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Abstract: To date, the utility of single genetic markers to improve disease risk assessment still explains only a small proportion of 
genetic variance for many complex diseases. This missing heritability may be explained by additional variants with weak effects. To 
discover and incorporate these additional genetic factors, statistical and computational methods must be evaluated and developed. We 
develop a multi-locus genetic risk score (GRS) based approach to analyze genes in NADPH oxidase complex which may result in sus-
ceptibility to development of inflammatory bowel disease (IBD). We find the complex is highly associated with IBD (P = 7.86 × 10−14) 
using the GRS-based association method. Similar results are also shown in permutation analysis (P = 6.65 × 10−11). Likelihood ratio 
test shows that the single nucleotide polymorphisms (SNPs) in the complex without nominal signals have significant contribution to the 
overall genetic effect within the complex (P = 0.015). Our results show that the multi-locus GRS association model can improve the 
genetic risk assessment on IBD by taking into account both confirmed and as yet unconfirmed disease susceptibility variants.
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Background
In the past few years, genome-wide association studies 
(GWAS) have been widely used to identify genetic risk 
factors for complex diseases. This analysis paradigm 
has made significant progress in many genetic studies. 
For example, many single nucleotide polymorphisms 
(SNPs) have been discovered thus far to be associated 
with several common diseases, such as type 2 diabetes.1,2 
However, single genetic markers still explain only a 
small proportion of the genetic variance for many com-
plex diseases. It is expected that this missing heritability 
may be explained by additional rare variants with strong 
effects and/or common variants with weak effects.3 To 
discover and combine these additional genetic factors, 
statistical methods for the detection of associations of 
common variants have been extensively developed and 
successively applied to numerous studies of complex 
traits. For example, the use of a multi-locus genetic risk 
score (GRS) has been proposed to evaluate risk of breast 
cancer and its subtypes4 and prostate cancer.5 Pathway-
based analysis strategy has also been used to search for 
related genes and SNPs contributing to basal cell carci-
noma of the skin6 by joint effect analysis of the genes 
or SNPs in a given pathway. Some recent studies5,7 
have been developed to integrate these two analysis 
strategies. However, Tintle et al7 show that when aggre-
gation methods (one type of GRS-based approaches) 
are applied to analyze variants from sequencing data at 
the pathway level, a common problem is that there is 
a high Inflated type I error rate. Therefore, the inflated 
type I error in the framework of GRS-based pathway 
association analysis, a joint strategy of GRS-based asso-
ciated analysis, and pathway-based association analysis 
should be evaluated in detail.

Genetic association studies have identified innate 
immunity as a critical component in the development 
of inflammatory bowel disease (IBD).8–12 However, 
these studies have identified only 23% of the suscep-
tibility determinants for Crohn’s disease (CD) and 
16% for ulcerative colitis (UC).10–12

A recent study has provided insight into the role 
of NADPH oxidase complex in the development of 
IBD.13 It has shown that genetic mutations in genes 
encoding components of the complex result in both 
X-linked and autosomal recessive forms of chronic 
granulomatous disease (CGD). Patients with CGD 
often develop intestinal inflammation that is histolog-
ically similar to Crohn’s colitis, suggesting a common 

etiology for both diseases. Here we undertake a can-
didate gene study to determine if components of the 
NADPH oxidase complex are associated with IBD. 
We report associations of NADPH oxidase autosomal 
genes CYBA, NCF2, NCF4, and RAC2 with IBD.14 To 
this end, we use a multi-locus GRS-based approach 
to evaluate the joint effect of the genetic components 
of the NADPH oxidase complex on IBD. We apply 
a permutation test to assess inflated type I error of 
GRS-based complex association analysis model.

Materials and Methods
Data set
Tag SNPs are selected based on Caucasian (CEU) 
phase II data Release 23a of International HapMap 
project (http://www.hapmap.org). A total of 60 tag 
SNPs (r2 . 0.8) are chosen which span the NADPH 
oxidase complex genes RAC2 (19 SNPs), CYBA 
(5 SNPs), NCF2 (15 SNPs), and NCF4 (21 SNPs). 
Genotyping of samples are performed using the 
Illumina® Goldengate Custom Chip genotyping sys-
tem at The Centre for Applied Genomics, Hospital 
for Sick Children, Toronto.

The data set includes a total of 2049  individuals 
of European descent. 1200 of these have IBD (656 
with CD and 544 with UC) while the other 849 are 
healthy controls (HC) (Table 1). Our IBD patients are 
recruited from the Hospital for Sick Children (22%) 
and Mount Sinai Hospital (78%) in Toronto, as well 
as locally and from National Institute of Diabetes 
and Digestive and Kidney Diseases (NIDDK). Study 
subject phenotypic information and DNA samples 

Table 1. Number of samples in IBD, its subtypes CD and 
UC and healthy controls.

Diseases Number of samples
Cases Healthy controls

IBD
  All samples 1200 849
  Female samples 606 538
  Male samples 594 311
CD
  All samples 656 849
  Female samples 312 538
  Male samples 344 311
UC
  All samples 544 849
  Female samples 294 538
  Male samples 250 311

http://www.la-press.com
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were obtained with institutional review ethics board 
approval for IBD genetic studies at the Hospital for 
Sick Children and Mount Sinai Hospital in Toronto. 
Written informed consent was obtained from all par-
ticipants. These individuals are those who passed 
quality control in the Muise et al study.14

Univariate SNP association analysis
Univariate SNP analysis is performed to detect the 
associations of the SNPs in the four genes involved in 
the NADPH oxidase complex (RAC2, CYBA, NCF2, 
and NCF4) between IBD and HC. For each individual 
i, i = 1, …, 2049, we define disease status as outcome:

	
Y

for IBDsample
for HCsamplei =





1
0

	 (1)

Each SNP is coded as 0, 1, or 2 corresponding 
to genotypes containing 0, 1, or 2  minor alleles, 
respectively. We perform logistic regression analysis 
to test association between IBD and HC as follows:
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where Gi = 0, 1, or 2 minor alleles for a given genotype 
and Genderi for an individual i. Adjusted odds ratios 
(OR) and 95% confidence intervals (CI) are estimated 
for each SNP j. The association analysis is also per-
formed for IBD’s subtypes CD and UC, respectively. 
We also performed subgroup analysis without adjust-
ing gender for male samples only and female samples 
only, separately. The analyses are performed using 
PLINK version 1.0615 and SAS 9.2.

Weighted genetic risk score based 
association analysis
We calculated GRS for each individual as a weighted 
sum of risk alleles for each SNP in the NADPH oxi-
dase complex.4 The weight is the estimated effect size 
(OR) of each SNP j. These scores are summed into a 
multi-locus GRS for each individual i. Specifically, the 
individual specific GRS for the complex is given as:

	
GRS gn OR OR Gi

j
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where i = 1, …, n individuals and j = 1, …, k SNPs in a 
given complex. Gi = 0, 1, or 2 minor alleles for a given 
genotype as defined in Formula 2, ORj is estimated 
from Formula 2 and equals to exp (β̂); sign(ORj) is 
1 if ORj  .  1, and -1 otherwise. We applied logis-
tic regression model to evaluate the genetic associa-
tion between the GRS of the complex and IBD as 
follows:
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The GRS-based association analysis is also per-
formed for IBD’s subtypes CD and UC, respectively. 
We also performed subgroup analysis without 
adjusting gender for only male and female samples, 
separately.

Permutation analysis
Since the multi-locus GRS in our model is con-
structed using the linear combination of the genetic 
risk alleles, weighted by their genetic effects that are 
estimated from the univariate models, similar to the 
multivariate regression model using multiple predic-
tors, the linear combination of such effects may over 
fit the data and cause inflated type I error.

To avoid such inflated type I error, an honest esti-
mation of the null distribution of the GRS test sta-
tistics is critical. We used the permutation test to 
estimate the null distribution of the test statistics from 
our GRS model.16 Because the data sets are permuted, 
the SNP genotypes are independent to the permuted 
disease status. Using large number of permuted data 
sets, the empirical distribution of the test statistics 
of the GRS model on the permuted data sets is used 
as the empirical null distribution of the test statistics 
of the GRS model.

More specifically, we randomly permuted IBD and 
HC sample labels 1000 times. For each permutated 
data set, we recalculated the GRS and performed asso-
ciation analysis as described in Section of weighted 
genetic risk score based association analysis. Since 
the test statistic (on βGRS) of the permuted data set is 
under the null hypothesis of no association, it follows 
an asymptotically normally distribution (P  .  0.05 
based on one-sample Kolmogorov-Smirnov test).
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The empirical null distribution of test statistics in 
the GRS-based association analysis was then esti-
mated based on the 1000 permutation results. The test 
statistic of the real data was then compared to such 
empirical null distribution to estimate the empirical 
P-values.

Likelihood ratio test
Since some of the SNPs used in the complex anal-
ysis show nominal signals (P ,  0.05) at univariate 
SNP association analysis, to evaluate the additional 
genetic effect due to SNPs without association, a like-
lihood ratio test was applied to compare the logistic 
regression-based association model on genetic risk 
score constructed using all the SNPs (full model) and 
the model on genetic risk score using only SNPs with 
nominal signals (reduced model).17 Since these two 
models are nested, the likelihood ratio test was per-
formed to assess if the non-nominal SNPs contribute 
to the overall genetic effect within the complex.

Results
Univariate SNP association analysis
56 of the 60 tag SNPs pass the quality control (QC). 
They have minor allele frequency (MAF) larger than 
1%, call rate larger than 95%, and P-value of Hardy-
Weinberg equilibrium (HWE) test larger than 1 × 10−5 
in control. The 2049 subjects used in the study have a 
genotype call rate larger than 95%. We examined the 
association of the 56 genotyped SNPs with IBD and 
its subtypes (CD and UC) as compared to the con-
trol group, respectively. There were 16, 14, and 10 of 
the 56 SNPs with nominal P-value smaller than 0.05 
for IBD and its subtypes (CD and UC), respectively. 
Among these, 5, 8, and 1 of the 16, 14, and 10 SNPs 
are statistically significant after Bonferroni correc-
tion (unadjusted P-value at 8.6 × 10−4 level) for IBD 
and its subtypes (CD and UC), respectively (Table 2). 
Majority of these significant SNPs are in gene RAC2 
region. The remaining SNPs are not significantly 
associated with the disease status. The association 
results for all 56 SNPs are shown in Supplementary 
Tables 1–3. We obtained linkage disequilibrium (LD) 
patterns of all 19 tag SNPs in the gene RAC2 using 
Haploview (Fig. 1).18 As shown in Figure 1, the sig-
nificant SNPs are located in different LD blocks. We 
also performed the association analyses for female 
samples only and male samples only, respectively.

We observe there is only 1  significant SNP 
(rs2066845) associated with IBD and its subtype 
CD in female samples, and 2 SNPs (rs10210302 
and rs2241880) associated with CD in male samples 
(Table 2 and Supplementary Tables 1–3).

A multi-locus GRS-based association 
analysis
We next examined the role of all genotyped SNPs 
in NADPH oxidase complex in the pathogenesis of 
IBD and its subtypes CD and UC using the GRS 
analysis. All 56  genotyped RAC2, CYBA, NCF2, 
and NCF4 SNPs are used. We found a significant 
association between GRS and IBD and its subtypes 
CD and UC (Table 3), respectively. Gender is also 
significantly associated with IBD and its subtypes 
CD and UC (Table 3), separately. Furthermore, we 
performed the analysis for male and female samples 
independently, as shown in Table  3. GRS still has 
significant association with IBD and its subtypes 
CD and UC, respectively, although the P value is 
slightly larger. The boxplots of the GRS estimated 
from IBD versus HC, and its subtypes CD versus 
HC, and UC versus HC, are shown in Figure 2 (all 
sample case). It is clear that the IBD group have a 
larger genetic risk than HC group as patients with 
IBD have a mean weighted GRS of 5.11 (standard 
error (SE): 0.19) while controls have a mean GRS 
of 2.75 (SE: 0.24). Patients with IBD’s subtype CD 
have a mean weighted GRS of 2.59 (SE: 0.30) while 
controls have a mean GRS of −0.70 (SE: 0.25). 
Similarly, patients with IBD’s subtype UC have 
a mean weighted GRS of -0.24 (SE: 0.34) while 
controls have a mean GRS of -4.57 (SE: 0.29). 
The P-values of t-test (two-sided) to evaluate the 
mean differences between diseases (IBD, and its 
subtypes CD and UC) and HC are P = 2.67 × 10−14, 
P , 2.2 × 10−16, P = 0.001, respectively.

We applied a permutation test on the genetic risk 
score for the complex analysis to adjust for inflated 
type I error. 1000 permutations were performed by 
randomly assigning the case and control status (IBD 
versus HC, CD versus HC, and UC versus HC) (all 
sample case as defined in Table  3). The estimated 
empirical P-values for IBD versus HC, CD ver-
sus HC, and UC versus HC are P  =  6.65  ×  10−11, 
P = 8.22 × 10−13, P = 9.22 × 10−4, respectively. The 
P-values are calculated as follows (taking IBD ver-
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Table 3. Association analysis between GRS and IBD and its subtype CD and UC.

Diseases GRS Gender
OR (95% CI) P value OR P value

IBD
  All samples 1.66 (1.46–1.90) 7.86E-14 0.59 (0.49–0.71) 1.31E-08
  Female samples 1.43 (1.25–1.64) 2.08E-07 – –
  Male samples 2.08 (1.68–2.60) 4.57E-11 – –
CD
  All samples 1.82 (1.57–2.11) 7.85E-16 0.53 (0.43–0.65) 4.07E-09
  Female samples 1.68 (1.41–2.00) 8.15E-09 – –
  Male samples 2.04 (1.67–2.51) 9.86E-12 – –
UC
  All samples 1.37 (1.20–1.57) 2.74E-06 0.68 (0.55–0.85) 6.1E-4
  Female samples 1.51 (1.26–1.81) 9.76E-06 – –
  Male samples 1.66 (1.32–2.11) 1.63E-05 – –
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Figure 1. LD plot of the 19 SNPs in RAC2 gene.
Notes: LD plot showing LD patterns among the 19 SNPs in RAC2 gene genotyped in the 2049 samples. The LD between the SNPs is measured as r2 
and shown (×100) in the diamond at the intersection of the diagonals from each SNP. r2 = 0 is shown as white, 0 , r2 , 1 is shown in pink and r2 = 1 is 
shown in red. The analysis track at the top shows the SNPs according to chromosomal location. Five haplotype blocks (outlined in bold black line) indicat-
ing markers that are in high LD are shown.

sus HC as an example): First we applied our GRS 
model to each of the permuted data set. The test sta-
tistics of the permuted GRS models were used to 
estimate the null distribution. We estimated mean 
and standard deviation (sd) of the test statistic values 
in the permutated data, 0.051 and 1.21, respectively, 
then performed one-sample Kolmogorov-Smirnov 
test to evaluate the null hypothesis that the true dis-
tribution of the test statistic values is not less than 
or not greater than the hypothesized normal distribu-
tion N (0.051, 1.21). Our result shows the P-value is 

not significant, therefore the null distribution follows 
normal distribution. This is also indicated by the 
skewness of 0.05 and the kurtosis of 2.84. Therefore, 
The estimated empirical P-value of the observed test 
statistic value from the standard logistic regression 
analysis were calculated based on the hypothesized 
normal distribution N (0.051, 1.21) when comparing 
IBD with HC.

Although some SNPs used in the complex 
analysis showed nominal signals (P  ,  0.05), we 
evaluated the additional genetic effect due to SNPs 
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without association. The likelihood ratio test was per-
formed to compare the model of genetic risk score 
constructed using all genotyped SNPs and the model 
of genetic risk score using only SNPs with nominal 
signals. Our analysis shows these two models are 
significantly different, suggesting the SNPs without 
nominal signals have a significant additional contri-
bution to the overall genetic effect within the com-
plex when IBD versus HC and its subtypes CD versus 
HC, and UC versus HC (P = 0.015, P = 0.003, and 
P = 0.023, respectively) are compared. This analysis 
demonstrates that focusing on genetic complexes as 
opposed to individual SNPs is important and critical 
for understanding the genetic heritability in IBD.

Discussion and Conclusions
A key problem in genetic and genomic research is 
to identify genes and complexes that are involved 

in diseases and other biological processes. Many 
statistical and computational methods have been 
developed for identifying genes in a regression 
framework. The identified genes are often linked 
to known biological complexes. However, most 
of the procedures for identifying the biologically 
relevant genes do not utilize the known complex 
information. Here we focus on the genes in a can-
didate complex (NADPH oxidase complex) which 
are shown to play a key role in the development 
of IBD. When compared to univariate SNP-based 
association analysis, the multi-locus GRS-based 
complex association model is very successful at 
evaluating the association between IBD and its can-
didate complex by taking into account both con-
firmed and as yet unconfirmed disease susceptibility 
variants. Our GRS-based complex results show that 
the complex has quite significant association with 
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Figure 2. Boxplots of genetic risk score analysis. Boxplots of IBD versus HC (A), CD versus HC (B), and UC versus HC (C). 
Notes: GRS analysis is performed using 56 SNPs in RAC1/2, CYBA, NCF2, and NCF4 genes. SNPs are weighted based on the effect size (OR) from the 
univariate SNP association analysis by adjusting on gender.
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IBD and its subtypes CD and UC. The significant 
association of the complex with IBD and its sub-
types are also observed (P , 0.05) when we use an 
unweighted multi-locus GRS strategy, in which the 
identity weight is applied for each marker (results 
not shown).

We applied GRS framework weighted on the OR 
estimated from the univariate analysis. The advantages 
of this approach are that ORs have clearer clinical 
meaning and are more straightforward for interpre-
tation than other weighting strategies. For example, 
weighting can be based on regression coefficient4 or 
identical weight.19 We also applied other weighting 
strategies, such as using the regression coefficients as 
weights or identical weights to our data. These differ-
ent weighting strategies provide consistent significant 
signals (results not shown).

In the genetic association analysis, the statistical 
significance is driven by both effect size and sample 
size. If work on the genetic markers is done one by one, 
some of the genetic markers with moderate genetic 
effects may not be powerful enough to show nomi-
nal signals. However, such moderate effects can be 
accumulated at the complex level analysis. Therefore, 
the GRS-pathway approach can potentially improve 
statistical power.

Recent studies (eg, Tintle et al7) show when aggre-
gation methods (a type of GRS-based approaches) 
are applied to analyze variants from sequencing data 
at pathway level, a common problem is that there 
is a high Inflated type I error rate. In our study, we 
applied the permutation approach to potentially cor-
rect this error as permutation procedures can gener-
ate an empirical null distribution and estimate the 
empirical P-value. This approach has desirable prop-
erties including its ability to relax assumptions about 
normality of continuous phenotypes and Hardy-
Weinberg equilibrium, dealing with rare alleles and 
small sample sizes.

It must be admitted that our current findings are 
based on a single study and further investigation 
is still warranted to generalize the conclusions by 
applying the approaches to other studies and to vali-
date whether the findings can be replicated. Although 
our GRS-based complex association approach can 
be applied to either a single or multiple pre-defined 
complexes, there is a limitation to apply it to a large 

complex with many SNPs or a complex with a few 
significant SNPs but many NULL SNPs. In this case, 
we suggest including only SNPs with suggestive 
association, as done by Reeves et al,4 in which only 
14 disease associated SNPs are included in estimating 
GRS.
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Supplementary Tables
Supplementary Table 1: Univariate association analysis results on IBD.

�The table includes association analysis results on IBD based on all samples, female samples only and male 
samples only, respectively. For the results based on all samples, gender has been adjusted as covariate.

Supplementary Table 2: Univariate association analysis results on CD.
�The table includes association analysis results on CD based on all samples, female samples only and male 
samples only, respectively. For the results based on all samples, gender has been adjusted as covariate.

Supplementary Table 3: Univariate association analysis results on UC.
�The table includes association analysis results on UC based on all samples, female samples only and male 
samples only, respectively. For the results based on all samples, gender has been adjusted as covariate.
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