
Antibiotic Resistance via Bacterial Cell Shape-Shifting

Nikola Ojkic,a,b Diana Serbanescu,a Shiladitya Banerjeec

aDepartment of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London, United Kingdom
bSchool of Biological and Behavioural Sciences, Queen Mary University of London, London, United Kingdom
cDepartment of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA

ABSTRACT Bacteria have evolved to develop multiple strategies for antibiotic resistance
by effectively reducing intracellular antibiotic concentrations or antibiotic binding affinities,
but the role of cell morphology in antibiotic resistance remains poorly understood. By
analyzing cell morphological data for different bacterial species under antibiotic stress,
we find that bacteria increase or decrease the cell surface-to-volume ratio depending on
the antibiotic target. Using quantitative modeling, we show that by reducing the surface-
to-volume ratio, bacteria can effectively reduce the intracellular antibiotic concentration
by decreasing antibiotic influx. The model further predicts that bacteria can increase the
surface-to-volume ratio to induce the dilution of membrane-targeting antibiotics, in agree-
ment with experimental data. Using a whole-cell model for the regulation of cell shape
and growth by antibiotics, we predict shape transformations that bacteria can utilize to
increase their fitness in the presence of antibiotics. We conclude by discussing additional
pathways for antibiotic resistance that may act in synergy with shape-induced resistance.
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Antibiotic resistance is one of the major threats to human society. It has been estimated
that each year, 700,000 people die as a consequence of infections caused by resistant

bacteria, prompting an urgent response in order to prevent devastating global effects within
generations (1). To understand the mechanisms of antibiotic resistance, we need to better
understand how antibiotics physically penetrate bacterial cells, how antibiotics bind to their
targets, what damage antibiotics cause to bacterial physiology, and, ultimately, how this
damage leads to cell death (2, 3). To become antibiotic resistant, bacteria have developed
multiple strategies. Resistance is commonly attained via reducing the intracellular concentra-
tion of the antibiotic or by reducing antibiotic binding affinities for their specific intracellular
targets (Fig. 1A) (4). Various different pathways to antibiotic resistance have been described
(5), including decreases in antibiotic influx by reductions in porin expression (6), modulation
of the membrane lipid composition (7), induction of horizontal gene transfer (8), increases in
antibiotic efflux by increasing efflux pump expression (9), the SOS response (10), and direct
inactivation of antibiotics (11). However, the role of cell size, shape, and growth physiology
in antibiotic resistance remains poorly understood.

Recent studies have shown that bacteria undergo a wide variety of cell morphological
changes in response to antibiotics (12–18). These morphological changes (Fig. 1B) commonly
occur via changes in the cell size, surface-to-volume ratio (S/V), or curvature (13, 15, 18). For
instance, the Gram-negative bacteria Escherichia coli and Caulobacter crescentus and the
Gram-positive bacterium Listeria monocytogenes decrease their S/V upon treatment with
ribosome-inhibitory and cell wall-targeting antibiotics (15). It has also been shown that
the Gram-negative human pathogen Pseudomonas aeruginosa makes a transition from
rod-shaped cells to spherical cells upon treatment with b-lactams (14). However, it is not clear
if these shape changes represent a passive physiological response to biochemical changes
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caused by the antibiotic or if these are active shape changes that promote bacterial fitness
for surviving antibiotic exposure. While the roles of cell size and shape in bacterial growth
and motility have been characterized (15, 17, 19–22), the effect of cell shape on antibiotic
resistance remains poorly understood.

Changes in cell size and shape can be physiologically beneficial to antibiotic-treated
bacteria in several ways. An increase in the cell volume can dilute the antibiotic concentration
inside a cell, thereby promoting cell growth. A reduction in S/V can reduce the flux of antibiot-
ics coming into the cell (Fig. 1B). An increase in S/V can also provide adaptive benefits by
increasing the rate of nutrient uptake or by increasing the rate of antibiotic efflux. An out-
standing question is how bacteria modulate their cell morphologies to promote resistance
to different types of antibiotics that target different cellular components. In this article, we
use quantitative modeling and data analysis to propose that cell shape-shifting via changes
in S/V promotes antibiotic resistance by effectively diluting the intracellular antibiotic con-
centration. In particular, by developing a mathematical model for antibiotic transport and
kinetics coupled to bacterial cell shape and growth, we show that by changing S/V of the
cell, bacteria can effectively dilute the intracellular antibiotic concentration by decreasing an-
tibiotic influx (Fig. 1B). The model allows us to predict the quantitative range for antibiotic
dilution via reduction in S/V. The model also explains how bacteria can increase S/V to pro-
mote resistance to membrane-targeting antibiotics (Fig. 1B), in agreement with experimen-
tal data (13). To understand how antibiotics induce cell shape transformations, we develop a
whole-cell model for bacterial growth and shape regulation using the particular example of
ribosome-targeting antibiotics for which the biochemical pathways are quantitatively
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FIG 1 Mechanisms of antibiotic resistance at the single-cell level. (A) Canonical mechanisms of antibiotic resistance result in reduced intracellular
antibiotic concentrations or reduced antibiotic binding affinities for their targets. Six pathways are shown. (1) Reduction in porin expression. The
trimer of the passive transporter porin OmpF is shown in orange. (2) Lipid composition affects antibiotic translocation across the membrane. (3)
Acquisition of resistance genes through horizontal gene transfer. (4) Overexpression of efflux pumps depletes intercellular antibiotics. The
multidrug efflux pump AcrAB-TolC is shown in blue. (5) During the SOS response, bacteria express error-prone DNA polymerases that increase
the random mutation rate. (6) Antibiotics are neutralized by specific proteins, shown as red Pac-Man symbols. Shown is an example of antibiotic
binding to the target. OM, outer membrane; IM, inner membrane; CW, cell wall. (B) Mechanism of antibiotic resistance via cell shape transformation.
(Top) Schematic showing a pathway (solid line) for reductions in the intracellular antibiotic concentration (ain) via changes in the cell surface-to-
volume ratio (S/V) when the bacterial cell is exposed to a constant extracellular antibiotic concentration (aout). Pathways for reducing intracellular
antibiotic concentrations by solely reducing S/V, lowering porin expression, or overexpressing efflux pumps are shown with dashed lines. In the
schematic, Pin and Pout represent the membrane permeability coefficients in the inward and outward directions, respectively. (Bottom) For
membrane-bound antibiotics, an increase in S/V decreases the antibiotic surface density (aon). Here, Pon and Poff are the rates of antibiotic binding to
the membrane and unbinding from the membrane, respectively.
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characterized. Using this model, we show that antibiotic-induced shape changes are de-
pendent on nutrient availability such that it is beneficial for cells to increase S/V in nutrient-
rich media (to promote nutrient influx) and to decrease S/V in nutrient-poor media (to in-
hibit antibiotic influx). We conclude by discussing additional mechanisms of countering anti-
biotics via regulating metabolic pathways and membrane porin and efflux pump expression
that may act in synergy with shape-induced resistance.

ANTIBIOTIC-INDUCED CELL SHAPE CHANGES IN ROD-SHAPED BACTERIA

To understand the effect of antibiotics on bacterial cell shape, we first analyzed the
morphological data for E. coli cells treated with 42 different antibiotics belonging to 5
different categories based on their binding targets (see Fig. 3B; see also Fig. S1 in the
supplemental material) (13). While the cell volume and surface area increased for antibiotics
that target DNA, RNA, ribosomes, or the cell wall, membrane-targeting antibiotics induced
reductions in both the surface area and the volume of the cell (Fig. S1). Surprisingly, all antibi-
otics decrease S/V except for membrane- andmembrane transport-targeting antibiotics, which
increase S/V (Fig. 2A). Similarly, a decrease in S/V was previously observed in cells treated with
cell wall-targeting antibiotics (A22, amdinocillin, and fosfomycin) (23), and an increase in S/V
was previously observed for the membrane-targeting antibiotic cerulenin (24). We find that
the Gram-negative bacterium Acinetobacter baumannii also decreases S/V for most antibiotics,
including the membrane-targeting antibiotic triclosan (Fig. 2B). For the Gram-positive bacte-
rium Bacillus subtilis, with a thick, less plastic cell envelope (25, 26), S/V decreases for all groups
of antibiotics (Fig. 2C) (22). While these shape changes could represent a passive side effect of
the antibiotic, they could also represent adaptive responses to counter the antibiotic’s action.
In particular, we note that S/V is one of the key physical parameters that regulate nutrient
influx and waste efflux (19) as well as the rates of influx and efflux of antibiotics. To quantita-
tively understand the role of S/V in regulating antibiotic flux across the cell membrane, we
developed a mathematical model of antibiotic transport into a rod-shaped bacterial cell, with
binding/unbinding interactions with its specific targets in the cytosol or on the membrane.

THE CELL SURFACE-TO-VOLUME RATIO REGULATES INTRACELLULAR ANTIBIOTIC
CONCENTRATIONS

When antibiotics are passively translocated into the cell thorough membrane porins or
lipids (Fig. 3A), antibiotic transport is diffusion limited, and flux is given by Fick’s law (27, 28).
The dynamics of the intracellular antibiotic concentration, ain, and the substrate concentration,
x, are given by

dain
dt

¼ Pinðaout 2 ainÞ SV 2 Poutain
S
V

2 konainx1 koff ðx02xÞ2 kain (1)

dx
dt

¼ kx 1 koffðx0 2 xÞ2 konainx2 kx (2)

where aout is the concentration of the antibiotic in the extracellular medium, x0 is the
substrate concentration in the absence of the antibiotic, kx is the rate of substrate produc-
tion, kon is the rate of binding of the antibiotic to the substrate, koff is the antibiotic unbind-
ing rate, and Pin and Pout are the membrane permeability coefficients in the inward and
outward directions, respectively. The last term on the right-hand side of equations 1 and 2
represents the dilution of the antibiotic and the substrate due to cell growth, where k is
the bacterial growth rate. Using model parameters provided in Text S1 in the supplemen-
tal material (section 4), the numerical solution of the above-described system of equations
for different values of S/V predicts the time evolution of the intracellular antibiotic concen-
tration (Fig. 3B), where the steady-state concentration of the antibiotic decreases with
decreasing S/V (Fig. 3C). Here, for simplicity, it is assumed that the antibiotic binds irreversi-
bly to the substrate, koff = 0 h21. Changes in koff do not strongly impact the dependence of
the antibiotic concentration on S/V (Fig. S1B). Since all antibiotics, apart from membrane-
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FIG 2 Changes in the cell shape and surface-to-volume ratio of rod-shaped bacteria under different antibiotic treatments. (Left) Heat map of the cell
surface-to-volume ratio (S/V) as a function of the cell width and aspect ratio, overlaid with experimental data for the population-averaged cell shape under
antibiotic treatments targeting different cellular components: ribosomes, RNA, DNA, the cell wall, and membranes. White lines represent a constant S/V
corresponding to untreated cells. (Right) Typical cell contours for morphological responses to antibiotic treatments. S/V increase is shown in red, S/V

(Continued on next page)
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targeting ones, decrease bacterial S/V, these results point toward an adaptive strategy to
reduce intracellular antibiotic concentrations via shape changes.

To conceptually understand these numerical results, we note that the flux balance
is reached at steady state such that

ðaout 2 ainÞPin S
V

z}|{influx

¼ aink|{z}
dilution by growth

1 kx|{z}
depletion by target binding

1 ainPout
S
V|{z}

efflux

(3)

in the limit of strong antibiotic-substrate binding (Text S1, section 1). Therefore, the strategy
to decrease S/V upon antibiotic treatment (Fig. 2) results in a reduction in the antibiotic

FIG 2 Legend (Continued)
decrease is in blue, and untreated cells are in green. (Data are taken from references 13, 55, and 56.) Cell contours were extracted using the ImageJ plug-in
JFilament (57). (A) S/V for the Gram-negative bacteria E. coli and A. baumannii as a function of the cell width and cell aspect ratio. E. coli decreases S/V for
all antibiotics apart from membrane-targeting ones, for which S/V increases. A. baumannii decreases S/V for all antibiotics apart from the ribosome-
targeting antibiotic minocycline, for which S/V slightly increases. CCCP, carbonyl cyanide m-chlorophenylhydrazone. (B) S/V for the Gram-positive bacterium
B. subtilis decreases for all antibiotics (22).
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FIG 3 Cell shape-dependent dynamics of the antibiotic concentration in a bacterial cell. (A) Schematic of
the model for antibiotic uptake and substrate binding/unbinding inside a bacterial cell. (B) Relative
antibiotic concentration inside a cell versus time for different values of S/V, with all other parameters kept
fixed (Pin = 5 mm h21, Pout = 0.1 mm h21, kon = 1 mM21 h21, koff = 0 h21, kx = 1 mM h21, and k = 1 h21).
(C) Steady-state antibiotic concentration normalized by aout versus S/V for different values of Pin/Pout. For the
cases Pin � Pout or Pin � Pout, antibiotic dilution due to S/V changes is negligible. The range of S/V values is
chosen to cover a range similar to that in Fig. 2. (D) Heat map of percent antibiotic dilution (d ) for different
values of k and Pin, setting Pout equal to 0, (S/V)min equal to 3 mm21, and (S/V)max equal to 15 mm21. The
maximum antibiotic dilution is obtained when Pin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðS=V ÞminðS=V Þmax

p ¼ k, as shown by the dashed line.
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influx term on the left-hand side of equation 3. In the case where efflux pumps are effective,
where Pout is.0, S/V reduction also leads to an overall decrease in antibiotic efflux.

To quantify the effect of S/V reduction on the intracellular antibiotic dilution (Fig. 3C), we
introduce the antibiotic dilution factor d � jDainj=aout, defined as the absolute change in
the intracellular antibiotic concentration (Dain) relative to the extracellular concentration, as
S/V is varied between a chosen minimum, (S/V)min, and a maximum value, (S/V)max. The dilu-
tion factor is thus dependent on the variation in S/V, growth rate k, influx permeability Pin,
and outflux permeability Pout (Fig. 3D; Fig. S2). The maximum dilution is obtained for Pout = 0
(Fig. 3C and D), while a lesser dilution is obtained for a higher Pout (Fig. S2D). To determine
the maximum d due to shape variations, we optimize Pin and k for Pout = 0. We find that d
is maximized when Pin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðS=VÞminðS=VÞmax

p ¼ k (Fig. 3D, dashed line; Text S1, section 1),
given by

dmax ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
S
V

� �
max

q
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
S
V

� �
min

q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
S
V

� �
max

q
1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
S
V

� �
min

q (4)

Thus, the maximum value of the dilution factor is dependent only on the surface-to-volume
ratios before and after antibiotic application. The above-described equation predicts a maxi-
mum of an ;15% dilution in the intracellular antibiotic concentration for cephalexin-treated
E. coli, where (S/V)max and (S/V)min are taken to be the surface-to-volume ratios for the untreated
cell and the antibiotic-treated cell, respectively. Similarly, meropenem-treated A. baumannii cells
undergo a maximum of a 22% dilution in the intracellular antibiotic concentration. Antibiotic
dilution mediated by changes in S/V could provide a significant fitness advantage for antibiotics
with steep growth inhibition curves (29, 30) since a small reduction in the antibiotic concentra-
tion via shape variation could lead to a significant increase in the bacterial growth rate. For
spherocylindrical cells of widths wmin and wmax before and after antibiotic treatment, the maxi-
mum dilution factor can be approximated as

dmax �
ffiffiffiffiffiffiffiffiffiffi
wmax

p
2

ffiffiffiffiffiffiffiffiffi
wmin

p
ffiffiffiffiffiffiffiffiffiffi
wmax

p
1

ffiffiffiffiffiffiffiffiffi
wmin

p (5)

suggesting that the maximum antibiotic dilution depends predominantly on cell width
for rod-shaped bacteria (Text S1, section 1).

In contrast to cytosolic antibiotics, when E. coli cells are treated with membrane-targeting
and membrane transport-targeting antibiotics, the cell surface area and volume decreased
(Fig. S1), whereas the surface-to-volume ratio increased (Fig. 2A). The decrease in surface
area is expected since these antibiotics induce membrane damage or a reduction in mem-
brane synthesis. However, the benefits of an increase in S/V could be interpreted as follows.
If the membrane-targeting antibiotic binds directly to the membrane, the dynamics of the
surface-bound antibiotic is given by

daon
dt

¼ Ponaout
V
S|{z}

binding tomembrane

2 Poffaon|{z}
unbinding frommembrane

2 kaon|{z}
dilution by growth

(6)

where aon is the surface density of the antibiotic and Pon and Poff are the rates of binding to
and unbinding from the membrane surface, respectively (see Text S1, section 2, for derivation).
The first term on the right-hand side of equation 6 represents the total amount of antibiotic
molecules (aout V) that can bind to the membrane per unit surface area and per unit time with
a probability Pon. Therefore, an increase in S/V decreases the density of membrane-bound anti-
biotics, thereby providing a beneficial morphological adaptation for countering the action of
the antibiotic.

MECHANISMS OF CELL SHAPE CHANGES BY ANTIBIOTIC ACTION

The mechanisms by which antibiotics induce cell shape changes are specific to the type of
antibiotic treatment (13). DNA-targeting antibiotics induce an SOS response that inhibits cell
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division, resulting in longer filamentous cells (13, 29) (Fig. 2). Cell wall-targeting antibiotics
such as b-lactams bind to penicillin binding proteins and inhibit peptidoglycan synthesis. This
affects septal cell wall synthesis, leading to longer filamentous cells, while the inhibition of
peptide cross-linking by b-lactams can result in wider cells with a lower surface-to-volume ra-
tio. Ribosome-targeting antibiotics inhibit translation, inducing a variety of shape changes
depending on the nutrient availability in the growth environment (15, 18, 20). Below, we spe-
cifically focus on the case of ribosome-targeting antibiotics, for which the biochemical reac-
tions are well characterized (31), in order to elucidate how the coupling between cell growth,
shape, and protein synthesis regulates the cellular morphological response.

One of the most commonly used ribosome-targeting antibiotics is chloramphenicol
(CHL), which inhibits bacterial translation. When actively translating ribosomes are
blocked by CHL, cells synthesize new ribosomes in excess to counterbalance their

FIG 4 Interplay between cell shape and translation-inhibiting antibiotics. (A) Schematic diagram of the feedback pathways
connecting ribosomal translation to cell shape and antibiotic transport. Ribosomes promote growth (k), which in turn decreases
the surface-to-volume ratio (S/V), and an increase in the division protein production rate (kF) increases the surface-to-volume
ratio. S/V promotes antibiotic influx (Fig. 1B; equation 1). (B) S/V versus the chloramphenicol concentration in E. coli (20, 33).
Experimental data under different nutrient conditions are shown as scatter points. Error bars represent the standard errors of
the means, with a maximum of four replicates under each growth condition. Simulation predictions are shown as solid lines.
a.a., amino acids. (C) Relative antibiotic concentration inside the cell versus time obtained by model simulations for two cases, (i)
S/V = constant = 5 mm21 (red) and (ii) S/V decreases from 5 to 3 mm21 (green), via the pathway shown in panel A. Here, aout is
5 mM, and Pin/Pout is 1. (D) Bacterial growth rate versus time obtained from simulations for two different cases as described
above for panel C. The decrease in S/V results in a fitness gain. (E) Heat map of antibiotic dilution factors predicted from
simulations as functions of membrane permeability ratios (Pin/Pout) and the ratio of antibiotic-ribosome binding and unbinding
rates (kon/koff). The antibiotic dilution was calculated when the bacterial S/V was altered from 15 to 3 mm21, as in Fig. 3C.
Membrane permeability ratios shown with horizontal arrows were estimated (see Text S1, section 1, in the supplemental
material) for growing wild-type (WT) (G) and stationary-phase wild-type (S) E. coli cells and OmpF porin-deficient (DompF) and
efflux-pump deficient (DtolC) cells (35). Experimentally measured kon/koff values for different ribosome-targeting antibiotics are
shown with vertical arrows (58–60).
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inactivation (32). This increase in ribosome abundance requires bacteria to strategically focus
their ribosomal resources toward growth rather than division, causing an increase in the cell
volume (33). Interestingly, when E. coli cells are exposed to nutrient or CHL perturbations,
the bacterial cell aspect ratio remains constant at;4 (17), implying a simple scaling relation
between surface area and volume, S = 2pV2/3, yielding S/V = 2pV21/3 (17). Therefore, if the
bacteria increase their volume upon CHL treatment, due to excess ribosome synthesis, S/V
would then decrease (Fig. 4A and B).

Experimental data, however, show that S/V increases or decreases upon chloramphenicol
treatment depending on nutrient availability in the growth environment (20) (Fig. 4B). In nutri-
ent-rich medium, S/V decreases upon chloramphenicol treatment, whereas in nutrient-poor
medium, S/V increases upon chloramphenicol treatment (Fig. 4B). To interpret these results
and quantitatively explain the data, we applied a previously developed whole-cell model for
bacterial growth and division control (33) in the context of translation inhibition. In this model,
the cell volume grows exponentially at a rate, k, whereas division proteins are synthesized at a
volume-specific rate, kF. The cell divides when a threshold amount of division proteins is syn-
thesized, resulting in the relation V = k/kF. This implies for E. coli cells that S/V = 2p (kF/k)1/3

(Fig. 4A; see also Text S1, section 3, in the supplemental material). The data in Fig. 4B can now
be interpreted using the framework of cellular resource allocation (34). Upon treatment with
chloramphenicol, cells upregulate ribosome synthesis to compensate for ribosome inhibition
by chloramphenicol (32). The excess ribosomes that are produced are allocated differentially
to growth (k) or division protein synthesis (kF) depending on nutrient availability. In nutrient-
rich medium, cells allocate more ribosomes to division than growth (k/kF decreases), resulting
in smaller cells and higher S/V. The increase in S/V provides an adaptive benefit by importing
more nutrients to counter growth inhibition by the antibiotic. In contrast, in nutrient-poor me-
dium, cells tend to allocate more ribosomes to growth than division (k/kF increases), resulting
in larger cells and smaller S/V. A reduction in S/V reduces antibiotic influx, which is more bene-
ficial for survival if nutrient availability is low.

To estimate the amount of antibiotic dilution due to cell shape changes, we simulated
the whole-cell model to evolve the coupled dynamics of cell size and shape, division pro-
teins, ribosomes, and the antibiotic (Text S1, section 3) (33). Using parameters benchmarked
for E. coli cells, our model can quantitatively capture the experimentally observed trends for
the dependence of S/V on the antibiotic concentration in different nutrient environments
(Fig. 4B, solid lines). We find that under conditions where S/V remains unchanged, the intra-
cellular antibiotic concentration is higher and the growth rate is lower than in the case
where S/V spontaneously decreases over time (Fig. 4C and D). Our simulations revealed that
the maximum antibiotic dilution was obtained for antibiotics with high affinity constants
(kA = kon/koff . 1 mM21) typical for aminoglycosides: hygromycin B (kA = 5 mM21), chloram-
phenicol (kA = 5.8 mM21), streptomycin (kA = 10 mM21), and paromomycin (kA = 19 mM21).
Depending on the ratio of the membrane permeability constants (Pin/Pout), the antibiotic dilu-
tion factor is nonmonotonic and reaches a maximum for a Pin/Pout value of ;1 (Fig. 3C and
Fig. 4E). Since aminoglycosides are predominantly transported inside the cell by porins, we
estimated the permeability coefficients for the fluorescent antibiotic ofloxacin, which is also
translocated by porins (35). By analyzing time traces of fluorescent-antibiotic accumulation
inside the cell, we estimated that growing E. coli cells readily accumulate antibiotics, with a Pin/
Pout value of;0.54, while for stationary-phase cells, the Pin/Pout value is;0.11. Interestingly, for
bacterial cells lacking porins (DompF), Pin/Pout is ;0.18, and for bacteria lacking efflux pumps
(DtolC), Pin/Pout is;0.66 (Text S1, section 1). Therefore, these results suggest that the antibiotic
dilution by changes in S/V could approach the maximum value achieved for Pin � Pout and a
large kon/koff (Fig. 4E).

CONCLUSION

In this article, we used quantitative modeling and morphological data analysis to demon-
strate that bacteria can develop antibiotic resistance purely by cell shape changes. By analyz-
ing cell size and shape data for three different bacterial species treated with 46 different anti-
biotics, we find that bacterial cells robustly reduce surface-to-volume ratios when treated
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with cytosolic antibiotics. A reduction in S/V comes with the adaptive benefit of decreasing
antibiotic influx, which can effectively dilute the concentration of intracellular antibiotics. For
membrane-bound antibiotics that induce membrane damage, an increase in S/V promotes
drug dilution, in agreement with experimental observations. By developing a whole-cell
model for bacterial growth, we further show how antibiotic-induced shape changes can
provide fitness advantages in the presence of antibiotics and compare the model predic-
tions with experimental data.

Since antibiotic dilution predominantly depends on cell width (equation 5), a central
question is how width is determined (36–38) and how fast width is remodeled in response
to antibiotic treatments. During steady-state growth, cell width is one of the most tightly
controlled cellular parameters in both E. coli and B. subtilis (39, 40) such that fluctuations in
width are restored within 4 to 5 generations (17), commensurate with the typical time nec-
essary for bacterial width remodeling (41). Under non-steady-state conditions, the cell width
reaches a new equilibrium only within a few generations after nutrient shifts (42) or antibi-
otic exposure (15, 18). Cell width control is achieved by cell wall synthesis machinery such
as MreB, RodZ, and penicillin binding proteins (43) as well as by physical forces, including
mechanical stress on the cell envelope and osmotic pressure (44–46). Understanding the
mechanisms of cell shape regulation therefore requires an integrative approach, combining
cellular mechanics and biochemical regulation.

In addition to the surface-to-volume ratio, recent work found that Vibrio bacteria can also
alter curvature when exposed to antibiotics (18). In particular, when C. crescentus is treated
with sub-MICs of chloramphenicol (CHL), the cell becomes more curved, and the cell width
increases (18). Immediately upon CHL treatment, the cell growth rate decreases, but over
;10 generations, the growth rate is gradually restored to the preantibiotic level. While the
cell S/V decreases during CHL exposure, the contribution of a lowered S/V cannot solely
explain the almost full growth rate recovery. This adaptive response via cell shape changes
can be explained by a model of negative feedback between the cellular growth rate and
cell envelope mechanical tension (18). Translation inhibition by CHL reduces the rate of syn-
thesis of cell envelope material, which leads to an initial fast drop in the growth rate. The
reduced rate of surface area synthesis also reduces the effective tension that works against
the compressive bending forces acting on the cell surface. As a result, reduced tension leads
to cell surface bending until a new mechanical equilibrium is reached with a higher curva-
ture. Lower cell envelope tension promotes cell wall synthesis (45), thereby increasing the
growth rate to its prestimulus value. Future experiments are needed to further test the role
of cell curvature and wall tension in the maintenance of growth rate homeostasis. In particu-
lar, it will be interesting to test whether Caulobactermutant cells with straight morphologies
are poor at adapting to chloramphenicol (47) or whether Vibrio bacteria adapt better than
straight rod-shaped cells.

A reduction in the surface-to-volume ratio not only decreases antibiotic influx but also
leads to reduced nutrient influx that may in turn decrease cellular metabolic activity. In recent
work, Lopatkin et al. showed that metabolism plays a crucial role in the bacterial response to
antibiotics such that cells with decreased metabolic activities are more antibiotic resistant (48).
Metabolic mutations in response to antibiotic exposure suggest adaptive mechanisms in cen-
tral carbon and energy metabolism. Interestingly, some of the advantageous metabolic muta-
tions that mitigate antibiotic susceptibility have been identified in .3,500 clinically relevant
pathogenic E. coli isolates (48). These findings point toward a new pathway of antibiotic resist-
ance mediated by mutations in the core metabolic genes. Decrease in cell surface-to-volume
ratio may act in synergy with the metabolic slowdown to confer stronger antibiotic resistance.

In synergy with shape changes, bacteria can actively regulate the antibiotic con-
centration inside the cell by controlling porin and efflux pump expression (Fig. 1B)
(49, 50). Cell wall-targeting antibiotics, such as b-lactams, that disrupt the stability
of the peptidoglycan meshwork are translocated by OmpF porins to induce the envelope
stress response (Cpx) (51). The activation of the Cpx system decreases ompF expression (52),
creating a negative-feedback loop (Fig. 1B), resulting in lower porin numbers and lower
inward membrane permeability (Pin). Similarly, when E. coli cells are exposed to DNA-
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targeting antibiotics that are also translocated inside the cell by OmpF, the expression level
of ompF decreases within 30 to 120 min after antibiotic treatment (49). A reduction in porin
numbers will act in synergy with a reduction of S/V to confer stronger resistance pheno-
types. In addition to controlling antibiotic influx, bacteria can decrease the intercellular anti-
biotic concentration through the overexpression of efflux pumps (49, 53, 54) (Fig. 1B). In the
future, time-lapse experiments are necessary to reveal the time scales associated with the
onset and completion of morphological transformation under antibiotic perturbations and
how these time scales compare with changes in the expression profiles of proteins respon-
sible for regulating antibiotic influx and efflux. These studies would be essential to quantify
the contributions of the different resistance pathways and their synergistic effects respon-
sible for increasing bacterial fitness.
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