar rats Standard diet, standard diet and BE, HF

diet, HF diet and BE for 17 weeks

• Genus level changes of standard diet and BE: increase of Pseudoflavonifactor
• Genus level changes in both BE groups: increase of Oscillobactor
• Genus level changes in HF and BE group: decrease in Rumminococcus and increase in

Sporobacter compared to HF group

a HF: high fat; LF: low fat; SCFA; short chain fatty acid; HFHS: high fat/high sucrose; GSPE: grape seed proanthocyanindin extract; BCE: blackcurrant extract; CVD: cardiovascular disease; HEAL19: Lactobacillus
plantarum HEAL19; BE: anthocyanin rich blackberry extract; LB: low Bacteroides; HB: high Bacteroides.
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4.2. Cardioprotective Effects of Anthocyanin Containing Foods, Mediated by the Microbiome

Cholesterol transport may be affected by both anthocyanins and gut microbiota.
Wang et al. concluded that the anthocyanin derived metabolite protocatechuic acid pro-
motes macrophage cholesterol efflux by downregulating miR-10b expression, which re-
presses ATP-binding cassette transporter A1 and ATP-binding cassette transporter G1 [116].
Gallic acid (GA), another anthocyanin metabolite, may have two pathways at which it can
be beneficial to health. It has been shown to reduce levels of the potentially pathogenic
Clostridium histolyticum without impacting the growth of beneficial bacteria [105]. GA also
has demonstrated a positive effect on CVD risk, as evidence suggests it can act as an ACE
inhibitor yielding results similar to the effects of captopril, a medication used to treat high
blood pressure [117].

Pan et al. used F-344 rats to examine the relationship between anthocyanins and gut
microbiome composition, giving the experimental groups one of three black raspberry
treatments. Their results showed that not only did the composition of the microbiome
change, but also highlighted the specific beneficial microbial species that increased. Exam-
ples include Akkermansia and Desulfovibrio-which have anti-inflammatory properties-and
Anaerostipe [19]-which is a butyrate producing bacteria that has demonstrated prevention
of certain diseases [118]. Anhê et al. used an in vivo mice model to show that antho-
cyanin rich cranberry extract may also be effective at increasing the Akkermansia species
in the gut [106]. Schneeberger et al. demonstrated that increasing the specific species
Akkermansia mucinphila may exhibit some cardioprotective effects by modulating factors
related to obesity, like protecting against body weight gain and decreasing inflammation in
adipose tissue, in male age matched mice [119], indicating the alterations anthocyanin rich
foods make in the gut microbiome may have cardioprotective effects.

Gu et al. also examined the effect of anthocyanins in black raspberries on the gut
microbiome composition. Male mice supplemented with a 10% w/w freeze dried black
raspberry powder showed greater microbiome diversity. Clostridium, which contains many
pathogenic species, significantly decreased, while Barnesiella, a recently discovered genus
with potentially beneficial effects, increased [107]. Another study that found anthocyanin
containing foods may modulate Clostridium was conducted using grape seed proantho-
cyanidin extract (GSPE). After supplementing mice with 300 mg/kg body weight of GSPE
for seven weeks, levels of Clostridium XVIa, Roseburia and Prevotella increased [108].

While generally low Clostridium levels are thought to be beneficial to the elderly popu-
lation, Clostridium XVIa does not have prominent toxins and virulence factors associated
with the pathogenic effects of the genus [120] and may inhibit macrophage infiltration in
adipose and hepatic tissues [121]. The increase in Roseburia levels may also be of interest
with regards to atherosclerosis risk. Karlsson et al. sequenced the gut metagenomes of
individuals with symptomatic atherosclerotic plaque and compared them to gender and
age matched controls. Among other microbiome alterations, investigators found elevated
levels of Roseburia and Eubacterium in the healthy controls and elevated levels of Collinsella
in the patients [122]. This indicates the gut metagenome may be related to symptomatic
atherosclerosis development [122] and dietary sources of anthocyanins may be able to aid
in providing the desired Roseburia levels [108].

Molan et al. also found a beneficial modification of the gut microbiota that may
protect against the shift in core gut microbiota in older adults through the administration
of an anthocyanin rich powder derived from blackcurrants. In their experimental human
study, researchers saw a decrease in both Clostridium and Bacteroides, which have both
been documented as being contributing factors to the microbial shift in elderly individuals.
Further modifications include an increase in the beneficial microbial groups Lactobacillus
and Bifidobacterium [109]. Those microbial groups have been associated with the following:
pathogen suppression in the gut [123], colon cancer prevention [124], synthesis of vitamins
and strengthening the immune system [109]. However, Yamashiro et al. have found
that elevated counts of the species Lactobacillus ruminus was associated with ischemic
stroke inflammation through increased serum interlukin-6 [125]. Therefore, the specific
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species of Lactobacillus bacteria that anthocyanins increase may be of importance to the
elderly population since aging is the primary non-modifiable risk factor for ischemic
stroke [126]. With regards to Bifidobacterium, evidence suggests anthocyanin containing
foods may be particularly effective at increasing Bifidobacterium levels in the gut, as both
human and animal studies that supplemented with anthocyanin-rich blackcurrants [109],
strawberries [110], blueberries [111], pomegranates [112], tart cherries [113] and jussara
fruit [127] have documented this effect.

Blackcurrants have had other demonstrated effects on the gut microbiome. Cao et al.
studied the effects of BCE on the gut microbiome in female mice. When supplemented
with BCE for four months, the relative levels of Firmicutes, Bacteroidetes, Cyanobacteria,
Proteobacteria and Tenericutes were higher in young mice compared to aged mice. Another
finding of this study suggested the gut microbiome of young and aged mice responded
differently to BCE supplementation, indicating the timing of supplementation may be im-
portant for maximal effect in the aging population. Finally, the Firmicutes/Bacteroides ratio
was affected [128]. An increase of this ratio has been shown to be associated with hyperten-
sion [129] and to be a negative predictor of bone volume [130]. The Firmicutes/Bacteroides
increased with aging but was reduced by BCE treatment [128], indicating the effect of
anthocyanins in blackcurrants may be through modification of the composition of the
gut microbiome. The increase in Tenericutes may be relevant in regulating CVD risk fac-
tors related to the aging population [131,132]. In the Metabolic Syndrome in Men study,
Ahmadmehrabi et al. saw an abundance of Tenericutes, as well as Christensenellaceae,
Methanobrevibacter and Peptococcaceae were associated with reduced triglyceride levels;
Tenericutes and Christensenellaceae were also directly associated with a reduced body mass
index and increased HDL-C levels [133].

One major pathway related to dybiosis associated with CVD risk is the SCFA path-
ways [133]. Macromolecules that enter the distal gut are fermented by colonic bacteria,
producing SCFAs—the most abundant including acetic acid, propionic acid and butyric
acid [133]—which will enter circulation [134] and act as an energy source in a metabolic
cross-feeding process [133]. Anthocyanin containing foods may elevate SCFA levels.
Jakobsdottir et al. found that rats fed diets supplemented with blackcurrants had higher
production of SCFAs [114]. Olfactory receptor 78 (Olfr78) and G protein couple receptor 41
(Gpr41) are two sensory receptors for SCFAs which regulate blood pressure [134]. SCFAs
produced by the gut microbiome may regulate blood pressure through the modulation of
renin release via Olfr78 in the arteriole and by modulating peripheral resistance through
Olfr78 and Gpr41 [134].

4.3. Neuroprotective Effects of Anthocyanin Containing Foods, Mediated by the Microbiome

Anthocyanins attenuate neurodegenerative pathologies, possibly through their abil-
ity to modulate the gut microbiome. Marques et al. examined this potential link in rats
being fed high fat diets, as high fat diets are thought to contribute to neuroinflammation
and neurobehavioral changes in obesity through gut microbiome alterations. Researchers
used four treatment groups (standard diet, standard diet and anthocyanin rich blackberry
extract (BE), high fat diet and high fat diet and BE) and found that animals supplemented
with BE experienced modification in their gut microbiomes, including the increase of
Pseudoflavonifractor and Oscillibacter. They concluded that the modulations in the gut by
BE were correlated with anti-neuroinflammatory properties through decreasing TCK-1
expression and that BE could impact CNS inflammation through altering tryptophan
metabolism along the kynurenine pathway, thus increasing the production of the neuro-
protective metabolite [115].

Evidence suggests foods containing anthocyanins may affect the composition of the
gut microbiome by increasing the number of beneficial bacteria and decreasing the number
of potentially pathogenic bacteria. Optimizing the gut microbiome through anthocyanin
supplementation may be of interest for the older adult population, as both have been shown
to have a beneficial effect on chronic diseases prevalent in that population. More studies
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need to be completed that examine the role of both anthocyanins and the gut microbiome
in the prevention or treatment of diseases. There may be an overlap in their mechanism of
action regarding specific chronic diseases affecting older adults, especially in the context of
inflammation and oxidative stress. Examining the interaction between anthocyanins and
the gut microbiota is crucial when attempting to understand their individual actions.

5. Conclusions

The effect of anthocyanins and the gut microbiome on health have been studied,
with evidence suggesting both factors play a role in the prevention and treatment of
negative health outcomes significantly affecting the aging population including CVD,
certain cancers, neurodegenerative disorders and aging-associated bone loss. The role of
the gut microbiome to mediate the effects of anthocyanins is of interest because anthocyanin
derived metabolites from the microbiome have been suggested to contribute to the positive
biological effects attributed to anthocyanins. This could be especially true for the aging
population because there has been a documented shift in the core microbiome of this
population that has been linked to their frailty. While a healthy microbiome composition
can be protective against disease, a dysbiotic relationship could prove to be detrimental
to the host as it can lead to the development of negative health effects. The relationship
between the gut microbiome and anthocyanins has been minimally explored, with some
evidence suggesting the interaction between these components may be a mechanism of
action for the health benefits seen. Many studies use a dietary intervention and examine the
role of anthocyanin-rich foods containing many different anthocyanins, rather than the role
of specific anthocyanins; it is difficult to determine how individual anthocyanins may affect
health or how the gut microbiome may mediate the effects of individual anthocyanins.
Based on the evidence from the literature, consuming anthocyanin-rich foods may be a
potential avenue for disease prevention in the aging population, with minimal side effects
compared to conventional methods. However, the timing of the anthocyanin consumption
may be important, with some studies suggesting consuming anthocyanins early may have
a protective effect later in life. More studies need to be completed that specifically examine
both the microbiome and anthocyanins on managing health and preventing disease in the
aging population.
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