
1

Vol.:(0123456789)

Scientific Reports |        (2020) 10:18231  | https://doi.org/10.1038/s41598-020-75366-1

www.nature.com/scientificreports

Invasion front dynamics 
in disordered environments
Youness Azimzade*, Mahdi Sasar & Iraj Maleki

Invasion occurs in environments that are normally spatially disordered, however, the effect of such a 
randomness on the dynamics of the invasion front has remained less understood. Here, we study 
Fisher’s equation in disordered environments both analytically and numerically. Using the Effective 
Medium Approximation, we show that disorder slows down invasion velocity and for ensemble 
average of invasion velocity in disordered environment we have v̄ = v

0
(1− |ξ |2/6) where |ξ | is the 

amplitude of disorder and v
0
 is the invasion velocity in the corresponding homogeneous environment 

given by v
0
= 2

√
RD

0
 . Additionally, disorder imposes fluctuations on the invasion front. Using a 

perturbative approach, we show that these fluctuations are Brownian with a diffusion constant of: 

D
C
=

1

8

ξ2
√

RD
0
(1− |ξ |2/3) . These findings were approved by numerical analysis. Alongside this 

continuum model, we use the Stepping Stone Model to check how our findings change when we move 
from the continuum approach to a discrete approach. Our analysis suggests that individual-based 
models exhibit inherent fluctuations and the effect of environmental disorder becomes apparent for 
large disorder intensity and/or high carrying capacities.

Invasion plays a central role in different biological contexts from the introduction of a population in a new habitat 
to tumor  growth1,2. A population capable of consecutive duplication and dispersion can develop a successful 
invasion where it may pose a threat to existing populations. Invasion separates space into two areas: occupied 
and unoccupied. The study of invasion inevitably leads to an analysis of the interface between these two areas 
and how it  evolves3–7. The speed of this interface is of central importance because it provides an understanding 
of invasion velocity and mechanisms behind  invasion8,9.

The spread of populations is a phenomenon that exhibits resemblance with processes that are governed by the 
reaction-diffusion  equations10. Invasion of various  populations11 and tumor  growth6,7,12,13 is described by different 
versions of Fisher-Kolomogorov-Petrovsky-Piskunov (FKPP) equation which in its classical form is described as:

in which C(x, t) is the density of the population, R is the growth rate, and D is the diffusion constant for the popu-
lation. Equation (1) represents a diffusion equation with a nonlinear reaction, that leads to the propagation of the 
Fisher waves. These are traveling-waves as C(x, t) = C(z) with z = x − vt and C(z) ∼ ze−αz where v = 2

√
DR is 

the invasion  velocity14. While Eq. (1) describes invasion as a deterministic process, populations are composed of 
discrete individuals exhibiting fluctuations in different aspects. Such fluctuations contribute to invasion dynamics 
and may even give rise to new  phenomena15. Birth and death processes are inherently stochastic. To incorporate 
such fluctuations into deterministic Fisher’s equation, a noise in growth term was  introduced16,17 as:

where γ > 0 is the strength of the noise, K is the Carrying Capacity for corresponding environment and η is white 
noise. Adding this noise term leads to emergence of fluctuations in the density profile of invasion front. Among 
properties of invasion front, Front Position which is defined by CF =

∫∞
0 C(x, t)dx follows a Langevin equation. 

Diffusion constant is defined to be �(CF − C̄F)
2� = 2DCt where C̄F stands for ensemble average.

Discrete models have been developed to study invasion as  well18–21. Stepping Stone Model (SSM) is one of 
the best-known models to describe population  dynamics22. SSM governs an integer number of species living in 
a discrete environment and capable of duplication within and migration between units (demes), which leads to 
their propagation into available  demes18,22. This process eventually leads to invasion in patterns similar to FKKP. 
However, due to their stochastic nature and interactions between individuals, the invasion dynamics can be 
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 different9. We use this model to check how discrete individuals invade in disordered environments and whether 
or not results for Fisher’s equation can be generalized to study them.

Fisher postulated that the diffusivity can be spatially  disordered23, however, few studies have been carried 
out to address the effect of such disorder on  invasion7,24–29. Biological entities can invade through environments 
that are not  uniform30. Spatial variations in the physical properties of the environment can be considered as a 
disorder for invading  populations31,32. Models to understand the effect of irregularity on invasion were introduced 
as early as  198633. Later studies explored different aspects of invasion in disordered environments and how it 
affects invasion of different populations both theoretically and  experimentally24–27. However, to the best of our 
knowledge, there are two aspects that have not yet been addressed: (i) The effect of disorder on invasion velocity 
(ii) The dynamics of fluctuations induced by disorder.

Disorder plays a fundamental role in regulating a variety of phenomena in physical systems of fundamental 
scientific importance, as well as those that are encountered in  practice34,35. Prominent examples include the influ-
ence of disorder on flow, transport, reaction, and deformation properties of materials, such as porous  media36 
and composite  solids34,35. More interestingly, propagation of waves, and the structure of wavefronts in different 
systems show sensitivity to  disorder7,37,38. Effective Medium Approximation (EMA) has been proposed as a 
means to study propagation phenomena in disordered  environments39. This approach suggests that a spatially 
disordered environment can be replaced with a hypothetical homogeneous one with unknown constants and 
the deterministic Fisher’s equation can still describe the dynamics of the average ensemble of propagating waves.

In this Letter, we study the effect of spatial disorder of the diffusion coefficient on the invasion of Fisher’s 
equation and SSM. We calculate the velocity of Fisher’s equations using EMA. Then we obtain the dynamics 
of fluctuations using a perturbative approximation and perform numerical analysis to check the validity of our 
findings. Additionally, we use SSM to study how the disorder affects the invasion of discrete individuals.

Models
Fisher’s equation. Changing the migration probability in individual scale leads to variation in the diffusion 
coefficient in the differential equation that describes the density at mesoscopic  scales40,41. As such, we translate 
randomness in the jumping probability to those in the diffusion coefficient in the FKPP equation. Thus, the 
dynamics of the invasion process is described by

where a fluctuating diffusion constant as D̄(x) = D0[1+ ξ f (x)] substitutes previously uniform diffusion constant 
at Eq. (1), and f is a uniform white noise in the range [−1, 1] . ξ represents the amplitude of disorder in D and as 
noise that satisfies 

∫

ξ(x)ξ(x′)dx = δ(x − x′) where δ(x − x′) stands for the Dirac delta function and the noise 
term has the dimension of m1/2 where m stands for meter as length unit. We study the motion of the invasion 
front using the front position, defined by, CF =

∫∞
0 C(x, t)dx , which is shown in Fig. 1.

Stepping stone model. In the traditional version of a one-dimensional (1D) SSM without  mutation22, 
the entities are living within units (demes) of a 1D lattice, where each unit has the carrying capacity of K, and is 
able to duplicate with a probability r = r0[1− n(x, t)] , n(x, t) = N(x, t)/K is the normalized number of entities, 

(3)
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Figure 1.  The Fisher wave propagation in an environment with a spatially irregular diffusivity D̄ (shown by 
blue solid line) where intensity of disorder is determined by ξ as D̄(x) = D0(1+ ξ f (x)) with f being white noise 
with uniform distribution in the range of [− 1, 1]. Any single realization of waves in disordered environment 
( Ci ) would move slower than unperturbed wave front ( C0 ) that propagates in a uniform environment. One can 
assign an ensemble average to propagating waves and Effective Medium Approximation (EMA) suggests that 
average wave fronts, C̄ , follows a Fisher’s equation with effective diffusion constant, De.
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and N(x, t) is the number of entities in unit x at time t. Entities can jump (migrate) to their nearest neighbors 
with a probability d018. To study the effect of the heterogeneity, we consider a spatially irregular probability for 
jumping from x to (x + 1) , and vise Versa, given by, dx = r0[1+ ξ f (x)] ; see Fig. 2. To induce time passage we 
select each individual randomly and it will duplicate with the probability of r. Then, independent of duplication, 
it will migrate with the probability of dx . Respectively, the both duplication and migration processes follow a 
Binomial distribution. For considerably small values of r and dx , the Binomial distribution converges to Poisson 
 distribution42. To analyze wanderings of the invasion front, we study nF(t)− n̄F(t) , where the front position is 
defined as, nF(t) = �∞

x=0n(x, t) , where n̄F(t) is the average over the ensemble at the time t.

Results
Invasion velocity. In what follows, we will analyze the effect of disorder on invasion velocity using the 
aforementioned continuum and discrete approaches.

Effective medium approximation. The main idea behind the EMA is that disordered environments can be 
described by effective properties which can be obtained through a self-consistent  approach39. Then, the ensemble 
average of propagating waves can be described by such effective properties. Since invasion velocity depends on 
the diffusion constant, to find the invasion velocity, we need to calculate the effective diffusion constant. Using 
EMA we find that the effective diffusion constant is De = D0(1− |ξ |2/3) (see Material and Methods). EMA sug-
gests that the ensemble average of invasion waves still can be described by the Fisher’s equation. In other words, 
for the averaged invasion velocity we should have v̄ = 2

√
RDe = 2

√

RD0(1− |ξ |2/3) . Assuming ξ << 1 , using 
a standard Taylor expansion as 

√
1− u2 = 1− u/2 , one has v̄ = v0(1− |ξ |2/6) with v0 = 2

√
RD0.

Numerical analysis of Fisher’s equation. As shown in Fig. 1 and suggested by EMA, disorder slows down the 
propagation of Fisher waves. Despite exhibiting fluctuations, still one can assign an average invasion velocity to 
Fisher waves in disordered environments (see Fig. 3a). To numerically quantify the effect of disorder, we calcu-
late the averaged invasion velocity of Fisher waves, v̄ , for different values of ξ . Fig. 3b shows that for changes in 
invasion velocity we have: v0 − v̄ ∝ ξ 2.00±0.02 . This result is in agreement with what EMA suggests.

Stepping stone model. In this part, we study how the disorder affects invasion velocity in an individual-based 
model. A comparison between the front position of different environments suggests that disorder reduces inva-
sion velocity in SSM (see Fig. 4a). Since the individual-based model contains inherent randomness in events of 
duplication and migration, there is a fluctuation in a homogeneous environment. As we increase the intensity 
of disorder, gradually, the fluctuations imposed by the environment become larger and dominant. As Fig. 4b 
shows, for considerably large values of ξ , for changes in normalized invasion velocity (v̄0 − v̄)/v̄0 ∝ ξ 2 which is 
in agreement with results for Fisher’s waves (since invasion velocity depends on carrying capacity, we showed 
normalized invasion velocity in order to have comparable data).

Figure 2.  Schematic illustration of the Stepping Stone Model (SSM) with a spatially irregular migration rate, 
dx (blue solid line). We show the normalized number of species in deme x at time t by n(x, t) = N(x, t)/K 
where N(x, t) is the number species at (x, t) and K is the carrying capacity. We define front position as 
nF(t) = �∞

x=0n(x, t) and invasion velocity as v = dnF (t)
dt  . The averaged invasion velocity is defined based on 

ensemble average of front position as v̄ = dn̄F (t)
dt  . We also analyze front position fluctuations, nF(t)− n̄F(t).
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Dynamics of fluctuations in the front position. As mentioned earlier, disorder imposes fluctuation on 
the invasion front. In this part, we quantify these fluctuations.

Perturbation approach. The exact mathematical analysis of Eq. (3) is undeniably a formidable task as evidenced 
by the corpus of references on this subject. However, it can be shown that valuable insight into the dynamics of 
the problem could be obtained using a series of subtle mathematical maneuvers. Our analytical approach relies 
on two main assumptions that were previously shown to be  practical17. First, in agreement with the existing lit-
erature, we assume a linear version of Eq. (3) by removing the C2 term. While considering a linear version is a 
rather standard practice in literature, it should be noted that our purpose is to analyze the invasion front where 
C << 1 for which ignoring the non-linear term seems more rational. As the second assumption, we perform a 
perturbation analysis which is also been used  previously17. To do so, we choose a comoving reference frame and 
calculate fluctuations of invasion front in respect to this moving frame (see Material and Methods). Based on our 
results, disorder imposes a Brownian fluctuation to invasion front with the diffusion constant of: 
DC(t → ∞) = 1

8
ξ 2
√
RDe =

1

8
ξ 2
√

RD0(1− |ξ |2/3).

Numerical analysis of Fisher’s wave. In this part, we numerically analyze two aspects of these fluctuations. First, 
we check if fluctuations are Brownian. Fig. 5a indicates that the environmental disorder leads to fluctuation of 
CF(t) . The log− log diagram of �

(

CF(t)− C̄F(t)
)2� as a function of time in the inset of Fig. 5a confirms a linear 

behavior with a slope of one. Thus, we can write, �
(

CF(t)− C̄F(t)
)2� ∼ DCt , where DC is the invasion front dif-

fusion coefficient. The first implication of the results is that the fluctuations in the front position are Brownian. 

Figure 3.  (a) CF versus time for different values of ξ . As we increase the amplitude of disorder, ξ , CF exhibit 
fluctuations. But still it is possible to define an average invasion velocity, v̄ . (b) Decrease in averaged invasion 
velocity versus ξ . As the EMA suggests, invasion velocity decreases as v0 − v̄ ∝ ξ 2±0.02.

Figure 4.  (a) nF versus time for different values of ξ . As we increase the amplitude of disorder, ξ , nF increases 
slower. (b) Decrease in normalized invasion velocity versus ξ . Similar to Fisher’s equation analysis, invasion 
velocity decreases as (v̄0 − v̄)/v̄0 ∝ ξ 2.
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As the second aspect, we analyze the dependency of these fluctuations on the intensity of the disorder. Figure 5b 
indicates that we have: DC ∼ ξ 1.99±0.02 . As such, predictions of the perturbation holds.

Stepping stone model. We finally analyze the fluctuations of invasion front of SSM due to disorder. These fluc-
tuations are Brownian (see Fig. 6) and one can define a diffusion constant for them as �

(

nF(t)− n̄F(t)
)2� ∼ Dnt . 

However, the invasion front diffusion constant, Dn , does not exhibit direct dependence on intensity of disorder. 
The reason behind this difference relies on inherent fluctuations of SSM due to randomness in migration and 
duplication.

Discussion
Quantitative understanding of the invasion is of practical and theoretical importance across different fields. The 
deterministic version of Fisher’s equation (Eq. 1) has been used widely in the literature, however, stochastic ver-
sions describe a more realistic scenario and were introduced later  on43. The current understanding of stochastic 
FKPP is shaped by studies that have focused on fluctuating reaction term (Eq. 2). Respectively, the effect of 
fluctuating diffusion constant has remained relatively unexplored. Particularly, the question of how fast these 
traveling waves move in presence of disorder has remained unclear.

To address this problem, we studied how the existence of disorder, which seems to be a common feature 
among different habitats, affects invasion velocity in Fisher’s waves. Previous results suggested that disorder 
decreases invasion  velocity7 but the effect has not been quantified. We used both numerical analysis and analytical 

(b)(a)

Figure 5.  (a) The evolution of �(CF − C̄F)� , with the inset showing the evolution of �(CF − C̄F)
2� , indicating 

Brownian dynamics of the fluctuations of �(CF − C̄F)� . Thus, we can define a diffusion constant, DC , for invasion 
front fluctuations. (b) DC versus ξ for R = 0.01 . The most accurate yields is, DC ∝ ξ 1.99pm0.02.

Figure 6.  (a) Dynamic evolution of of n− n̄ . The inset shows the evolution of �(n− n̄)2� for K = 10 . The slope 
is equal to one, indicating Brownian dynamics with �(n− n̄)2� ∼ Dnt where Dn is the invasion front diffusion 
constant. (b) Dn versus ξ . As we increase the carrying capacity, dependency of front diffusion constant on 
intensity of disorder changes.
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approximation (EMA) to quantify the effect of disorder on invasion velocity. Our results, while confirming each 
other, suggest that invasion velocity decreases as v̄ = v0(1− |ξ |2/6) for Fisher’s waves. Our finding not only 
confirms previous results on the effect of environmental disorder on invasion velocity but also quantifies it.

There is widespread and legitimate concern regarding applying model results to realistic systems. Small dif-
ferences between model assumptions and realistic systems may lead to different behavior in each case. Similarly, 
a relevant concern regarding Fisher’s equation is that whether or not results obtained by a continuum model 
can be applied to real systems that are composed of discrete individuals. To address this concern, we studied the 
effect of disorder on invasion in individual-based models using SSM. Our result suggest that invasion velocity 
in SSM has a similar dependency on intensity of disorder as (v̄0 − v̄)/v̄0 ∝ ξ 2 for large values of ξ and/or K. 
This consistency between results of a continuum and discrete models suggests that the obtained effect of disor-
der on invasion velocity may describe real systems as well. It should be noted that similar to other continuum 
approaches, Fisher’s equation works well when the carrying capacity is high and processes such as random walks 
can be described by diffusion. On the other hand, computation cost significantly increases for SSM with large 
values of N. Respectively, it is more appropriate for populations with smaller N.

For traveling waves that can be described by Eq. (2), fluctuations of invasion front are inversely regulated 
by N. Thus, as we increase N (with the same magnitude for noise strength, γ ), front fluctuations decrease. As a 
result, noisy reaction term has a relevant effect mainly for smaller values of N. On the other hand, for the envi-
ronmental disorder, the effect of disorder is independent of carrying capacity. As such, disorder plays a relevant 
role in populations with different carrying capacities and may become the dominant factor for high values of N 
where the fluctuations due to randomness of duplication are small. Respectively, our results emphasize on the 
importance of environmental disorder and it paves a way for further research.

In the later part, we studied the effect of disorder on front position fluctuations as well. For Fisher’s equation, 
we have built upon the pioneering work done by Mikhailov et al.43 to isolate the contribution of the fluctuat-
ing diffusion constant to the position of the front. This allows us to obtain an expression for the fluctuation of 
the front position and ascertain that the front position performs a Brownian random walk. A similar approach 
was also undertaken in the study by Birzu et al.17. The novelty and major difference between our analysis and 
that of the aforementioned works is that we do not neglect the explicit time dependence of the solution in our 
approach and study the effects of the fluctuating diffusion constant as a perturbation on the full (and explicitly 
time-dependent) solution of the linearized Fisher’s equation.

Our result, while confirming each other, show that disorder leads to Brownian fluctuations of invasion front. 
These fluctuations can be described by a diffusion constant for which we found: DC ∝ ξ 1.99±0.02 . Since the 
evolutionary processes associated with invasion are highly sensitive to the invasion front  structure17, our results 
suggest that disorder may change the composition of invading populations as well.

Finally, we studied the effect of disorder on the invasion front of SSM. Due to random selections, SSM exhibits 
inherent fluctuations that are larger than the effects of the disorder. Respectively, the effect of disorder on Dn 
remained unclear in the studied parameter space.

Material and method
Effective medium approximation. For a linearized version of Fisher , we first obtain the effect of dis-
order on invasion velocity using Effective Medium Approximation (EMA). Using the EMA approach, we can 
replace the spatially irregular diffusion constant with a uniform one in which the effective diffusivity is every-
where equal to De and can replace D0(1+ ξ f (x)) in Eq. (2)44. To obtain De , one needs to discretize Eq. (2) using 
a finite-difference method, which leads to the following equation for the population  density39:

where j belongs to nearest neighbors of i and Wij = Dij/δ
2 stands for the density flow rate between units i and j 

with distance of δ . Due to spatially irregular diffusion constant we have Wij = W0(1+ ξ fij) .  Following44, one has

where g(w) is probability density function for Wij . Applying this approach to our case leads to

where |ξ | stands for dimensionless magnitude of ξ ( ξ 2 has a physical dimension of length, meter).

Perturbation analysis for invasion front fluctuations. The first step towards the study of dynamics of 
a propagating front is linearizing (3) by neglecting the C2 term in an environment with effect diffusion constant, 
De , as:

This is based on the fact that near the front, the cell density is C ≪ 1 . In other words, focusing on the dynamics 
of the front position, automatically grants us the possibility of linearizing (3).

(4)
∂Ci(t)

∂t
=

∑

j∈{i}
Wij[Cj(t)− Ci(t)] + RCi(t) ,

(5)De =
(
∫ ∞

0

g(w)dw

w

)−1

(6)De = D0(1− |ξ |2/3)
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The construction of the solution can be proceeded according to a valuable insight given in the classic  paper43, 
where the particle density is written as follows

where C is written in the comoving frame and ζ = x − vt . It is assumed that δC1 ≪ 1 and in the same order as 
the perturbing function. So that terms containing f(x) and δC1 can be neglected. Furthermore, C0 is assumed to 
satisfy the linearized Eq. (3) with ξ = 0 , i.e.

Which has the following solution

The first term in (8) describes the effects of the perturbing function f(x) on the position of the propagating front, 
while the second term shows the change in the shape of the front. This approach has also been employed and well 
explained in a recent  paper17. As shown  in17,43, to determine the effective diffusion coefficient for the fluctuating 
front, it is sufficient to solve (3) using (8) for η(t) . Note also that since we are interested in the dynamics of the 
system in long times (t ≫ 1

R ) , ve can be assumed to be equal to 2
√
RDe

45. Plugging (8) in Eq. (9) expressed in 
comoving coordinates and considering ξ = ξ̄ /De yields

Noting that the operator Ŵ̂ is not self-adjoint (The adjoint of Ŵ̂ is: Ŵ̂† = De
d2

dζ 2
− ve

d

dζ
+ R ) and  following43, we 

multiply Eq. (11) from the left in the eigenfunction of Ŵ̂† with 0 eigenvalue (which is e
√

R
De

ζ ) and integrate. Thus,

Which yields

Which can further be simplified into

Or equivalently,

According  to17, the effective diffusion would be given by

Or

(8)C(ζ , t) ≈ C0(ζ + η(t), t)+ δC1(ζ , t)

(9)

∂C0(ζ , t)

∂t
− Ŵ̂C0(ζ ) =

∂C0(ζ , t)

∂t

−
(

De
d2

dζ 2
+ v

d

dζ
+ R

)
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(10)C0(ζ , t) =
1√

4πDet
e
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R
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where we have performed an ensemble average over η2(t) using the fact that �f (x)f (y)� = δ(x − y) . A numerical 
calculation of (16) can be readily computed using any mathematical software. However, valuable insight can still 
be obtained from (17), if we use dimensionless parameters τi = Ti

t  and σ =
√

R
D0

ζ . In other words

Equation (18) gives the effective diffusion coefficient for the stochastic behavior of the front. For a diffusive 
behavior, we would expect this effective diffusion coefficient to tend to a constant at large times. At large times, 
we can approximate the integral as follows,

Luckily, Eq. (19) can be evaluated exactly to yield

Where Erf(x) is the error function. As t → ∞ this gives the following simple relation for the diffusion constant 
for the wave front

Substituting ξ = ξ̄ /De and De = D0(1− |ξ |2/3) , we will get the following beautiful equation for the effective 
diffusion constant of the front at large times:
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