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CRYAB (aB-crystallin) is expressed in many tissues and yet the R120G mutation

in CRYAB causes tissue-specific pathologies, namely cardiomyopathy and catar-

act. Here, we present evidence to demonstrate that there is a specific functional

interaction of CRYAB with desmin intermediate filaments that predisposes myo-

cytes to disease caused by the R120G mutation. We use a variety of biochemical

and biophysical techniques to show that plant, animal and ascidian small heat-

shock proteins (sHSPs) can interact with intermediate filaments. Nevertheless,

the mutation R120G in CRYAB does specifically change that interaction

when compared with equivalent substitutions in HSP27 (R140G) and into the

Caenorhabditis elegans HSP16.2 (R95G). By transient transfection, we show that

R120G CRYAB specifically promotes intermediate filament aggregation in

MCF7 cells. The transient transfection of R120G CRYAB alone has no significant

effect upon cell viability, although bundling of the endogenous intermediate fila-

ment network occurs and the mitochondria are concentrated into the perinuclear

region. The combination of R120G CRYAB co-transfected with wild-type

desmin, however, causes a significant reduction in cell viability. Therefore, we

suggest that while there is an innate ability of sHSPs to interact with and to

bind to intermediate filaments, it is the specific combination of desmin and

CRYAB that compromises cell viability and this is potentially the key to the

muscle pathology caused by the R120G CRYAB.
1. Introduction
The discovery that the R120G mutation in aB-crystallin (CRYAB, HSPB5 [1])

phenocopies desmin mutations [2,3] in human desmin-related myopathies

(DRMs) provided the first genetic evidence in support of the proposed func-

tional interaction between CRYAB and intermediate filaments [4]. Since that

discovery, there have been many studies on the mechanisms that cause DRM.

These have included the identification of the amyloid-forming potential of

CRYAB [5,6], the involvement of the proteosomal [7] and macroautophagy

pathways [8], as well as the propagation of apoptotic signals via desmin frag-

mentation [9] and the involvement of mitochondria [10]. Desmin is intimately

involved in mitochondrial positioning and homeostasis [11–15] and mitochon-

drial changes are a prominent associated phenotype in both DRM patients [16]

and mouse models of cardiomyopathy [17]. The caspase 6-mediated fragmenta-

tion of desmin produces an N-terminal fragment that promotes filament

aggregation [9]. Blocking this has been shown to attenuate another model of
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cardiomyopathy based on tumour necrosis factor-mediated

apoptosis [18]. Other mouse models of cardiomyopathy that

have not genetically targeted desmin or CRYAB expression

[19,20] see changes in desmin distribution and its inclusion

into aggregates and an association with CRYAB. The emerging

consensus is that the redistribution of desmin into aggregates

[21,22] is a key initiator in the pathology of DRMs.

Protein aggregates containing both desmin and CRYAB

were a feature of the description of the R120G CRYAB

family [1]. This was faithfully replicated in a knock-in mouse

model of the R120G CRYAB disease-causing mutation, with

desmin aggregation in muscles and the additional observation

of increased vimentin aggregation in the lenses of these

animals [23]. Cataracts were also noted in those family mem-

bers expressing R120G CRYAB [1]. These data could suggest

that the CRYAB interaction may not be specific to desmin, as

vimentin also associates with CRYAB [4]. Indeed, the co-

association of CRYAB with intermediate filament aggregates

is a common histopathological feature in the human diseases

caused by mutant cytoplasmic intermediate filament proteins

that form aggregates [24]. Therefore, it is important to examine

the specificity of the functional interaction between desmin

filaments and CRYAB if we are to understand fully the

muscle pathology caused by mutant CRYAB and desmin.

Previously, we have shown that small heat-shock proteins

(sHSPs) are important modulators of intermediate filament

assemblies [4]. They can prevent filament–filament interactions

from occuring on the basis of an in vitro-based viscosity assay

and transient transfection studies [25]. The R120G mutation in

CRYAB was found to abrogate this activity both for glial fibril-

lary acidic protein (GFAP) [25] and desmin filaments [26],

promoting instead filament–filament interactions and their

aggregation. Mutations in other sHSPs also cause human dis-

eases from cataract to distal neuropathies, which include

CRYAA (HSPB4), HSP27 (HSPB1), HSP27L (HSPB3; [27]) and

HSP22 (HSPB8) (summarized in [28]). Intermediate filament

aggregates feature in the histopathologies of such diseases,

demonstrating that the interaction between sHSPs and inter-

mediate filaments is a widespread and functionally important

interaction. The question to emerge from these studies is why

only certain cell types and tissues are affected by mutations in

an sHSP, whereas their tissue expression profile is not usually

restricted (except perhaps CRYAA [29]). CRYAB [30], HSP27

and HSP22 are all expressed in muscle [31–33], but mutations

in HSP27 and HSP22 are not associated with muscle pathology.

There have been many suggestions to explain the tissue-

specific pathologies associated with sHSP mutations [34–40],

but we propose that the specific intermediate filament expression

pattern must be considered as a key factor in any sHSP-based

pathology as we consider the intermediate filament–sHSP com-

plex to be a functional unit [41,42]. Intermediate filament

expression profiles follow tissue-specific patterns according to

embryological origins [43]. It has already been shown that

R120G CRYAB induces the aggregation of desmin filaments

[26], but it can also potentially cause the aggregation of GFAP

filaments [25]. The reported pathologies for CRYAB mutations

are, however, myopathies and cataract and not neuropathies.

Desmin is a type III intermediate filament protein expressed in

muscle, which suggests that the interaction of desmin with

CRYAB is key to understanding DRM.

To test this hypothesis, we considered the consequences

of introducing CRYAB R120G equivalent mutations into

other sHSPs, such as HSP27 and HSP16.2, to see if equivalent
mutations would also change their interaction with desmin.

The R120G mutation in the a-crystallin domain of CRYAB

is predicted to have similar structural consequences for

HSP27 [44], and therefore for both HSP27 and CRYAB the

equivalent mutation should have similar effects. We find

that only the R120G CRYAB mutation induces increased

binding to desmin as assessed by in vitro sedimentation

assay. We assessed the interaction of desmin and CRYAB

using a range of in vitro techniques (falling ball assay,

Ostwald viscometry, surface plasmon resonance (SPR) and

optical trap measurement of filament network elasticity) to

evidence the interaction of CRYAB with desmin. We show

that the binding of CRYAB to desmin is pH- and cation-

dependent. Using transient transfection, we show that only

the desmin-CRYAB R120G combination-induced desmin

aggregates coincided with reduced cell viability in MCF7

cells. We suggest that it is the partnership of the sHSP with

the resident intermediate filaments that determines how

cells respond to the presence of mutant CRYAB.
2. Material and methods
(a) Expression constructs for recombinant sHSPs
Wild-type (WT) or R120G CRYAB expression vectors based on

the pET23b plasmid were constructed as described previously

[25]. HSP27 and R140G HSP27 were constructed as described

[45]. The Caenorhabditis elegans HSP16.2 cDNA was cloned into

the pRSET expression vector (Invitrogen) as described previously

[46] using the QuickChange site-directed mutagenesis kit (Strata-

gene) to introduce the R95G mutation into WT HSP16.2. For live

cell imaging experiments, CRYAB or desmin were subcloned

into the modified pcDNA3.1 (þ) vector with DsRed2-Mito

(Clontech) preceded by an internal ribosomal entry site (IRES).

These two vector components were PCR amplified from the vec-

tors DsRed2-Mito (Clontech) and pWPI (http://tronolab.epfl.ch)

and sequenced in pGEM-T Easy (Promega, UK) before assem-

bling with the relevant CRYAB or desmin fragments from the

pET23. These IRES-containing bicistronic vectors allow simul-

taneous expression of both mitochondrially targeted red

fluorescent protein to indicate transfected cells and either

CRYAB or desmin constructs.
(b) Expression and purification of recombinant
wild-type and mutant sHSPs

Both WT and mutant sHSPs were expressed in and purified from

BL21(DE3) pLysS Escherichia coli as described. WT and R120G

CRYAB were purified as described using two diethylaminoetha-

nol (DEAE) column steps at 48C [25]. Recombinant human WT

and R140G HSP27 were purified using similar procedures. For

further studies, purified sHSPs were refolded by dialysis against

20 mM Tris–HCl, pH 7.4, 100 mM NaCl at 48C for 16 h.

Both the WT and R95G HSP16.2 formed inclusion bodies,

which were purified [47] and then solubilized in TEN buffer

containing 8 M urea. Purification required anion exchange

chromatography using DEAE-cellulose (DE52; Whatman, UK)

in the presence of 6 M urea. Peak fractions were pooled and then

dialysed against buffer containing 20 mM Tris–HCl, pH 7.4,

100 mM NaCl. The native complex was further purified by size

exclusion chromatography (SEC) on a Fractogel EMD BioSEC

Superformance column (60 � 1.6 cm; Merck, UK) in the same

buffer. Purified proteins were concentrated to 1 mg ml21 using

Ultrafree-15 (Millipore, UK) concentrators with a 10 kDa

molecular weight cut-off.
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(c) Preparation of desmin, glial fibrillary acidic protein
and keratins

Purified desmin was obtained by extraction of the crude

intermediate filament preparation from chicken gizzards with

8 M urea and the subsequent chromatography on DEAE-

cellulose and hydroxyapitite columns in the presence of 6 M

urea as described previously [48,49]. Recombinant human

desmin, GFAP, keratins 7 and 18 were purified as described

[4,26,50,51]. Protein concentrations were determined by the

bicinchonic acid assay (BCA reagent, Pierce) using bovine

serum albumin as standard.

(d) Size exclusion chromatography of sHSPs
Molecular size of the recombinant sHSP complexes were measured

by gel filtration chromatography on a Superformance column (60 �
1.6 cm) packed with Fractogel EMD BioSEC (Merck, UK). The

column was calibrated using thyroglobulin (669 kDa), apoferritin

(440 kDa), alpha-amylase (200 kDa), bovine serum albumin

(67 kDa) and carbonic anhydrase (29 kDa). The column void

volume was determined using dextran blue (2000 kDa). Proteins

were eluted in buffer containing 20 mM Tris–HCl, pH 7.4 and

100 mM NaCl at room temperature and the elution volume of

each sample was used to estimate the molecular weight.

(e) Intermediate filament assembly, binding and
viscosity assays involving sHSPs

Low-speed and high-speed sedimentation assays were used to

assess the ability of sHSPs to associate with intermediate fila-

ments and prevent filament–filament associations that lead to

aggregation [52]. Intermediate filament proteins were mixed

with sHSPs in urea buffer (8 M urea, 20 mM Tris–HCl, pH 8.0,

5 mM EDTA, 2 mM EGTA, 1 mM DTT) and then dialysed to

lower the urea concentration stepwise into low ionic strength

buffer (10 mM Tris–HCl pH 7.0, 1 mM DTT) at 48C. Sometimes

CRYAB was added at this stage prior to initiating filament

assembly by dialysis into filament assembly buffer (10 mM

Tris–HCl pH 7.0, 1 mM DTT 50 mM NaCl) at room temperature

for 12 h. Assembly of desmin and GFAP filaments was also

initiated by the addition of a 20-fold concentrated binding

buffer to low ionic strength buffer, giving a final concentration

of 100 mM imidazole-HCl, pH 6.8, 1 mM DTT. Protein samples

were incubated for 2 h at the indicated temperatures. Exper-

iments to investigate pH and temperature effects on CRYAB

associations were carried out as follows with WT GFAP, vimen-

tin and desmin assembled at 0.2 mg ml21 and mixed with WT

CRYAB at a 1 : 1 molar ratio. Filament assembly was completed

by dialysis into 20 mM N-2-hydroxyethylpiperazine-N-2-ethane-

sulfonic acid (HEPES), 100 mM NaCl, 1 mM MgCl2, 1 mM DTT

at pH 6.3, 6.8 or 7.3; at 238C, 398C or 448C, respectively. In

some instances, CRYAB was also added to assembled filaments.

The influence of sHSPs on filament–filament interactions of

assembled desmin was assessed also by measuring the visco-

elastic properties. First, we used a falling ball assay as

described previously [51]. The ability of the sample to support

a ball bearing was then scored in a binary fashion. Carbonic

anhydrase (Sigma, UK) was used as a control. We performed

viscosity measurements using an Ostwald-type viscometer

(Cannon, USA) at a protein concentration of 0.5 mg ml21 at

378C. GFAP was assembled in the absence or the presence of

CRYAB by addition of a 20-fold binding buffer as described

above. Flow times were measured at different time points:

1 min after assembly start and then every 5 min over a period

of 1 h. Specific viscosity (Vsp) was calculated by the equation

Vsp ¼ (Ts 2 Tb)/Tb, where Ts is the flow time of the sample

and Tb the flow time of the buffer.
( f ) Passive microrheology measurements
Desmin filaments were assembled from purified recombinant

protein at 1 mg ml21 with or without a 1 : 10 molar ratio of

desmin : CRYAB using dialysis to lower the urea concentration.

Assembly was completed by overnight dialysis into 20 mM

Tris–HCl (pH 7.3), 50 mM NaCl, 1 mM MgCl2 and 1 mM DTT

at room temperature. One-particle passive microrheology was

done using a 808 nm laser and a 100� oil objective (NA 1.4)

on an inverted Nikon phase microscope. PLL-coated polystyrene

beads of 1.5 mm were trapped, laser light was collected using an

oil condenser, and the intensity fluctuations were recorded using

a quadrant photodiode (QPD). With a custom-written program

in Cþþ, the apparent elastic modulus G0app and apparent vis-

cous modulus G00app were determined from the fluctuations in

bead position using the fluctuation–dissipation theorem and

generalized Stokes–Einstein equation [53]. The viscous modulus

was calculated from G00app by subtracting the solvent viscosity,

and the elastic modulus was calculated from G0app by subtracting

the apparent modulus in buffer to compensate for the presence of

the optical trap [54].

(g) Binding of CRYAB and R120G CRYAB measured by
surface plasmon resonance

Affinities of WT or R120G CRYAB to immobilized intermediate

filament proteins were determined using SPR analysis with a

Biacore 3000 apparatus (GE Healthcare, Uppsala, Sweden). Pur-

ified desmin, GFAP and vimentin were immobilized on the

dextran matrix of a CM5 sensor chip according to the manufac-

turer’s instructions using 10 mM HEPES, pH 7.4, 0.15 M NaCl,

3.4 mM EDTA, 0.005 % (v/v) surfactant P20. Unreacted groups

were subsequently blocked by injection of 1 M ethanolamine,

pH 8.5. WT and R120G CRYAB for binding to immobilized inter-

mediate filament proteins were first diluted to 20 g ml– 1, injected

at a flow rate of 5 l min21 for 7 min at 378C and then washed for

7 min. All sensograms were corrected for non-specific inter-

actions to a reference surface and by double referencing [55].

The sensor chip was regenerated between injections by washing

with 6 M guanidine hydrochloride in HBS-EP buffer.

(h) Cell cultures, transient transfection and cell viability
assays

The immortalized human lens epithelial cell line H36CE2 was

grown as detailed previously [56]. Baby hamster kidney

(BHK21) cells, mouse myoblast C2C12 cells and human breast

cancer epithelial cell MCF7 were grown in media as rec-

ommended by the ECACC (www.ecacc.org.uk). For co-

transfection experiments, plasmid DNA (pcDNA3.1; Invitrogen,

UK) containing human desmin, CRYAB, HSP27 or HSP16.2 in

pcDNA3.1 (Invitrogen, UK) were prepared using MaxiPrep kits

(Qiagen, UK). H36CE2 cells were transiently co-transfected by

calcium phosphate precipitation using standard procedures

[57], while GeneJuice Transfection Reagent (Merck Millipore,

UK) was used to transiently transfect the other cell lines. Cells

were allowed to recover for 24–48 h prior to processing for

immunofluorescence microscopy as described previously [58].

Quantification of the desmin filament phenotypes was per-

formed by visual assessment of various staining patterns in

transfected cells. For each DNA construct, cells on three cover-

slips were counted and approximately 100–150 transfected

cells were assessed per coverslip. For cell viability assay, the col-

orimetric CellTiter 96 AQueous One Solution Cell Proliferation

Assay (Promega, UK) was used according to the manufacturer’s

instructions. Statistical significance was analysed by one-way

ANOVA and the level of significance was set at p � 0.05. Apop-

totic cells were assessed by staining with a monoclonal antibody

http://www.ecacc.org.uk
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Figure 1. Analysis of oligomeric sizes of WT and mutant sHSPs. SEC was performed using a Superformance column as described in §2d. The elution profiles of WT
and mutant (a) CRYAB, (b) HSP27 and (c) HSP16.2 are shown and represent an average of three independent experiments. Elution positions of molecular weight
protein standards and their corresponding sizes are indicated on the top of each panel (downward arrows). The position of void volume (Vo) was determined using
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M30 (1 : 10, Roche Diagnostics, Mannheim, Germany) that

specifically recognizes a neo-epitope of keratin 18 fragment gen-

erated by caspase cleavage at position Asp396 and counterstained

with 5 mg ml21 DAPI (Molecular Probe Inc., Eugene, OR, USA).

(i) Primary antibodies
The primary antibodies used in this study were rabbit polyclonal

anti-desmin (1 : 100; Sigma, UK), desmin monoclonal (D3; Develop-

mental Biology Hybridoma Service), mouse monoclonal anti-

HSP27 (1 : 100; [59]), mouse monoclonal anti-CRYAB (1 : 1; [60])

or mouse polyclonal anti-HSP16.2 (1 : 50; [46]). Desmin (PDE;

Euro-Diagnostica, The Netherlands) and mouse monoclonal

anti-desmin (D33; DakoCytomation), keratin (LE41; mouse mono-

clonal) and GFAP (polyclonal 3270 and monoclonal GA5) were

as described [58]. After washing with PBS/BSA/azide, the primary

antibodies were detected using FITC (1 : 100; Sigma, UK), Texas-

Red (1 : 200; Jackson ImmunoResearch Laboratories, UK) or Alexa

594 (1 : 500; Molecular Probe, UK) conjugated secondary antibodies.

( j) Preparation of cell lysates and immunoblotting
analysis

Cells plated at a density of 1 � 106 cells per 100 mm Petri dish

were transfected with expression vectors as indicated. After

48 h, cell lysates were prepared [26] and analysed by immuno-

blotting followed by enhanced chemiluminescence using a

luminescent image analyser (LAS-1000plus; FujiFilm, Japan).

(k) Live cell imaging and movie preparation
For live cell imaging, cells transfected with pcDNA3.1-IRES-

DsRED2-Mito vectors were cultured in standard culture

medium containing 10 mM HEPES, pH 7.0. in glass-bottomed

culture dishes (Iwaki) and maintained at 378C in a humidified

chamber. At 24 h after transfection, time-lapse images were

acquired in an Axiovert 200 inverted microscope equipped
with a charge-coupled device camera (AxioCam; Carl Zeiss,

Jena, Germany) using the AxioVision (Carl Zeiss, Jena,

Germany) software. Real-time images were acquired every

10 min for 12 h using a standard Rhodamine filter set (excitation

at 550 nm and emission at 590–650 nm) at 40� magnification.

Short exposure time and a neutral density filter were used

during image acquisition to minimize photobleaching and

phototoxicity. Digitized images were imported into QUICKTIME

Software (QUICKTIME v. 5.0; Apple, Cupertino, CA, USA) and

converted into movies.
3. Results and discussion
(a) Determination of oligomeric sizes of wild-type and

mutant sHSPs
Previous studies showed that the R120G mutation in CRYAB

altered its secondary, tertiary and quaternary structure [25].

To extend these findings, the corresponding mutations in

human HSP27 (R140G) and in C. elegans HSP16.2 (R95G)

were generated by site-directed mutagenesis and compared

with R120G CRYAB by SEC. WT CRYAB (figure 1a) and

HSP27 (figure 1b) eluted at positions corresponding to aver-

age molecular sizes of approximately 520 and 560 kDa,

respectively (table 1), which is consistent with previous pub-

lished results [25,61]. The arginine mutation significantly

altered the molecular masses of R120G CRYAB and R140G

HSP27 (figure 1a and table 1), but with opposite conse-

quences. R140G HSP27 formed a polydisperse population

of protein oligomers ranging in size from over 600 kDa to

approximately 50 kDa (figure 1b), which was smaller than

the WT HSP27. R120G CRYAB on the other hand was

larger (684 kDa) than the WT CRYAB and also appeared no

more polydisperse than the WT. There was no major effect



Table 1. SEC analysis of sHSP oligomers.

molecular massesa of WT sHSPs and their mutants

WT/mutant sHSP apparent Mr(kDa)

WT HSP16.2 572 + 72

R95G HSP16.2 584 + 80

WT aB-crystallin 520 + 84

R120G aB-crystallin 684 + 78

WT HSP27 560 + 74

R140G HSP27 150 + 242
aMolecular masses (M) were determined from a plot of logM versus Ve/Vo

of molecular mass standards.
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upon the assembly of the oligomeric complexes of HSP16.2

when the equivalent arginine residue (R95) was mutated

(figure 1c). The R95G mutant eluted with almost the same

elution volume as that of WT HSP16.2 with an apparent mol-

ecular mass of approximately 580 kDa (figure 1c and table 1).

The three mutants therefore cover the range of potential con-

sequences for the quaternary structure of sHSPs after the

introduction of a glycine residue instead of arginine at this

conserved site, by either reducing or increasing the oligomer

size or producing no apparent change.
(b) Effect of the sHSP arginine mutations upon their co-
sedimentation with intermediate filaments and
preventing filament – filament associations

Several in vitro assays have been developed to study the effect

of the R120G mutation on the interaction of CRYAB with

intermediate filaments. These include the ability of sHSPs

to co-sediment with intermediate filaments and to prevent

filament–filament interactions as detected by falling ball vis-

cometry [51]. Vimentin and GFAP, but not desmin, have been

tested in the falling ball assay. Desmin is the physiological

target for CRYAB in muscle as revealed by the phenocopying

of the disease, desmin-related myopathy, by both desmin and

CRYAB mutations [1].

In vitro intermediate filament co-sedimentation assays

were conducted using optimized pH and salt conditions

[26]. Under these conditions, desmin was assembled and

sedimented efficiently as shown by the proportion of

the protein partitioning into the pellet fraction in the control

(figure 2a). Both the WT and R120G CRYAB (figure 2a) bind

to desmin filaments in a temperature-dependent manner. The

increased co-sedimentation of R120G CRYAB with desmin

filaments compared with WT protein (figure 2a) was appar-

ent at all three temperatures. Even at 378C, almost all of the

R120G CRYAB was found to bind to pelletable desmin fila-

ments, whereas the binding of WT protein to desmin was

incomplete with a small proportion still remaining in the

supernatant fractions (figure 2a). For the experiments pre-

sented in figure 2a, a 1 : 1 molar ratio of desmin : CRYAB

was used, although similar results were obtained with

decreasing molar ratios at 1 : 0.5, 1 : 0.2 and 1 : 0.1 (data not

shown). The binding of HSP27 to desmin filaments (figure

2b) was apparently less efficient than HSP16.2 (figure 2c)
and CRYAB (figure 2a). When included at a 1 : 1 molar

ratio, the WT HSP27 showed limited binding to desmin fila-

ments with co-sedimentation being greatest at 448C (figure

2b). The co-sedimentation of R140G HSP27 to desmin fila-

ments can be detected at 228C and this remained unaltered

at elevated temperatures (figure 2b). The R140G HSP27

appeared to co-sediment more efficiently with desmin fila-

ments than WT HSP27.

In contrast to both CRYAB and HSP27, WT HSP16.2 only

partially co-sedimented with desmin filaments (figure 2c). We

selected this particular sHSP as a representative of those

expressed in the animal C. elegans. It is a stress-induced sHSP

in this animal and multimerization is important to its function

[62]. There are also cytoplasmic intermediate filaments in

C. elegans, albeit quite different in primary sequence to mamma-

lian desmin [63]. The co-sedimentation of HSP16.2 appeared to

be independent of temperature, as the WT protein was similarly

distributed between supernatant (S) and pellet (P) fractions

irrespective of temperature. Similar results were obtained for

R95G HSP16.2 (figure 2c). Therefore, for this mutant, minimal

effect upon the quaternary structure of the protein coincided

with little change in the co-sedimentation properties with

desmin filaments.

Of the three sHSPs and their respective arginine mutants, it

was the R120G CRYAB that was most affected. We therefore

considered whether this would alter the co-sedimentation of

CRYAB with in vitro assembled keratin filaments (figure 2d).

Filaments of keratins 7 and 18 also co-sedimented with WT

CRYAB and co-sedimentation was significantly increased by

the R120G CRYAB mutation, mimicking the results obtained

with desmin. These data suggest that the increased co-sedi-

mentation of CRYAB R120G is not necessarily restricted to

desmin, but includes other type III intermediate filaments, in

particular vimentin and GFAP, and also keratins (this study).

To assess the possible function of these various sHSPs and

their arginine mutants, an assay to measure the effect of sHSPs

upon filament–filament interactions was developed [51]. This

assay is based upon falling ball viscometry, which provides a

measure of sHSP-desmin interactions at equilibrium. Desmin

filaments form a gel capable of supporting the metal ball

used in the assay. The effect of the arginine mutations upon

the chaperone activity of sHSP was tested. Previous studies

showed that the addition of sHSPs, including CRYAB and

HSP25, to assembling intermediate filament solutions pre-

vented gel formation and so permitted the ball to sink to the

bottom of the tube, even though filament assembly was not

inhibited [51]. As expected, after the assembly of desmin, a

gel formed preventing the ball from falling to the bottom of

the tube. The presence of WT human CRYAB, C. elegans
HSP16.2 and HSP27 with desmin allowed the ball bearing to

sink to the bottom of the capillary (table 2). These WT

sHSPs are apparently very effective at preventing gel for-

mation over a 10-fold concentration range (table 2). The

R95G mutation did not abolish the activity of HSP16.2 in

this assay. In contrast, the mutant R120G CRYAB appeared

completely ineffective at inhibiting gel formation, the ball

remaining on top of the assembled desmin sample in the capil-

lary. HSP27 R140G was equally effective as the WT protein at

1 : 1 ratios, but was ineffective at the 0.2 : 1 ratio, in contrast to

the WT HSP27 (table 2).

This assay provides a rapid way to assess the potential

activity of different intermediate filament and sHSP combi-

nations. In table 3, we provide additional evidence that
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Figure 2. Co-sedimentation of WT and arginine mutant sHSPs to desmin filaments in vitro. In this binding assay, the assembly was conducted at temperatures indicated
above the relevant gel tracks (a – c). The pellet (P) and supernatant (S) fractions from the co-sedimentation assays were analysed by SDS-PAGE and visualized by
Coomassie Blue staining. The positions of desmin (a – c), keratin (d ), WT and arginine mutants of CRYAB (a,d ) HSP27 (b) and Hsp16.2 (c) are indicated (arrows).
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sHSPs from evolutionary-unrelated organisms appear to

have an innate ability to affect desmin gel formation in this

falling bead assay. As an extreme test of this concept, the

chloroplast-specific sHSP, HSP21 [64], was found to be able

to prevent desmin gel formation. It was therefore surprising

that another potential desmin-interacting mammalian sHSP,
HSP20, is not equivalent to CRYAB in this assay. HSP20 is

involved in cardioprotection and can also coassemble with

both HSP27 and CRYAB [65,66]. These data suggest that

while sHSPs from distant organisms can affect gel formation,

the different mammalian sHSPs do not possess completely

equivalent properties.



Table 3. Effect of WT and mutant sHSPs on the gel formation by desmin
filaments as monitored by the falling ball assay. Inter-filament interactions
between assembled desmin filaments lead to the formation of a protein
gel that is capable of supporting a small stainless steel ball. Addition of
sHSPs in a molar ratio of 1 : 1 to desmin prevented this gel formation, thus
allowing the ball to drop to the bottom of the capillary tube. Carbonic
anhydrase was used as a control in these experiments.

sHSPs added to desmin solution ball position

no addition top

carbonic anhydrase top

CRYAB (HSPB5) bottom

HSP21 (Arabidopsis thaliana) bottom

HSP20 (HSPB6) top

Table 2. Summary of the data collected for the effect of sHSPs and their
arginine mutants on the gel formation by desmin filaments as monitored
by the falling ball assay. Desmin can form a protein gel capable of
supporting a small stainless steel ball. Addition of WT sHSPs in a range of
molar ratios from 1 : 1 to 0.1 : 1 to desmin allow filament assembly but
then prevent gel formation. In this case, the ball will descend easily into
the bottom of the capillary tube. A similar result was obtained for R95G
HSP16.2. The R120G CRYAB abrogated this activity of aB-crystallin even
over a 10-fold concentration range. The inhibitory effect of R140G HSP27
on gel formation is compromised, but not completely abolished, as this
mutant can still prevent gel formation when added at a 1 : 1 molar ratio.

WT and mutant sHSPs
added to assay

desmin gel formation as
indicated by the ball position

sHSP : desmin
(molar ratio) 1 : 1 0.2 : 1 0.1 : 1

WT CRYAB bottom bottom bottom

R120G CRYAB top top top

WT HSP27 bottom bottom bottom

R140G HSP27 bottom top top

WT HSP16.2 bottom bottom bottom

R95G HSP16.2 bottom bottom bottom
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(c) Measuring CRYAB interactions with type III
intermediate filament proteins using non-
equilibrium and equilibrium methods

SPR provides an equilibrium method to assess the relative

binding of WT and R120G CRYAB to desmin, GFAP and

vimentin (figure 3a). It can be seen that both WT and

R120G CRYAB had a greater capacity for binding desmin

than the other type III intermediate filament proteins, vimen-

tin or GFAP. Moreover, there was a significant increase in the

binding of R120G CRYAB to all three type III intermediate

filament proteins. These data support the interpretation that

there is selectivity in CRYAB binding to type III intermediate

filament proteins and that the R120G mutation increases the

binding of CRYAB to intermediate filaments supporting the

in vitro co-sedimentation data and electron microscopy data

[25,26]. More detailed interpretation of these data is compli-

cated by the uncertainty over which intermediate filament

assembly form is bound to the chip surface given that, at

20 mg ml21, both desmin [67] and vimentin [68,69] have the

potential to form filaments while this is likely not the case

for GFAP, which has a critical concentration of 80 mg ml21

[70]. Purging the chip with 6 M guanidine hydrochloride

should ensure that only intermediate filament monomers

are bound to the chip surface. On-chip association of

subunits, however, is a possibility once binding-buffer con-

ditions are restored. Furthermore, the inherent polydispersity

of CRYAB [71] further complicates the interpretation as it is

not known whether there is any selectivity by specific

CRYAB oligomers for intermediate filaments. SPR has been

used to study CRYAB subunit dynamics [72] and to assess

the relative affinity of different client proteins [73]. These

data confirm the preference of CRYAB for desmin and, from
the dissociation kinetics, it is clear that once bound, CRYAB

dissociates slowly from all three type III intermediate filament

proteins. This would fit the conclusion that there is a high affi-

nity binding site for CRYAB clients [74] and that topologically

distinct sites are present on CRYAB [75] for these different cli-

ents as born out by peptide array studies [76]. With respect to a

protein polymer such as an intermediate filament, the rules for

client selection by sHSPs may not parallel those established

for monomeric, destabilized clients such as T4 lysozyme

[75,77]. Indeed there is no evidence currently to suggest that

intermediate filament proteins naturally adopt unfolded con-

formations within the filament, although this can be induced

by mechanical stretching [78]. There is, however, evidence to

suggest that filaments exhibit different subunit geometries

that can be differentially detected by antibodies [79,80]

and could be induced by post-translational modifications

[19,81–87]. The presence of disease-causing mutants or

GFP-tagged intermediate proteins is sufficient to increase the

binding of CRYAB to the filaments [58,88], which we interpret

as evidence of altered subunit geometries inducing sHSP

association with intermediate filaments.

Using Ostwald viscometry, the assembly of GFAP in the

presence of WT and R120G CRYAB was analysed (figure 3b).

Addition of CRYAB reduced the overall viscosity of the

solution, but the presence of the R120G CRYAB induced a

catrastrophic loss of viscosity after approximately 25 min

when aggregates were visible in the solution consistent with

the falling ball assay. We confirmed the presence of highly

bundled filaments by electron microscopy (see the electronic

supplementary material, figure S1). These data indicate the abil-

ity of WT CRYAB to reduce the apparent viscosity of a solution

of GFAP filaments. In contrast, the presence of R120G CRYAB

promotes interactions between GFAP filaments, which induces

clumping and their eventual aggregation, which has the effect

of significantly reducing solution viscosity, but by a completely

different mechanism and with greater impact than the viscosity

reduction induced by WT CRYAB. The effect of the R120G

mutation is to drive the aggregation of the GFAP filaments.

A disadvantage of the Ostwald viscometer is that flow-

induced filament orientation occurs during the measure-

ments, which may lead to shear-thinning. For this reason,

we turned to a passive rheology approach using optically

trapped beads (figure 3c). As intermediate filaments are

semi-flexible polymers that show both elastic and viscous
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Figure 3. Equilibrium methods of detecting the interaction of CRYAB with intermediate filaments. (a) Binding kinetics of WT and R120G CRYAB to different inter-
mediate filament (IF) proteins as measured by SPR. Desmin, GFAP and vimentin were immobilized to the dextran matrix of a CM5 sensor chip. Binding of 20 g ml
WT (a) or R120G (b) CRYAB to immobilized IF proteins were monitored at 378C for 7.5 min, followed by washing for 7.5 min. Measurements were performed at a
flow rate of 5 l min – 1 using a Biacore 3000 Biosensor. Resonance measured during 900 s of exposure is plotted on the ordinate in arbitrary units. (b) Viscometric
analyses of GFAP assembly in the absence or presence of CRYAB. GFAP (0.5 mg ml21) was assembled either alone or coassembled with either WT or R120G CRYAB
in a molar ratio of 1 : 2 at 378C. Assembly was initiated at the 10 min time-point by addition of a 20-fold concentrated assembly buffer. Specific viscosity was
measured 1 min after assembly and then at 5 min intervals for 60 min. The profile obtained for GFAP reflects the normal increase of specific viscosity after initiation
of filament assembly. In the presence of WT CRYAB, GFAP exhibited a slightly decreased specific viscosity over a period of 40 – 45 min before reaching a plateau. In
contrast, for GFAP assembled in the presence of R120G CRYAB, the specific viscosity increased normally only during the first 25 min. Afterward it decreased dra-
matically, indicative of GFAP filament aggregation. (c) Passive rheology measurements by one-particle microrheology. WT desmin was assembled alone or with a
1 : 10 molar ratio of WT desmin: WT CRYAB. The position fluctuations of beads immersed in the network were measured by trapping beads with a weak 808 nm
laser and measuring scattered light on a QPD. The elastic modulus was corrected for the presence of the optical trap. Average G’ values (Pa) +1 s.d. from five
independently trapped beads for WT desmin and from 10 independently trapped beads for WT desmin with WT CRYAB are plotted against frequency (Hz). Desmin
assembled alone has a higher stiffness compared with when WT CRYAB is present. This difference is statistically significant with p � 0.01, using a type 2, one-tailed
Student’s t-test. (Online version in colour.)
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properties, bulk rheology has been used to assess the mech-

anical properties of desmin networks in terms of their

flexibility and persistence lengths [89]. We find that CRYAB

slightly reduces the elastic modulus of the desmin filament

networks as measured by one-particle passive microrheology

(figure 3c). This confirms the interaction of CRYAB with

intermediate filaments, eliciting a measurable change in the

biomechanical properties of the filament solution. The diva-

lent cation-mediated interaction of C-terminal sequences of

the type III intermediate filament proteins could partly

explain the filament solution properties [90] and parallels

the similar role for the C-terminal extensions in neurofila-

ments [91]. The precise details of how CRYAB might

prevent the filament–filament interactions as measured by

the falling ball (table 2; [51]), low-speed sedimentation

[26,52] and viscosity assays (figure 3b) is not yet determined

and neither is the question of how this relates to the observed

reduction in the stiffness of the desmin filament network.

Nevertheless, for other poly-electrolyte systems such as
actin [92] and neurofilaments [91,93], the cations and pH in

solution and the amino acid sequence exposed at the filament

surface are known to be key factors in driving gel formation,

sHSP association and thus sample stiffness.
(d) Temperature and pH dependency of the interaction
of CRYAB with desmin, GFAP and vimentin
intermediate filaments

Desmin, GFAP and vimentin were assembled in vitro at three

different pH values and temperatures to see how these vari-

ables influenced CRYAB association. Previous studies with

recombinant purified human intermediate filament proteins

have looked at temperature effects (e.g. [67]), but not pH

effects, although the CRYAB association with a mixture of

desmin and actin at different pHs was investigated previously

[94]. Intermediate filaments were formed at all pHs and temp-

eratures analysed (figure 4e,f; data not shown for GFAP and
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Figure 4. CRYAB interaction with desmin is divalent cation-, pH- and temperature-dependent. Binding of CRYAB to desmin, GFAP and vimentin filaments was
assessed by high-speed co-sedimentation assay (a – d ). The quantified results are presented as the mean + s.d. of the percentage of CRYAB that had
co-sedimented with WT desmin, GFAP and vimentin at 238C, 398C and 448C (a – c, respectively). Note, most binding occurs at pH 6.3 and at 398C and 448C
with a preference for desmin over vimentin and GFAP. A representative gel image used for the quantification of binding to desmin is shown (d ). Three independent
experiments were used for the quantifications. (e,f ) WT desmin formed filaments of a few micrometres in length and had a much higher density of CRYAB particles
(arrow) surrounding the filaments at pH 6.3 (e) compared with pH 7.3 ( f ). Images are taken at the same magnification. Scale bar, 500 nm. G, GFAP; V, vimentin; D,
desmin; S, supernatant; P, pellet.
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vimentin). Desmin filaments were coated with CRYAB par-

ticles at pH 6.3 and at 238C (figure 4e,f). High-speed co-

sedimentation analyses showed that at pH 6.3 and over the

temperature range from 398C to 448C, more than 35 per cent

of the total CRYAB was associated with the desmin and

GFAP filaments. In line with the SPR data, CRYAB binding

followed the same trend, with desmin binding the most and

vimentin the least (figure 4a–c) at the temperatures and pHs

investigated. Lower binding was observed at pH 7.3 and 6.8

(figure 4a–c) indicating that there was a pH dependency in

CRYAB binding to desmin, GFAP and vimentin. We also

investigated the pH effects on the binding of CRYAB to pre-

formed GFAP filaments by co-sedimentation and observed a

similar trend of increased binding at pH 6.3 that was also

temperature-dependent (data not shown). Similar studies

were not possible for desmin, as in the absence of CRYAB

desmin filaments were attracted to the plastic surfaces of tips

and tubes (data not shown).

Ischaemia results in a pH decline in muscle tissue [95] and

the translocation to the Z- and I-bands of resident sHSPs [96,97],

which is the location of the desmin intermediate filaments.

Therefore, the data we have presented evidence the importance
of pH changes to the interaction of CRYAB with desmin. The

structure of CRYAB would be expected to change in acidosis,

resulting in a dimer-monomer transition of the a-crystallin

domain [98,99] as well as its activation [100]. The R120G

mutation in CRYAB, in contrast, stabilized its dimers at low

pH [101], the result of removal of a positive charge from

within the dimer interface which contains histidines sensitive

to physiological pH changes [44,98]. Therefore, it appears that

acidic pH can induce the release of monomeric WT CRYAB,

but not the R120G mutant. This perhaps leads to extended

interactions with desmin filaments, compared with WT

CRYAB, at physiological pH values as evidenced by the studies

here and those previously published [25,26,102].
(e) Transient transfection studies
In order to determine the effect of these arginine mutations

upon the potential in vivo activity of the respective sHSPs, tran-

sient transfection assays were performed. Desmin filaments

form characteristic aggregates as part of the histopathology

in the cardiomyopathies so far described with the R120G

CRYAB mutation. As a mimic of this situation, desmin was
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Figure 5. Expression of R120G CRYAB induces the aggregation of intermediate filaments. (a – c) The immortalized human lens epithelial cell line H36CE2 was
transiently transfected with combinations of desmin with either WT CRYAB or R120G CRYAB (a), with desmin and either WT HSP27 or R140G HSP27 (b) and
with desmin and either WT HSP16.2 or R95G HSP16.2 (c). The number of desmin aggregate-containing cells were then counted and the mean + s.d. calculated
and plotted as bar charts. R120G CRYAB was the only mutant sHSP that significantly increased the number of desmin aggregates in the transiently transfected cells.
Representatives of transfected cells are not shown. (d – f ). (d ) SW13 Vim2 cells were transiently co-transfected with desmin alone, (e) desmin and WT CRYAB and
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WT CRYAB and (i) desmin and R120G CRYAB. ( j – k) Transient transfection of MCF7 cells with R120G CRYAB. ( j ) Cells were then probed with both keratin and
(k) CRYAB antibodies. Note that in the R120G CRYAB transfected cells the endogenous keratin networks have collapsed around the nucleus, indicating the ability of
CRYAB R120G to act in a dominant negative fashion to aggregate keratin filaments. Scale bar, 10 mm.
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Figure 6. Expression of mutant desmins reduces viability of MCF7 cells. (a) Cell viability was measured in MCF7 cells transiently transfected with WT desmin, A337P
desmin, R120G CRYAB alone or co-transfected with WT desmin and R120G CRYAB at a 1 : 1 molar ratio. Cells transfected with empty pcDNA3.1 vector were used as a
control. The viability of transfected MCF7 cells was determined at 24 and 48 h using the MTS-based cell viability assay. Data shown are the mean + s.e. from three
independent experiments. Statistical significance was analysed by one-way ANOVA and the level of significance was set at p � 0.05. (b) Desmin fragmentation by
caspases. Two desmin fragments (arrowheads) were generated in C2C12 cells induced to undergo apoptosis by treatment with 1 mM staurosporine (C2C12þ STS)
and in vitro by cleavage of purified desmin with active caspase 6 (Des þ Caspase 6). One of the proteolytic fragments was faintly observed in cells co-transfected
with WT desmin and R120G aB-crystallin (lane 3). Levels of protein expressed in transfected MCF7 cells were determined at 48 h after transfection. Immunoblotting
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expression of both mitochondrially targeted red fluorescent protein (c; red channel) and R120G CRYAB (d; green channel). Note the collapse of the mitochondria into
perinuclear locations in those cells (e; merged red and green channels) expressing R120G CRYAB.
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co-transfected with either the WT or mutant sHSP and the for-

mation of desmin aggregates compared with that of desmin

alone. The human cell line H36CE2 was chosen because it is

a human cell line that does not express desmin, but does

express vimentin. Lens epithelial cells can express desmin as

part of their response to posterior capsule opacification [103].

The results were recorded as the percentage of cells with

desmin-positive aggregates.

The transfection of desmin into H36CE2 cells leads to the

formation of desmin-positive aggregates in the cytoplasm of a

high proportion of the cells. Co-transfection with CRYAB sig-

nificantly reduced the incidence of aggregate-positive cells,

but when the R120G CRYAB was co-transfected with

desmin, this positive effect was lost and desmin aggregates

were once again apparent (figure 5a). In contrast, the co-

transfection of either HSP27 or R140G HSP27 (figure 5b) or

HSP16.2 or R95G HSP16.2 (figure 5c) all significantly reduced

desmin aggregate formation in transfected H36CE2 cells.

We selected two other cell lines to confirm the tendency of

R120G CRYAB to induce the aggregation of desmin filaments

in transiently transfected cells. In SW13/Cl2 Vim2 cells, an

adenocarcinoma cell line that lacks cytoplasmic intermediate

filaments, the transiently transfected desmin also failed to

form effective networks of desmin filament (figure 5d). Only
when co-transfected with WT CRYAB (figure 5e) were

desmin filament networks observed. As with H36CE2 cells,

co-transfection of desmin with R120G CRYAB induced

desmin filament aggregation (figure 5f ). These aggregates

costained with CRYAB antibodies (data not shown). A similar

experimental series is also shown for MCF7 cells, which have

an endogenous cytoplasmic keratin network, showing similar

results for co-transfection of WT and R120 CRYAB, albeit in

these cells desmin alone was capable of forming a filament net-

work (figure 5g– i). The co-transfection of R120G CRYAB with

desmin caused the perinuclear collapse of the desmin fila-

ments (figure 5i). Interestingly, the transient transfection of

R120G CRYAB into MCF7 cells was also capable of causing

the collapse of the endogenous keratin network of filaments

(figure 5j,k), but there was no loss in cell viability.

In the course of these experiments involving MCF7 cells,

we noticed low transfection rates for the desmin when

co-transfected with R120G CRYAB. We therefore monitored

cell viability after transfection. We included a series of con-

trols including the DRM-causing desmin mutant A337P.

The results are presented in figure 6a. Co-transfection of

R120G CRYAB with WT desmin induced a significant

reduction in cell viability. This was not observed when

R120G CRYAB was transiently transfected into MCF7 cells.
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Neither was the transfection of WT desmin deleterious for

cell viability. Interestingly, only the DRM-causing desmin

mutant A337P induced a similar reduction in cell viability.

These data suggest that DRM-causing mutations in either

desmin (A337P) or CRYAB (R120G) were capable of reducing

cell viability, but R120G CRYAB was dependent upon the

presence of desmin for this effect.

Desmin has been found to propagate the canonical apopto-

sis pathway, it being a substrate for caspase 6 [9] and evidenced

by our control experiments using staurosporin-treated C2C12

cells and caspase 6-treated desmin (figure 6b). Similar-sized

desmin proteolytic fragments were observed in samples pre-

pared from MCF7 cells transfected with A337P desmin and

for those co-transfected with the combination of WT desmin

and R120G CRYAB (figure 6b). Using the modified IRES-

Mito-DsRED-based pcDNA3.1 vector to identify the mitochon-

dria of transient transfected cells, R120G CRYAB induced the

collapse of mitochondria along with the perinuclear aggrega-

tion of the endogenous keratin filaments (figure 6c–e), but as

evidenced by the cell viability assay (see the electronic sup-

plementary material, figure S2) the expression of disease-

causing desmin mutants induces apoptosis by the activation

of caspases. The fact that R120G CRYAB induces the collapse

of the endogenous keratin filaments and the mitochondria in

MCF7 cells singly transfected with just R120G CRYAB is very

important especially as these are phenocopied by the co-trans-

fection of both R120G CRYAB with desmin. The important

difference is that only when R120G CRYAB is co-transfected

with WT desmin is there a significant decrease in cell viability,

which we take as prime fascia evidence of a unique and specific

interaction that sets it apart from keratins and vimentin, the

intermediate filaments found in H36CE2 and MCF7 cells.

( f ) CRYAB and desmin form a functional complex
The transient transfection studies suggest that desmin and

CRYAB are indeed a functional complex, which can deter-

mine whether transiently transfected cells continue to

proliferate or die (figure 6). Analysis of transgenic animal

models have tended to overlook the functional aspect of the

desmin-CRYAB interaction, focusing rather on the amyloid-

forming potential of R120G CRYAB [5], or on the ability of

R120G CRYAB [104,105] and desmin mutants [7] to inhibit

the proteosome or affect autophagy [8,38,106]. Our studies
illustrate that, while these are important consequences, the

primary lesion in the development of DRM appears to be

the dominant negative effect of the desmin–CRYAB complex

on cell viability. Indeed the effects of CRYAB on MCF7 cells

suggests that the only muscle-specific factors required in

order to precipitate the loss of viability is either a mutant

desmin, or R120G CRYAB in the presence of WT desmin.

This therefore suggests a very simple explanation for why

R120G CRYAB induces a myopathy and not, for instance, a

neuropathy, as muscle is the tissue where there is significant

expression of desmin, the intermediate filament partner

needed to trigger cell death and the muscle pathology

[9,18]. Indeed our data also suggest that aggregation of the

resident keratin intermediate filament network by R120G

CRYAB and the concentration of the mitochondria in a peri-

nuclear region are insufficient triggers for this loss in MCF7

viability. The fact that mutations in either desmin [2] or

CRYAB [1] phenocopy each other further evidences this key

functional link, which we suggest is fundamental to the

muscle pathologies associated with the respective mutations

in CRYAB and desmin. We conclude that the specific inter-

mediate filament expression pattern must be considered as

a key factor in any sHSP-based pathology and this study

is further evidence of the functional importance of the

sHSP-intermediate filament protein complex [41,42].
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