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Introduction

In 1983Hughes1 described a syndrome that included arterial
and venous thromboses, strokes, and obstetrical disorders,
and was associated with an antilipid antibody, the lupus
anticoagulant (LAC). Despite its name, the LAC was observed
to be a strong risk factor for thrombosis rather than bleeding,
but why it behaved in this fashion was unclear. During the
past 40 years, the LAC was associated with anti-phosphati-

dylserine/prothrombin (anti-PS/PT) antibodies,2 and a vari-
ety of other autoantibodies were identified that are directed
against complexes of phospholipid, β2-glycoprotein I (β2-
GPI), and other phospholipid-binding proteins.3,4 LAC and
other autoantibodies that bind to phospholipid-binding pro-
teins are designated antiphospholipid antibodies (APAs), and
contribute to the distinctive pathologic features of the anti-
phospholipid syndrome (APS). In this review, the several
phospholipid-binding proteins are described, and the
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Abstract The antiphospholipid syndrome is characterized by antibodies directed against
phospholipid-binding proteins and phospholipids attached to cell membrane recep-
tors, mitochondria, oxidized lipoproteins, and activated complement components.
When antibodies bind to these complex antigens, cells are activated and the coagula-
tion and complement cascades are triggered, culminating in thrombotic events and
pregnancy morbidity that further define the syndrome. The phospholipid-binding
proteins most often involved are annexins II and V, β2-glycoprotein I, prothrombin, and
cardiolipin. A distinguishing feature of the antiphospholipid syndrome is the “lupus
anticoagulant.” This is not a single entity but rather a family of antibodies directed
against complex antigens consisting of β2-glycoprotein I and/or prothrombin bound to
an anionic phospholipid. Although these antibodies prolong in vitro clotting times by
competing with clotting factors for phospholipid binding sites, they are not associated
with clinical bleeding. Rather, they are thrombogenic because they augment thrombin
production in vivo by concentrating prothrombin on phospholipid surfaces. Other
antiphospholipid antibodies decrease the clot-inhibitory properties of the endothelium
and enhance platelet adherence and aggregation. Some are atherogenic because they
increase lipid peroxidation by reducing paraoxonase activity, and others impair fetal
nutrition by diminishing placental antithrombotic and fibrinolytic activity. This plethora
of destructive autoantibodies is currently managed with immunomodulatory agents,
but new approaches to treatment might include vaccines against specific autoanti-
gens, blocking the antibodies generated by exposure to cytoplasmic DNA, and
selective targeting of aberrant B-cells to reduce or eliminate autoantibody production.
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cellular receptors and other tissues that bind them are
identified. Autoantibodies target these complexes and trig-
ger pathologic processes that bring about thrombosis, pre-
mature atherosclerosis, and pregnancy morbidity.

APS is classified as primary (no underlying disorder)
or secondary (to infection, neoplasm, or other autoimmune
disease). In a series of 100 patients with LAC, Triplett et al5

reported that 34% were drug-associated (chlorpromazine,
quinidine, phenytoin, procainamide), 13% autoimmune, 10%
infections, and 43% miscellaneous. Greaves6 classifies APS
as secondary if it occurs in association with systemic lupus
erythematosus (SLE) or other connective tissue disorder, and
primary if there is no underlying disorder. Campbell et al7

distinguish anticardiolipin antibodies (ACAs) from individu-
als with primary APS from ACA in patients with syphilis; the
former is specific for PS and enhances agonist-induced
platelet activation and aggregation. Although APAs are pres-
ent in 62% of patients with syphilis, leprosy, and human
immunodeficiency virus infection, autoantibodies to tissue
factor pathway inhibitor (anti-TFPI) are observed in �10%
versus 38% in those with primary APS.8,9 Fewer thrombotic
complications might be anticipated because thrombogenic
autoantibodies are infrequent in secondary APS, but recent
experience with coronavirus disease 2019 (Covid-19) sug-
gests this is not always the case.

Antiphospholipid Syndrome Secondary to Covid-19
Infection
In April 2020, Zhang et al10 reported cerebral infarcts and
antibodies to anti-β2-GPI and cardiolipin in three patients, and
Harzallahet al11detectedLAC in45%of56patientswithCovid-
19 infection. Another study found 31 of 34 patients had LAC,
and the factor XII level was less than 50 IU/dL in 7% of 216
patients.12 Decreased factor XII has been observed previously
in 20.9% of patients with LAC.13 An examination of serum
samples from 172 hospitalized coronavirus patients reported
high-titer APAs in 30%; most were immunoglobulin M and
directedagainstcardiolipin in7.6%,β2-GPI in4.1%, andPS/PT in
12%.14 Higher APA titers were associated with higher platelet
counts, the release of more neutrophil extracellular traps
(NETS), and more severe respiratory disease; injection of the
antibodies into mice accelerated venous thrombosis. The
incidence of confirmed venous thromboembolism in hospital-
ized Covid-19 patients is 4.8% and total thrombotic complica-

tions 9.5%,15 but in those requiring intensive care, thrombosis
rates can be as high as 31% and correlate with evidence of
antibody-induced platelet PS externalization and apopto-
sis.16,17 Autopsy data reveal megakaryocytes and platelet-
fibrin thrombi in the lungs, heart, and kidneys.18 However,
major thrombotic events are not associated with the APA, and
the β2-GPI epitopes targeted by the antibodies differ from
those observed in patients with APS.19 Although the high
incidence of thrombosis appears to be related to the presence
ofAPA, other factors associatedwith severe inflammation such
as cytokines, complement factors, andNETSmight be contrib-
utory.20There appears to be little distinctionbetweenprimary
and secondary APS when clinical outcomes (thrombosis,
strokes, organ damage) are considered.

Phospholipid-Binding Proteins

Annexins
Annexins are proteins consisting of four repetitive domains of
approximately 70 amino acids each that participate in Ca2þ-
mediated binding to negatively charged phospholipids
(►Table 1). Annexin II mediates the assembly of plasminogen
and tissue plasminogen activator (t-PA) on cell membranes,
enhancing tissue-basedfibrinolysis.21 β2-GPI binds to annexin
II on the endothelial cell surface. In people susceptible to the
APS, the β2-GPI–annexin II complex might stimulate anti-β2-
GPI antibody formation. Activation of their endothelial cells
occurs when the anti-β2-GPI antibodies cross-link β2-GPI
bound to annexin II.22 These antibodies are thrombogenic
because they not only inhibit surface plasmin expression but
also stimulate the release of tissue factor.23

Annexin V functions as an anticoagulant by forming a
crystalline shield over the exposed anionic phospholipids
of injured cell membranes, preventing the formation of
activated clotting factor complexes (the tenase and pro-
thrombinase complexes).24 This annexin shield is dis-
rupted by APA bound to epitope G40-R43 on domain I of
β2-GPI.25 Circulating apoptotic endothelial cells bearing
annexin V are increased in young women with SLE, and are
associated with elevated levels of tissue factor.26 Loss of
the annexin V shield might enable coagulation complexes
to bind to the membrane phospholipids of placental
trophoblasts, initiate thrombus formation, and adversely
affect fetal nutrition.27

Table 1 Major phospholipid (PL)-binding proteins

Protein Size Location Description

Annexins 36 kd, 70 aa, repeats
in α�helix

II: cell granules, membranes, rafts
V: placenta

Ca2þ-dependent PL binding; II binds
S100A10, t-PA

β2-Glycoprotein I 48 kd, 326 aa Plasma: 200 µg/mL Multimer; circular form assumes J-shape
when bound to PL

Cardiolipin 1,466 g/mol Mitochondrial inner membrane Diphosphatidyl glycerol; structural
integrity of respiratory chain

Vimentin 310 aa-polymerizes Skin and other organs; cell surface
and extracellular matrix

Phosphorylated filamentous protein

Abbreviations: aa, amino acids; t-PA, tissue plasminogen activator.
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β2-Glycoprotein I
β2-GPI is a 48-kDa plasma protein composed of 326 amino
acid residues deployed in five domains; it forms a circular
structure in plasma when domain I interacts with
domain V. Binding of the positively charged lysine cluster
on domain V to negatively charged phospholipids extends
the molecule into a fishhook configuration, exposing cryptic
epitopes in domain I.28 Immunogenicity is attributed to
exposure of these epitopes as well as oxidation of the
terminal sulfhydryl groups of β2-GPI.4 The developing anti-
bodies target various domains of β2-GPI; those directed
against a domain I epitope comprising Lys39 and Arg43
have LAC activity.29 This is because these β2-GPI–antibody
complexes can directly interact with factor V, attenuating
its activation by factor Xa.30

β2-GPI is an antibacterial plasma protein with several
functions related to hemostasis: these include augmenting
phagocytosis of phospholipid-exposing microparticles and
apoptotic cells, inhibition of platelet adhesion and aggrega-
tion mediated by von Willebrand factor (VWF) and adeno-
sine diphosphate, and prevention of inactivation of protein S
by C4b-binding protein.31,32 The antithrombotic functions of
β2-GPI are impaired by the development of antibodies to the
protein. Furthermore, β2-GPI–antibody complexes bind to
cellular receptors on endothelial cells, monocytes, neutro-
phils, and platelets, activating these cells and enhancing their
thrombogenicity.

Cardiolipin
Cardiolipin is an anionic phospholipid containing four un-
saturated fatty acids, and is chiefly located on the inner
mitochondrial membrane of the heart. It is a common target
for antibodies (ACAs) that occasionally cross-react with other
negatively charged phospholipids. ACAs are present in 44%
and LAC in 34% of patientswith SLE, and both are prevalent in
various non-SLE disorders.33 ACA, measured by immunoas-
say, is closely correlated with LAC as assessed by prolonga-
tion of the activated partial thromboplastin time (r¼0.7).34

Vimentin/Cardiolipin Complexes
Patientswith clinical features suggesting the presence of APA
but with negative tests for LAC, ACA, and anti-β2-GPI might
have antibodies to a complex of vimentin and cardiolipin.35

Vimentin is an endothelial cell phospholipid-binding protein
that has an affinity for cardiolipin. Anti-vimentin/cardiolipin
antibodies induce phosphorylation of interleukin (IL)-1 re-
ceptor-associated kinase, leading to production of nuclear
factor-kappa B (NF-κB). APAs incubated with cultured endo-
thelial cells stimulate the expression of tissue factor, E-
selectin, and inducible nitric oxide synthase, probably by
phosphorylation of p38 MAPK and activation of NF-κB.36,37

The Antibodies and Their Targets

APS antibodies attack cells, cellular receptors, and hemostat-
ic proteins either alone or in complexes with phospholipid-
binding proteins; some APA targets are described
in ►Table 2. It has been proposed that in disorders such as

SLE, anionic phospholipids on apoptotic cell surfaces provide
binding sites for plasma proteins, exposing neo-epitopes that
provoke APA.38 The antibodiesmight indicate the presence of
circulating apoptotic cells, which could account for the
elevated risk of thrombosis in patients with APS.

Cells and Cellular Receptors

Endothelial Cells
The endothelium releases a variety of factors that retard
thrombosis, but its antithrombotic activity is severely com-
promised by APA. For example, the endothelial protein C
receptor (EPCR) is expressed by endothelial cells, myeloid
cells, and placental trophoblasts. With phosphatidylcholine
(PC) in its antigen-presenting groove, EPCR activates protein
C and can act as the co-receptor for TF-FVIIa-FXa-PAR2
signaling. However, when EPCR is recycled in patients with
APS, the PC is replaced byendosomal lysobiphosphatidic acid
(LBPA).39 This EPCR-LBPA not only triggers APAs that inter-
fere with the protein C anticoagulant pathway, but also
sensitizes TLR7/8 to generate type 1 interferon inflammatory
cytokines that promote B-cell activation andAPAproduction,
tissue inflammation, and platelet activation.40

Increases in endothelial microparticles are observed in
APA plasma41 and APA sera deposit more immunoglobulin
on cultured endothelial cells than control sera. The APAs
impair the hydrolysis of arachidonic acid from membrane
phospholipids by inhibiting thrombin-stimulated phospho-
lipase A2 activity, thereby reducing the production and
release of prostacyclin, a potent vasodilator and inhibitor
of platelet aggregation.42,43 The expression of VWF is stimu-
lated in patients with LAC,44 and although β2-GPI binding
interferes with VWF-dependent platelet adhesion and ag-
gregation, neutralization of β2-GPI by anti-β2-GPI antibodies
raises VWF levels 1.5-fold.45

A cellular receptor for dimeric β2-GPI is apolipoprotein E2
(apoER2).46When complexes of APA and β2-GPI are bound to
apoER2 on the endothelial cell membrane, endothelial nitric
oxide synthase (eNOS) is inhibited and endothelial cell–
leukocyte adhesion is enhanced.47 Dephosphorylation of
eNOS is mediated by the antibody-induced activation of
protein phosphorylase 2A.48 Impairment of eNOS likely
accounts for the decreased nitric oxidemetabolites observed
in patients with APS.49 The net effect of APA is to enhance
platelet adhesion and diminish the clot-inhibitory properties
of the endothelium.

Platelets
Thrombocytopenia is occasionally present in APS patients,50

and is invariably present in those with the catastrophic form
of the syndrome.51 It is accompanied by APAs that bind to
platelet antigens and enhance platelet activation and aggre-
gation induced by adenosine diphosphate.52 Experimental
studies show that LAC induces thromboxane A2 formation,
increases urinary excretion of thromboxane B2 (TXB2), acti-
vates the endothelium, and binds to platelet thrombi.53,54

Under flow conditions, APAs augment platelet deposition on
the endothelium and the formation of large platelet

Thrombosis and Haemostasis Vol. 122 No. 7/2022 © 2022. The Author(s).

Pathophysiology of Antiphospholipid Syndrome Green 1087



Table 2 Antiphospholipid antibody targets and mechanisms

Target tissue or
protein

PL intermediary Binding site Pathophysiology

Endothelium β2-GPI apoER2′, EPCR Inhibit eNOS, prostacyclin, protein C
activation; stimulate VWF

Platelets β2-GPI, cardiolipin apoER2′, GP1bα, PF4 Induce TxA2, microparticles, adhesion,
aggregation; upregulate PDI enzymes

Paraoxonase β2-GPI, cardiolipin Not established Increased oxidized LDL, atheromatous
disease

Mitochondrial
membrane synthase

Oxidized cardiolipin Not established Increased type I interferon, accelerated
atherosclerosis

Mammalian target of
rapamycin

PI-3-kinase Not established Endothelial cell proliferation, vascular
occlusion; enhanced phosphorylation of
AKT kinase

Trophoblasts Lysobiphosphatidic
acid (LBPA)

EPCR; NOD2; mitochondria;
complement activation

Stimulate TxA2 and decrease PGI2; boost
secretion of Il-1B and VEGF; block protein
C activation, binding of pro-urokinase to
its receptors; produce reactive oxygen
species; release tissue factor-bearing
vesicles from neutrophils

Prothrombin Phosphatidylserine Epitopes on prethrombin 1
and fragment 1; less often,
epitopes at carboxyl
terminus

Enhance Ca2þ-mediated binding of
prothrombin to anionic PL and interfere
with antithrombin inhibition of thrombin

Tissue factor β2-GPI, cardiolipin Endothelial cells,
mononuclear cells

Phosphorylate nonmuscle myosin II
regulatory light chain promoting
microparticle release, induce TF mRNA,
augment factor Xa by inhibiting TFPI

Factor VII/VIIa – Not established Arterial thrombosis

Factor X – Not established Binding of antithrombin to factor Xa
impaired

Factor XI – Either thioredoxin-1 or
protein disulfide isomerase

Increased amount of reduced disulfide
bonds in factor XI, accelerating factor XIa
generation

Factor XII PS, cardiolipin Second growth factor
domain, catalytic domain

Impair fibrinolysis, increase arterial and
venous thrombosis, obstetrical
complications

Kininogen PE Not established Augment thrombin-induced platelet
aggregation

Factor XIII β2-GPI, cardiolipin Not established Increased fibrin cross-linking

Protein C β2-GPI, cardiolipin Anionic PL Activated protein C resistance impairing
inhibition of factors V and VIII

Protein S None EGF domain of protein S Associated with APCR, thrombosis, and
recurrent pregnancy loss

Tissue factor pathway
inhibitor

β2-GPI Anionic PL Enhanced thrombin generation

Heparin None Disaccharide (at
antithrombin binding site)

Inhibit heparin-accelerated formation of
antithrombin–thrombin complexes

Tissue plasminogen
activator, plasminogen
activator inhibitor-1,
plasmin

Prothrombin, S100A10 Catalytic domain of t-PA Decreased t-PA activity, increased PAI-1
and TAFI, reduced clot permeability

Complement β2-GPI, complement
factor H

Details of complement
activation not established

Deposition of C5b-9, release of
proinflammatory and procoagulant
cytokines

Abbreviations: apoER2′, apolipoprotein E receptor 2′; β2-GPI, β2-glycoprotein I; EGF, epidermal growth factor; eNOS, endothelial nitric oxide
synthase; EPCR, endothelial protein C receptor; GP1bα, glycoprotein Ibα; LDL, low density lipoprotein; NOD2, nucleotide-binding oligomerization
domain 2; PAI-1, plasminogen activator inhibitor-1; PDI, protein disulfide isomerase; PF4, platelet factor 4; PGI2, prostaglandin I2; PL, phospholipid;
TAFI, thrombin activatable fibrinolysis inhibitor; TFPI, tissue factor pathway inhibitor; t-PA, tissue plasminogen activator; TxA2, thromboxane A2;
VEGF, vascular endothelial growth factor; VWF, von Willebrand factor.
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aggregates55; such platelet microparticles are detected in
APA patients with thrombosis.41 In addition, the platelet
protein profiles of patients with APA reveal upregulation of
protein disulfide isomerase enzymes that favor production
of prothrombotic NETS (NETosis) by decreasing levels of
platelet SERPINB1.56

Ho et al57 suggest that β2-GPI attaches to the anionic
platelet membrane, assumes the J-shape that enables bind-
ing of anti-β2-GPI antibodies, and the complex then interacts
with several platelet proteins. β2-GPI forms complexes with
platelet factor 4, and anti-β2-GPI antibodies bind to these
complexes and induce platelet p38MAPK phosphorylation
and TXB2 production.58Dimers of β2-GPI mimicking anti-β2-
GPI/β2-GPI complexes bind to the platelet membrane recep-
tor, apoER2′, and increase platelet adhesion to collagen and
thrombus formation.59 In addition, anti-β2-GPI/β2-GPI com-
plexes bind to the platelet GPIbα receptor and activate
platelets.60 Thus, there are multiple interactions of APA
with platelets that are potentially thrombogenic.

Macrophages
Accelerated (premature) atherosclerosis is another feature of
APS.61 Low density lipoprotein (LDL) family members bind
domain V of dimeric β2-GPI and become targets for APA and
anti-β2-GPI.62 These antibodies decrease the activity of para-
oxonase, an enzyme that retards the oxidation of LDL. The
decline in paraoxonase correlates with anti-β2-GPI activity63

and is accompanied by lipid peroxidation, as reflected by
increased urinary excretion of isoprostanes.64 Oxidized LDL
uptake by macrophages is enhanced,65 and the antibodies
bind to the oxidized cardiolipin and LDL found in atheroscle-
rotic lesions.66 Paraoxonase activity is lower in women with
APA than in controls (p<0.005), and is inversely associated
with carotid intima-media thickness and pulse wave veloci-
ty.67 Immunoglobulin G (IgG) antibodies against oxidized
LDL were reported in 47 of 61 (80%) patients with SLE, and
roughly correlated with the level of ACA,68 but are not
specifically associated with arterial thromboembolism.69

ACAs also target the cardiolipin bound to membrane
proteins such as mitochondrial membrane synthase.70

Monocytes and neutrophils from APS patients have altered
mitochondrial membrane potential and evidence of oxida-
tive stress (increased peroxide production, antioxidant en-
zymatic activity, and decreased intracellular glutathione).71

Mitochondrial stress releases short DNA fragments into the
cytosol, inducing type I interferon production.72Notably, the
increased expression of platelet type I interferon-regulated
proteins is observed in SLE patients with vascular disease.73

Furthermore, increased interferon-α expression by SLE en-
dothelial progenitor cells and circulating angiogenic cells
promotes apoptosis, hampering vessel repair.74 It seems
likely that activation of the type I interferon pathway by
antibodies to oxidized cardiolipin contributes to the acceler-
ated atherosclerosis characteristic of patients with the APS.

Indicators of inflammation in APS in addition to interferons
are themammalian target of rapamycin complex (mTORC), IL-4
and IL-6, and activated complement components. APS
antibodies are reported to stimulate mTORC through the phos-

phatidylinositol 3-kinase–AKT pathway, enhancing cell prolif-
eration and contributing to renal vascular lesions.75 Levels of
interleukins4and6aresignificantlyhigher inAPSpatients than
in controls with stable coronary disease.76

Trophoblasts
Antibodies to the EPCR have been identified in women with
APS, and these antibodies are an independent risk factor for
fetal death.77 In a mouse model, EPCR expression on giant
trophoblast cells is essential for fetal viability, presumably
because it provides activated protein C to curtail thrombin
generation.78 Fetal loss associatedwith APAwas prevented in
mice lacking EPCR signaling, and such mice were also resis-
tant to APA-induced thrombosis.

LAC interferes with the inhibition of factor Va and factor
VIIIa by activated protein C, a response that can be corrected
by prior incubation of the LAC IgG fractions with phospho-
lipid.79 Required APA cofactors are either PT in the presence
of calcium80 or β2-GPI.81 APA directed against the latter
induces activated protein C resistance (APCR) in women
with recurrent miscarriages.82 Autoantibodies that bind to
the epidermal growth factor-like domain of protein S have
also been identified in patients with recurrent pregnancy
loss.83

The open form of β2-GPI is present on decidual endothe-
lium and trophoblasts and can bind anti-β2-GPI antibodies,
potentially activating complement.84 In addition, APA–pro-
tein–phospholipid complexes activate complement on neu-
trophils, stimulating the release of tissue factor-bearing
vesicles that contribute to thrombus formation and tropho-
blast injury.85 In a mouse model, blocking C5a–C5a receptor
interactions on neutrophils prevents fetal injury.86 Further
contributing to placental thrombosis is impairment of fibri-
nolysis by APAs that inhibit the binding of prourokinase to its
trophoblast receptor, and other antibodies that reduce factor
XIIa-dependent profibrinolytic activity.87,88

Anti-β2-GPI antibodies target placental mitochondria,
induce production of reactive oxygen species, release arach-
idonic acid and thromboxane A2, and bring about cellular
damage.89 They stimulate trophoblast IL-1β and VEGF secre-
tion mediated by nucleotide-binding oligomerization do-
main-2, potentially accounting for the observed
proinflammatory and angiogenic profile in patients with
APA.90

Recurrent venous and arterial thromboses are also char-
acteristic of obstetrical APS, but whether the same anti-
bodies that promote fetal loss induce vascular thrombi is
unclear. Meroni et al84 suggest that the tissue distribution
and expression level of the anti-β2-GPI target antigens could
account for the recurrent miscarriages as well as the sys-
temic vascular disease.

In summary, multiple mechanisms contribute to the
impaired pregnancy outcomes in women with APS. Anti-
bodies to the EPCR decrease the activation of protein C,
resulting in enhanced FVa availability and greater thrombin
generation. APAs increase TxA2 release from trophoblasts
and decrease PGI2 production, reducing placental bloodflow.
The binding of prourokinase to its trophoblast receptor is
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inhibited and antibodies to FXII further impair activation of
fibrinolysis. Complement activation by antibodies stimulates
the release of tissue factor-bearing vesicles fromneutrophils,
contributing to thrombus formation. Lastly, anti-β2-GPI anti-
bodies target placental mitochondria and induce production
of reactive oxygen species, promoting cellular damage. The
consequence is vascular occlusion, tissue infarction, and fetal
loss.

Hemostatic Factors and Complement

Clotting Factors
Antibodies to PT were reported in 31 of 42 (74%) patients
with LAC.91 The antibodies are heterogeneous; some recog-
nize PT fragment-1 epitopes when the protein is in solution,
whereas others require that the molecule be bound to
negatively charged phospholipids.92 They prolong in vitro
clotting tests by out-competing factor Xa for phospholipid-
binding sites,30 but in vivo the increased affinity of LAC–PT
complexes for phospholipid surfaces augments thrombin
production and might contribute to the enhanced risk of
thrombosis in patients with SLE.93,94 Anti-PT antibodies are
associated with both arterial and venous thrombosis (odds
ratio [OR]: 2.3; 95% confidence interval [CI]: 1.7–3.5).95

Antibodies that bind to thrombin as well as PT impair the
inactivation of thrombin by antithrombin, further increasing
the risk of thrombosis.96 Infrequently, antibodies are direct-
ed against epitopes located at the carboxyl terminus of PT;
accelerated clearance of the PT antigen–antibody complexes
is associated with severe hypoprothrombinemia and bleed-
ing.97 Interestingly, exposure to bovine thrombin used in
conjunction with surgery has produced antibodies to β2-GPI
and cardiolipin as well as to PT and factor V.98

ACA induces tissue factor messenger RNA (mRNA) in
peripheral blood mononuclear and endothelial cells,99 and
soluble tissue factor levels are higher in APS patients than in
controls.100 Anti-β2-GPI antibodies phosphorylate a non-
muscle myosin II regulatory light chain, which is required
for the release of endothelial cell microparticles and the
expression of tissue factor mRNA.101

Antibodies to factor VII/VIIa are reported in 67% of indi-
viduals with APS and are associated with APAs and throm-
bosis.102 Sera from 33.9% of APS patients contain antibodies
to factor Xa that interfere with its inhibition by antithrom-
bin.103 Patients with APS have upregulated protein disulfide
isomerase family members capable of reducing the disulfide
bonds of factor XI.56 Reduced factor XI is more readily
activated to factor XIa and is increased in APS patients.104

Antibodies to factor XII are present in 20% of patients with
LAC13 and 40% of patients with SLE, and are associated with
arterial and venous thromboses in the latter.105 Antibody-
binding sites are the growth factor and catalytic domains,
and PS is generally required for attachment.106 Other anti-
bodies are reported that prefer phosphatidylethanolamine
and recognize high- and low-molecular-weight kininogens.107

These antibodies might be thrombogenic because they im-
pair kininogen-associated inhibition of thrombin-induced
platelet aggregation.108 Lastly, increases in factor XIIIa are

strongly associated with APA in patients with thrombosis,
and are positively correlated with the levels of plasminogen
activator-1 and fibrinogen, as well as with carotid intima-
media thickness.109

Anticoagulants
Protein C: APAs inhibit the inactivation of factor Va by
activated protein C, even in the presence of protein S.3

Although thrombomodulin levels are increased in APS, pre-
sumably because of APA-induced endothelial cell injury,
APCR is often encountered.110 Patients with thrombosis
aremore likely to havehigh-avidity anti-protein C antibodies
and greater APCR.111 The binding of aPL-IgG to protein C
requires the presence of β2-GPI and PS.112 Antibodies against
domain I ofβ2-GPI are associatedwith APCR (p<0.0001), and
predicted thrombosis in a prospective study of 137 patients
with aPL or SLE.113 As noted previously, binding of LBPA to
the EPCR inhibits protein C activation and promotes autoan-
tibody production by activating B-cells.

Protein S/TFPI: Protein S levels are significantly lower in
individuals with APS than in matched controls,114 although
antibodies to protein S are not detected more frequently (8.1
vs. 4.9%; 95% CI: 0.68–4.43).115 When autoantibodies to
protein S are present, they are associated with APCR (OR:
57.8; 95% CI: 8.53–391) and are a risk factor for deep vein
thrombosis (OR: 5.88; 95% CI: 1.96–17.7).116

Protein S, in addition to serving as a co-factor for protein C,
is also antithrombotic because it enhances the formation of
TFPI complexeswith factor Xa.117However, 18.5% of patients
with definite APS were found to have high-titer anti-TFPI
activity and their IgG impaired the inhibitory effect of TFPI on
factor Xa.9 Furthermore, the TFPI activity of normal plasma is
inhibited by the IgG fractions of 47.5% of patients with
SLE.118 A heightened risk of thrombosis might be anticipated
in individuals with a combination of decreased protein S and
antibodies to TFPI.

Heparin: A specific pentasaccharide sequence in heparin
binds antithrombin, producing a conformational change that
greatly augments thrombin inhibition. Some patients with
APS have antibodies that bind to a disaccharide within the
pentasaccharide sequence and inhibit the heparin-acceler-
ated formation of antithrombin–thrombin complexes.119

Fibrinolytic Factors
Fibrinolysis, the dissolution of thrombi, occurs when plas-
min is produced by a complex of t-PA, plasminogen, annexin
A2, and S100A10 assembled on the surface of endothelial
cells,120 and is mainly regulated by plasminogen activator
inhibitor-1 (PAI-1), thrombin-activatable fibrinolytic inhibi-
tor (TAFI), and antiplasmin. Several of these components are
impacted by APA. Antibodies directed against the catalytic
domain of t-PA have been detected in APS patients, produc-
ing higher antigen and lower activity levels.121 Plasma levels
of PAI-1 and TAFI are increased and associated with arterial
thrombosis in APS patients with elevated lipoprotein(a) or
TAFI activation.122,123Antibodies to S100A10 are observed in
11.9% of APS patients but only in 1.7% of healthy persons
(p¼0.01),124 and might interfere with the assembly of the
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plasminogen activation complex on the cell surface. In addi-
tion, antiplasmin antibodies are reported in 28% of APS
patients.125 Lastly, fibrin clot permeability and susceptibility
to lysis are reduced and clot lysis times are prolonged in
patients with high levels of anti-PT antibodies, and are
predictive of thromboembolism.126

Complement
Complement activation, recognized by bioassay and detec-
tion of C5b-9 deposition on cell surfaces, is present in about a
third of APS samples, occurs mainly in conjunction with
triple positivity (positive tests for LAC, ACA, and anti-β2-GPI),
and is associatedwith thrombotic events.127 Increases in C5a
are accompanied by decreases in clot permeability and
fibrinolysis,128 and complement components stimulate
monocytes and endothelial cells to release pro-inflammato-
ry and procoagulant cytokines.129 Components are activated
byAPA-protein-phospholipid complexes, and activated com-
plement components promote the release of cell membrane;
these vesicles initiate coagulation by exposing tissue factor
and provide a surface for the assemblyof the prothrombinase
enzyme complex.130,131A recent study found evidence of cell
surface deposition of complement components 5b-9 in 6 of 7
catastrophic APS patients, most of whom had thromboses
and organ infarcts.127 Furthermore, germline variants of
complement regulatory genes were observed in 6 of 10
patients, potentially contributing to uncontrolled comple-
ment activation and vascular occlusion in these individuals.

Limitations

The APL antibodies described in the older studies were often
incompletely characterized, affecting the interpretation of
the experimental results. Current research has shown that
the antibodies in APS patients are heterogeneous, with
subpopulations among the major categories (anti-β2-GPI,
anti-PS/PT/LAC, ACA) and a large variety of target epitopes.
Nevertheless, these papers are included because they helped
to define this complex syndrome and laid the groundwork
for future investigations.

Future Directions

The management of APS patients has included long-term
anticoagulation, corticosteroids, cytotoxic agents, and im-
mune response modifiers, but none of these modalities
have been entirely satisfactory. The vast array of autoanti-
bodies and the many distinctive pathophysiologic processes
might require a different approach, perhaps based on
reprograming antibody production. Recent studies of
patients with coronavirus infections suggest that direct
antibody synthesis occurs in extrafollicular B-cells, bypass-
ing the multiple checkpoints that generally eliminate auto-
antibodies produced in germinal centers.132 If direct
antibody synthesis is documented in APS, selective target-
ing of aberrant B-cells could reduce the titer of the
autoantibodies.

Autoantibodies might be triggered in some patients with
APS if disruption of the nuclear or mitochondrial72 envelope
releases DNA into the cytosol. Cyclic guanosine monophos-
phate-adenosine monophosphate synthase (cGAS) forms
complexes with cytoplasmic DNA that elicit an immune
response. The barrier-to-autointegration factor 1 out-com-
petes cGAS for binding to DNA and appears to protect against
aberrant immune responses.133 Whether this mechanism
could be adapted to limit autoantibody production in APS
needs to be investigated.

A vaccine approach should also be considered. Krienke
et al134 describe the preparation of a nanoparticle-formulat-
ed mRNA coding for disease-related autoantigens that was
targeted to lymphoid dendritic cells in a mouse model of
experimental autoimmune encephalomyelitis (EAE). This
mRNA vaccine promoted antigen presentation on splenic
CD11c cells in the absence of co-stimulatory signals. It led to
decreased effector T-cells, expanded the development of T-
regulatory cells that suppressed autoreactivity, and reduced
the severity of established EAE. Identifying specific autoan-
tigens in patients with APS and preparing mRNA vaccines
against these autoantigens is another strategy that might
control this destructive disorder.
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