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On the computational complexity of curing
non-stoquastic Hamiltonians
Milad Marvian1,2,3, Daniel A. Lidar2,3,4,5 & Itay Hen 3,4,6

Quantum many-body systems whose Hamiltonians are non-stoquastic, i.e., have positive off-

diagonal matrix elements in a given basis, are known to pose severe limitations on the

efficiency of Quantum Monte Carlo algorithms designed to simulate them, due to the infa-

mous sign problem. We study the computational complexity associated with ‘curing’ non-

stoquastic Hamiltonians, i.e., transforming them into sign-problem-free ones. We prove that

if such transformations are limited to single-qubit Clifford group elements or general single-

qubit orthogonal matrices, finding the curing transformation is NP-complete. We discuss the

implications of this result.
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T he “negative sign problem”, or simply the “sign problem”1,
is a central unresolved challenge in quantum many-body
simulations, preventing physicists, chemists, and material

scientists alike from being able to efficiently simulate many of the
most profound macroscopic quantum physical phenomena of
nature, in areas as diverse as high-temperature superconductivity
and material design through neutron stars to lattice quantum
chromodynamics. More specifically, the sign problem slows down
quantum Monte Carlo (QMC) algorithms2,3, which are in many
cases the only practical method available for studying large
quantum many-body systems, to the point where they become
practically useless. QMC algorithms evaluate thermal averages of
physical observables by the (importance-) sampling of quantum
configuration space via the decomposition of the partition func-
tion into a sum of easily computable terms, or weights, which
are in turn interpreted as probabilities in a Markovian process.
Whenever this decomposition contains negative terms, QMC
methods tend to converge exponentially slowly. Most disheart-
eningly, it is typically the systems with the richest quantum`-
mechanical behavior that exhibit the most severe sign problem.

In defining the scope under which QMC methods are sign-
problem free, the concept of “stoquasticity”, first introduced by
Bravyi et al.4, has recently become central. The most widely used
definition of a local stoquastic Hamiltonian is

Definition 15 A local Hamiltonian, H ¼ PM
a¼1 Ha is called

stoquastic with respect to a basis B, iff all the local terms Ha have
only non-positive off-diagonal matrix elements in the basis B.

In the basis B, the partition function decomposition of sto-
quastic Hamiltonians leads to a sum of strictly nonnegative
weights and such Hamiltonians hence do not suffer from
the sign problem. For example, in the path-integral formulation
of QMC with respect to a basis B ¼ fbg, the partition
function Z at an inverse temperature β is reduced to an L-fold
product of sums over complete sets of basis states, {b1}, …, {bL},
which are weighted by the size of the imaginary-time slice Δτ =
β/L and the matrix elements of e−ΔτH. Namely,
Z ¼ QL

l¼1

P
bl
hblj e�ΔτH jblþ1i, where L is the number of slices

and periodic boundary conditions are assumed. For a Hamilto-
nian H that is stoquastic in the basis B, all the matrix elements of
e−ΔτH are nonnegative for any Δτ, leading to nonnegative weights
for each time slice. On the other hand, non-stoquastic Hamilto-
nians, whose local terms have positive off-diagonal entries, induce
negative weights and generally lead to the sign problem1,6 unless
certain symmetries are present.

The concept of stoquasticity is also important from a compu-
tational complexity-theory viewpoint. For example, the com-
plexity class StoqMA associated with the problem of deciding
whether the ground-state energy of stoquastic local Hamiltonians
is above or below certain values, is expected to be strictly con-
tained in the complexity class QMA, that poses the same decision
problem for general local Hamiltonians4. In addition, StoqMA
appears as an essential part of the complexity classification of
two-local qubit Hamiltonian problem7.

However, stoquasticity does not imply efficient (i.e., poly-
nomial-time) equilibration. For example, finding the ground-state
energy of a classical Ising model—which is trivially stoquastic—is
already NP-hard8. Conversely, non-stoquasticity does not imply
inefficiency: there exist numerous cases where an apparent sign
problem (i.e., non-stoquasticity) is the result of a naive basis
choice that can be transformed away, resulting in efficient
equilibration7,9–11. Here, we focus on the latter, i.e., whether non-
stoquasticity can be “cured”.

To this end, we first propose an alternative definition of sto-
quasticity that is based on the computational complexity asso-
ciated with transforming non-stoquastic Hamiltonians into

stoquastic ones. Then, we proceed by proving that finding such a
transformation for general local Hamiltonians, even if restricted
to the single-qubit Clifford group or the single-qubit orthogonal
group, is computationally hard. Along the way, we provide several
results of independent interest, in particular an algorithm to
efficiently group local Hamiltonian terms, and an algorithm to
efficiently decide the curing problem using Pauli operators. We
conclude by discussing some implications of our results,
employing planted solution ideas, and also some potential cryp-
tographic applications.

Results
Computationally stoquastic Hamiltonians. To motivate our
alternative definition, we first note that any Hamiltonian can
trivially be presented as stoquastic via diagonalization. However,
the complexity of finding the diagonalizing basis generally grows
exponentially with the size of the system (as noted in ref. 6) and
the new basis will generally be highly nonlocal and hence not
efficiently representable. We also note that it is straightforward to
construct examples where apparent non-stoquasticity may be
transformed away. For example, consider the n-spin Hamiltonian
HXZ ¼ P

~JijXiXj �
P

JijZiZj with nonnegative Jij;~Jij, where Xi

and Zi are the Pauli matrices acting on spin i. This Hamiltonian
is non-stoquastic, but can easily be converted into a
stoquastic form. Denoting the Hadamard gate (which swaps X
and Z) by W, consider the transformed Hamiltonian
HZX ¼ W�nHXZW

�n ¼ �P
JijXiXj þ

P
~JijZiZj, which is sto-

quastic. The sign problem of the original Hamiltonian, HXZ, can
thus be efficiently cured by a unit-depth circuit of single-qubit
rotations. Moreover, thermal averages are invariant under unitary

transformations; namely, defining Ah iH� Trðe�βHAÞ
Trðe�βHÞ , it is straight-

forward to check that Ah iH¼ UAUy� �
UHUy . Therefore, if QMC is

run on the transformed, stoquastic Hamiltonian, it is no longer
slowed down by the sign problem. Finally, note that Definition 1
implies that a local Hamiltonian, H ¼ PM

a¼1 Ha, is stoquastic if
all terms Ha are stoquastic. However, there always remains some
arbitrariness in the manner in which the total Hamiltonian is
decomposed into the various terms. Consider, e.g., H = −2X1 +
X1Z2. The second term separately is non-stoquastic, whereas the
sum is stoquastic. This suggests that the grouping of terms
matters (see the Methods section, “Grouping terms without
changing the basis”).

The above considerations motivate a reexamination of the
concept of stoquasticity from a complexity-theory perspective,
which can have important consequences for QMC simulations.
(A related approach was discussed in ref. 12.) For example, given a
k-local non-stoquastic Hamiltonian H ¼ P

a Ha (where each
summand is a k-local term, i.e., a tensor product of at most k non-
identity single-qubit Pauli operators), similarly to ref. 13, we may
ask whether there exists a constant-depth quantum circuit U such
that H′ ¼ UHUy can be written as a k′-local stoquastic
Hamiltonian H′ ¼ P

a H
′
a and if so, what the complexity

associated with finding it is. It is the answer to the latter question
that determines whether the Hamiltonian in question should be
considered computationally stoquastic, i.e., whether it is feasible
(in a complexity theoretic sense) to find a “curing” transforma-
tion U, which would then allow QMC to compute thermal
averages with H by replacing it with H′. More formally, we
propose the following definition:

Definition 2 A unitary transformation U “cures” a non-
stoquastic Hamiltonian H (i.e., removes its sign problem)
represented in a given basis if H′ ¼ UHUy is stoquastic, i.e., its
off-diagonal elements in the given basis are all non-positive. A
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family of local Hamiltonians {H} represented in a given basis is
efficiently curable (or, equivalently, computationally stoquastic) if
there exists a polynomial-time classical algorithm such that for
any member of the family H, the algorithm can find a unitary U
and a Hamiltonian H′ with the property that H′ ¼ UHUy is local
and stoquastic in the given basis.

As an example, the Hamiltonian HXZ considered above is
efficiently curable. General local Hamiltonians are unlikely to be
efficiently curable as this would imply the implausible result that
QMA=StoqMA13.

Note that given some class of basis transformations, our
definition distinguishes between the ability to cure a Hamiltonian
efficiently or in principle. For example, deciding whether a Pauli
group element U ¼ �n

i¼1 ui, where ui belongs to the single-qubit
Pauli group P1 ¼ fI;X;Y ;Zg ´ f± 1; ± ig, can cure each term
{Ha} of a k-local Hamiltonian H ¼ P

a Ha, which can be solved
in polynomial time (see the Methods section, “Curing using Pauli
operators”). However, the Hamiltonian H = X1Z2 cannot be
made stoquastic in principle using a Pauli group element, as
conjugating it with Pauli operators results in ±X1Z2, both of
which are non-stoquastic (see ref. 13 for the results on an intrinsic
sign problem for local Hamiltonians). Therefore, the fact that
general local Hamiltonians are not considered to be computa-
tionally stoquastic does not imply that curing is computationally
hard for a given class of transformations.

The last example illustrates that, while the curing problem can
be efficiently decided for the Pauli group, this group can cure a
very limited family of Hamiltonians. This motivates us to
consider the curing problem beyond the Pauli group. Our main
result is a proof that even for particularly simple local
transformations such as the single-qubit Clifford group and
real-valued rotations, the problem of deciding whether a family of
local Hamiltonians is curable cannot be solved efficiently, in the
sense that it is equivalent to solving 3SAT and is hence NP-
complete.

We assume that a k-local Hamiltonian H ¼ P
a Ha is

described by specifying each of the local terms Ha, and the goal
is to find a unitary U that cures each of these local terms. In
general, a unitary U that cures the total Hamiltonian H may not
necessarily cure all Ha separately. However, for all of the
constructions in this paper, we prove that a unitary U cures H
if and only if it cures all Ha separately. The decomposition {Ha} is
merely used to guarantee that verification is efficient and the
problem is contained in NP.

Complexity of curing for the single-qubit Clifford group. To
study the computational complexity associated with finding a
curing transformation U, we shall consider for simplicity single-
qubit unitaries U ¼ �n

i¼1 ui and only real-valued Hamiltonian
matrices. As we shall show, even subject to these simplifying
restrictions, the problem of finding a curing transformation U is
computationally hard when U is not in the Pauli group.

We begin by considering the computational complexity of
finding local rotations from a discrete and restricted set of
rotations. Specifically, we consider the single-qubit Clifford group
C1 (with group action defined as conjugation by one of its
elements), defined as C1 ¼ fU jUgUy 2 P1 8g 2 P1g, i.e., the
normalizer of P1. It is well known that C1 is generated by W and
the phase gate P = diag(1, i)14.

Theorem 1 Let U ¼ �n
i¼1 ui, where uibelongs to the single-qubit

Clifford group. Deciding whether there exists a curing unitary U for
3-local Hamiltonians is NP-complete.

We prove this theorem by reducing the problem to the canonical
NP-complete problem known as 3SAT (3-satisfiability)15, beginning
with the following lemma:

Lemma 1 Let ui ∈ {I, W}, where I is the identity operation and
W is the Hadamard gate. Deciding whether there exists a curing
unitary U ¼ �n

i¼1 ui for 3-local Hamiltonians is NP-complete.
To prove Lemma 1, we first introduce a mapping between

3SAT and 3-local Hamiltonians. Our goal is to find an
assignment of n binary variables xi ∈ {0, 1} such that the unitary
WðxÞ � �n

i¼1 W
xi
i [where x ≡ (x1, …, xn)] rotates an input

Hamiltonian to a stoquastic Hamiltonian. We use the following
3-local Hamiltonian as our building block:

Hð111Þ
ijk ¼ ZiZjZk � 3ðZi þ Zj þ ZkÞ � ðZiZj þ ZiZk þ ZjZkÞ;

ð1Þ
where i, j, and k are three different qubit indices. It is
straightforward to check that

WðxÞHð111Þ
ijk WyðxÞ ¼ Wxi

i �W
xj
j �Wxk

k ðHð111Þ
ijk ÞWxi

i �W
xj
j �Wxk

k

ð2Þ
is stoquastic (“True”) for any combination of the binary variables
(xi, xj, xk) except for (1, 1, 1), which makes Eq. (2) non-stoquastic
(“False”).

This is precisely the truth table for the 3SAT clause
ð�xi _ �xj _ �xkÞ, where ∨ denotes the logical disjunction and the
bar denotes negation (see Table 1). We can define the other seven

possible 3SAT clauses by conjugating Hð111Þ
ijk with Hadamard or

identity gates:

HðαβγÞ
ijk ¼ W�α

i �W
�β
j �W�γ

k �Hð111Þ
ijk �W�α

i �W
�β
j �W�γ

k : ð3Þ

The Hamiltonian WðxÞHðαβγÞ
ijk WyðxÞ is non-stoquastic (corre-

sponds to a clause that evaluates to False) only when (xi, xj, xk) =
(α, β, γ), and is stoquastic (True) for any other choice of the
variables x. We have thus established a bijection between 3-local

Hamiltonians HðαβγÞ
ijk , with (α, β, γ) ∈ {0, 1}3, and the eight

possible 3SAT clauses on three variables (xi, xj, xk) ∈ {0, 1}3. We
denote these clauses, which evaluate to False iff (xi, xj, xk) = (α, β,

γ), by CðαβγÞ
ijk .

The final step of the construction is to add together such
“3SAT-clause Hamiltonians” to form

H3SAT ¼
X
C

HðαβγÞ
ijk ; ð4Þ

where C is the set of all M clauses in the given 3SAT instance

^CðαβγÞ
ijk . Having established a bijection between 3SAT clauses and

3SAT-clause Hamiltonians, the final step is to show that finding x

Table 1 Mapping the problem of finding a suitable change of
basis to the Boolean satisfiability problem

xi xj xk WðxÞHð111Þ
ijk WyðxÞ ðxi _ xj _ xkÞ

0 0 0 Stoquastic 1
0 0 1 Stoquastic 1
0 1 0 Stoquastic 1
1 0 0 Stoquastic 1
1 1 0 Stoquastic 1
1 0 1 Stoquastic 1
0 1 1 Stoquastic 1
1 1 1 Non-stoquastic 0

The HamiltonianWðxÞHð111Þ
ijk WyðxÞ is stoquastic (True) for any choice of the variables x except (xi,

xj, xk) = (1, 1, 1), which makes it non-stoquastic (False). This is precisely the truth table for the
3SAT clause ðxi _ xj _ xkÞ.
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such that

H′ ¼ WðxÞH3SATWðxÞ ð5Þ
is stoquastic for every H3SAT, is equivalent to solving the NP-
complete problem of finding satisfying assignments x for the
corresponding 3SAT instances. To prove the equivalence, we
show (i) that satisfying a 3SAT instance implies that the
corresponding H3SAT is cured, and (ii) that if H3SAT is cured,
this implies that the corresponding 3SAT instance is satisfied.

(i) Note that any assignment x that satisfies the given 3SAT
instance also satisfies each individual clause. It follows from
the bijection we have established that such an assignment
cures each corresponding 3SAT-clause Hamiltonian indivi-
dually. The stoquasticity of H′ then follows by noting that
the tensor product of a stoquastic Hamiltonian with the
identity matrix is still stoquastic and the sum of stoquastic
Hamiltonians is stoquastic.

(ii) To simplify the argument, we assume that each clause has
exactly three variables. This version of 3SAT, sometimes
called EXACT-3SAT, remains NP-hard15. We prove that an
unsatisfied 3SAT instance implies that the corresponding
H3SAT is not cured. It suffices to focus on a particular clause
CðαβγÞ
ijk . The choice of variables that makes this clause False

rotates the corresponding 3SAT-clause Hamiltonian to one
that contains a non-stoquastic +XiXjXj term, which
generates positive off-diagonal elements in specific locations
in the matrix representation of H3SAT. In what follows, we
show that no other 3SAT-clause Hamiltonian in H3SAT

contains a ±XiXjXk term and therefore these positive off-
diagonal elements cannot be canceled out or made negative
regardless of the choice of the other variables in the
assignment. To see this, we first note that a 3SAT-clause
Hamiltonian that does not contain xi, xj, and xk, cannot
generate a ±XiXjXk term. Second, a choice of assignment for
xi, xj, and xk that does not satisfy CðαβγÞ

ijk would satisfy any
other 3SAT clause on these three variables. A satisfied 3SAT
clause also does not generate an XiXjXk term. Therefore, the
rotated Hamiltonian is guaranteed to be non-stoquastic.

This establishes that the problem is NP-Hard. Checking
whether a given U cures all the local terms {Ha} is efficient and
therefore the problem is NP-complete.

To complete the proof of Theorem 1, let us consider the
modified Hamiltonian

~H3SAT ¼ H3SAT þ cH0;H0 ¼ �
Xn
i¼1

ðXi þ ZiÞ; ð6Þ

where H0 is manifestly stoquastic and c is any number larger than
the maximum number of clauses that any variable appears in. As
there are M clauses, we simply choose c = O(1)M, which is still a
polynomial in the number of variables. (Note that even a
restricted variant of 3SAT with each variable restricted to appear
at most in a constant number of clauses is still NP-Complete16

and therefore we can take c to be a constant.) The goal is to find a
unitary U ¼ �n

i¼1 ui with ui 2 C1 that cures ~H3SAT. Note first that
any choice of U ¼ �n

i¼1W
xi
i that cures H3SAT also cures ~H3SAT.

Second, note that choosing any ui that keeps H0 stoquastic is
equivalent to choosing one of the elements of C′1 �fI;X;W;XWg � C1 (e.g., the phase gate, which is an element
of C1, maps X to Y so it is excluded, as is WX, which maps Z to
−X). Therefore, by choosing c to be large enough, any choice of
ui 2 C1nC′1 would transform ~H3SAT into a non-stoquastic
Hamiltonian. It follows that if ui 2 C1 and is to cure ~H3SAT then
in fact it must be an element of C′1.

Next, we note that conjugating a matrix by a tensor product of
X or identity operators only shuffles the off-diagonal elements,
but never changes their values (for a proof see the Methods
section, “Conjugation by a product of X operators”). Therefore,
for the purpose of curing a Hamiltonian, applying X is equivalent
to applying I and applying XW is equivalent to applying W. With
this observation, the set of operators that can cure a Hamiltonian
is effectively reduced from {I, W, XW, X} to {I, W}. According to
Lemma 1, deciding whether such a curing transformation exists is
NP-complete.

Complexity of curing for the single-qubit orthogonal group.
Similarly, we can use Lemma 1 to show that the problem of
curing the sign problem remains NP-complete when the set of
allowed rotations is extended to the continuous group of single-
qubit orthogonal matrices, i.e., transformations of the form
Q ¼ �n

i¼1 qi, where q
T
i qi ¼ I ∀i. Namely:

Theorem 2 Deciding whether there exists a curing orthogonal
transformation Q for 6-local Hamiltonians is NP-complete.

See the Methods section, “Proof of Theorem 2”, for the proof.
In analogy to the proof of Theorem 1, the crucial step is to show
that by promoting each Z, X, and W to a two-qubit operator, the
continuous set of possible curing transformations reduces to the
discrete set considered in Lemma 1.

Implications and applications. An immediate and striking
implication of Theorem 1 is that even under the promise that a
non-stoquastic Hamiltonian can be cured by one-local Clifford
unitaries (corresponding to trivial basis changes), the problem of
actually finding this transformation is unlikely to have a
polynomial-time solution.

An interesting implication of Theorem 2 is the possibility of
constructing “secretly stoquastic” Hamiltonians. That is, one may
generate stoquastic quantum many-body Hamiltonians Hstoq, but
present these in a “scrambled” non-stoquastic form
Hnonstoq ¼ UHstoqU

y, where U is a tensor product of single-
qubit orthogonal matrices (or in the general case a constant-
depth quantum circuit). We conjecture that the latter Hamilto-
nians will be computationally hard to simulate using QMC by
parties that have no access to the “descrambling” circuit U. In
other words, it is possible to generate efficiently simulable spin
models that might be inefficient to simulate unless one has access

u(xn)u(x3)u(x2)u(x1)

Hstoqn321

n321

x : a classical bit string

ui(xi). Hstoq. ui
  (xi)

Fig. 1 A classical bit string connecting a stoquastic Hamiltonian to a
seemingly non-stoquastic Hamiltonian. One may generate an n-qubit
stoquastic Hamiltonian Hstoq and then transform it using a randomly chosen
unitary (specified by a classical bit string) to bring it into a seemingly non-
stoquastic form. Unlike the generated stoquastic Hamiltonian, the
simulation of the seemingly non-stoquastic Hamiltonian can be
computationally hard. Also, as discussed here, given a non-stoquastic
Hamiltonian, finding the bit string that converts it into a stoquastic
Hamiltonian can be computationally hard in general. Therefore, the classical
bit string can serve as a secret key, without which certain properties of Hstoq

cannot be efficiently simulated
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to the “secret key” to make them stoquastic (see Fig. 1). This
observation may potentially have cryptographic applications (see
the Methods section, “Encryption based on secretly stoquastic
Hamiltonians”).

Our work also has implications for the connection between the
sign problem and the NP-hardness of a QMC simulation. A
prevailing view of this issue associates the origin of the NP-
hardness of a QMC simulation to the relation between a
(“fermionic”) Hamiltonian that suffers from a sign problem and
the corresponding (“bosonic”) Hamiltonian obtained by replacing
every coupling coefficient by its absolute value. Consider the
following example:. HX ¼ P

ij JijXiXj, with Jij randomly chosen
from the set {0, ±J} on a three-dimensional lattice, has a sign
problem. Deciding whether its ground-state energy is below a
given bound is NP-complete8. Deciding the same for its bosonic
and sign-problem-free version HjXj ¼

P
ij jJijjXiXj is in BPP

(classical polynomial time with bounded error) since this
Hamiltonian is that of a simple ferromagnet. The conclusion
drawn in ref. 6 was that since the bosonic version is easy to
simulate, the sign problem is the origin of the NP-hardness of a
QMC simulation of this model (HX).

The view we advocate here is that a solution to the
sign problem is to find an efficiently computable curing
transformation that removes it in such a way that the
model has the same physics (in general the fermionic and
bosonic versions of the same Hamiltonian do not), i.e., conserves
thermal averages. In the above example, computing thermal
averages via a QMC simulation of HX is the same as for
HZ ¼ W�nHXW

�n ¼ P
ij JijZiZj, which is stoquastic. Thus, the

sign problem of HX is efficiently curable, after which (when it is
presented as HZ) deciding its ground-state energy remains NP-
hard.

Discussion
We have proposed an alternative definition of stoquasticity (or
absence of the sign problem) of quantum many-body Hamilto-
nians that is motivated by computational complexity considera-
tions. We discussed the circumstances under which non-
stoquastic Hamiltonians can in fact be made stoquastic by the
application of single-qubit rotations and in turn potentially
become efficiently simulable by QMC algorithms. We have
demonstrated that finding the required rotations is computa-
tionally hard when they are restricted to the one-qubit Clifford
group or one-qubit continuous orthogonal matrices.

These results raise multiple questions of interest. It is impor-
tant to clarify the computational complexity of finding the curing
transformation in the case of constant-depth circuits that also
allow two-body rotations, whether discrete or continuous. Also,
since our NP-completeness proof involved 3- and 6-local
Hamiltonians, it is interesting to try to reduce it to 2-local
building blocks. Another direction into which these results can be
extended is to relax the constraints on the off-diagonal elements
and require that they are smaller than some small ε > 0. This is
relevant when some small positive off-diagonal elements can be
ignored in a QMC simulation.

Finally, it is natural to reconsider our results from the per-
spective of quantum computing. Namely, for non-stoquastic
Hamiltonians that are curable, do there exist quantum algorithms
that cure the sign problem more efficiently than is possible
classically? With the advent of quantum computers, specifically
quantum annealers, it may be the case that these can be used as
quantum simulators, and as such they will not be plagued by the
sign problem. Will such physical implementations of quantum
computers offer advantages over classical computing even for

problems that are incurably non-stoquastic? We leave these as
open questions to be addressed in future studies.

Methods
Proof of Theorem 2. The proof builds on that of Theorem 1, but first we note that
the clause Hamiltonians introduced in Eq. (2) can have curing solutions that are
orthogonal rotations outside the Clifford group (see Fig. 2). To deal with this richer
set of rotations—which is now a continuous group—we promote each Z, X, and W
in the clause Hamiltonians to a two-qubit operator: Zi 7! �Zi � Z2i�1Z2i ,
Xi 7! �Xi � X2i�1X2i , W

α
i 7! W

α
i � Wα

2i�1 �Wα
2i. Thus Eq. (1) becomes

�Hð111Þ
ijk ¼ �Zi

�Zj
�Zk � 3ð�Zi þ �Zj þ �ZkÞ � ð�Zi

�Zj þ �Zi
�Zk þ �Zj

�ZkÞ: ð7Þ

Let �WðxÞ � �n
i¼1

�Wxi
i . It is again straightforward to check that

�WðxÞ�Hð111Þ
ijk

�WyðxÞ is stoquastic for any combination of the binary variables
(xi, xj, xk) except for (1, 1, 1). Likewise, generalizing Eq. (3), we define

�HðαβγÞ
ijk ¼ �W�α

i � �W
�β
j � �W�γ

k � �Hð111Þ
ijk � �W�α

i � �W
�β
j � �W�γ

k : ð8Þ

�HðαβγÞ
ijk is a clause Hamiltonian corresponding to a clause in the 3SAT instance.

Similarly, �WðxÞ�HðαβγÞ
ijk

�WðxÞ is stoquastic for any combination of the binary
variables (xi, xj, xk) except for (α, β, γ). Generalizing Eq. (4) we define

�H3SAT ¼
X
C

�HðαβγÞ
ijk ; ð9Þ

where C denotes the corresponding set of clauses in a 3SAT instance, constructed
just as in the proof of Lemma 1. This, again, establishes a bijection between 3SAT
clauses and “3SAT-clause Hamiltonians”, now of the form �H3SAT.

In lieu of Eq. (4), we consider the 6-local Hamiltonian e�H3SAT

e�H3SAT ¼ �H3SAT þ cH′
0; H′

0 ¼ �
Xn
i¼1

2�Zi þ �Xi; ð10Þ

where c = O(1). Just as in the proof of Theorem (1), we prove that (i) any satisfying
assignment of a 3SAT instance provides a curing Q for the corresponding

Hamiltonian e�H3SAT, and (ii) any Q that cures e�H3SAT provides a satisfying
assignment for the corresponding 3SAT instance. Because of the relation between a
single-qubit orthogonal matrix and a single-qubit rotation, it suffices to prove the
hardness only for pure rotations (see the next subsection for the relation between a
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Fig. 2 Orthogonal rotations that can cure the clause Hamiltonians
introduced in Eq. (2). The yellow region depicts the angles of rotations that
can cure Hð111Þ

123 and the blue region depicts the angles of the curing rotations
for Hð000Þ

123
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single-qubit real–orthogonal matrix and a single-qubit rotation); we let RðθiÞ ¼
cosθi �sinθi
sinθi cosθi

� �
denote a rotation by angle θi.

(i) Let P(x) denote the product of 2n single-qubit rotations such that if xi = 0
then qubits 2i − 1 and 2i are unchanged, or if xi = 1 then they are both
rotated by R π

4

� �
:

PðxÞ � �n
i¼1 R

π

4

� 	xi�R
π

4

� 	xi
� 	

; ð11Þ

where x is a n-bit string x = (x1, …, xn). Let us now show that if the 3SAT

instance has a satisfying assignment x* then Pðx�Þe�H3SATP
T ðx�Þ is stoquastic.

Note that R π
4

� � ¼ XW, and as we discussed in the article (under “Complexity
of curing for the single-qubit Clifford group”) it is equivalent toW for curing.

To prove the claim, note that x* necessarily satisfies each individual clause
of the 3SAT instance, and therefore makes the corresponding clause

Hamiltonian stoquastic, i.e., Pðx�Þ�HðαβγÞ
ijk PT ðx�Þ is stoquastic 8CðαβγÞ

ijk . Also,

PðxÞH′
0P

T ðxÞ is clearly stoquastic for any x, where H′
0 ¼ �Pn

i¼1 2�Zi þ �Xi

[Eq. (10)]. The stoquasticity of Pðx�Þe�H3SATP
T ðx�Þ then follows immediately.

(ii) We need to prove that any rotation that cures e�H3SAT provides a satisfying
assignment for the corresponding 3SAT instance. We do this in two steps:

(a) Below, under “A useful lemma”, we prove that for any e�H3SAT, any curing
rotation R ¼ �2n

i¼1 RðθiÞ has to satisfy the condition that ðθ2i�1; θ2iÞ 2
π
2 ;

π
2

� �
; π

4 ;
π
4

� �
; ð0; 0Þ; �π

4 ; �π
4

� �
 �
∀i. This is the crucial step, since it reduces

the problem from a continuum of angles to a discrete set. If
ðθ2i�1; θ2iÞ 2 ð0; 0Þ; π

2 ;
π
2

� �
 �
, we assign xi = 0, while if

ðθ2i�1; θ2iÞ 2 � π
4 ;� π

4

� �
; π

4 ;
π
4

� �
 �
, we assign xi = 1, since rotations with

the angles in each pair have the same effect.
(b) If R cures e�H3SAT, x = {xi} satisfies the corresponding 3SAT instance. See

Fig. 3 for the discrete set of solutions and the corresponding assignments.

To see this, we first note that if R cures e�H3SAT it must cure all the clauses
separately: Using step (a), we know that any such solution must be one of the four

possible cases. Therefore, if R were to cure e�H3SAT but does not cure one of the
3SAT-clause Hamiltonians, it would result in a �Xi

�Xj
�Xk term in the corresponding

clause. Since no other 3SAT-clause Hamiltonian in e�H3SAT contains an identical
�Xi
�Xj
�Xk term, these positive off-diagonal elements cannot be canceled out or made

negative, regardless of the choice of the other variables in the assignment.

Therefore, if R cures e�H3SAT, it also necessarily separately cures all the terms ine�H3SAT. By construction, if R cures a term �HðαβγÞ
ijk , the string x satisfies the

corresponding 3SAT clause CðαβγÞ
ijk . Thus x satisfies all the clauses in the

corresponding 3SAT instance. The decision problem for the existence of R (and
hence Q) is therefore NP-hard. Given a unitary U and a set of local terms fHag,
verifying whether U cures all of the terms is clearly efficient and therefore this
problem is NP-complete.

Relation between an orthogonal matrix and a rotation. The condition qiq
T
i ¼ I

forces each real–orthogonal matrix qi to be either a reflection or a rotation of the
form

qi ¼
cosθi ai sin θi
sinθi �ai cos θi

� �
ð12Þ

with ai = +1 (a reflection) or ai = −1 (a rotation). The operators X, Z, and
Hadamard, are included in the family with ai = 1; I and iY = XZ are in the family
with ai = −1. Note that 8H; 8θi : qiðθiÞHqTi ðθiÞ ¼ qiðθi þ πÞHqTi ðθi þ πÞ.
Therefore, the angles that cure a Hamiltonian are periodic with a period of π.
Hence, it suffices to consider the curing solutions only in one period: θi 2 �π

2 ; þπ
2

� �
.

Next, observe that a reflection by angle θi can be written as

cosθi sinθi
sinθi �cosθi

� �
¼ X

cos π2 � θi �sin π
2 � θi

sin π
2 � θi cos π2 � θi

" #
¼ XR

π

2
� θi

� 	
; ð13Þ

where

RðθiÞ ¼
cosθi �sinθi
sinθi cosθi

� �
: ð14Þ

As discussed below (under “Conjugation by a product of X operators”), if
XR π

2 � θi
� �

is a curing operator so is R π
2 � θi
� �

. Therefore, any curing Q ¼ �n
i¼1 qi

provides a curing R ¼ �n
i¼1 RðθiÞ. Hence, the NP-completeness of the decision

problem for R implies the NP-hardness of the decision problem for Q, which is the
statement of Theorem 2.

A useful lemma. Here, we prove that any curing rotation R ¼ �2n
i¼1 RðθiÞ for anye�H3SAT, as introduced in Eq. (10), must satisfy the condition that ðθ2i�1; θ2iÞ 2

π
2 ;

π
2

� �
; π

4 ;
π
4

� �
; ð0; 0Þ; �π

4 ; �π
4

� �
 �
∀i. In what follows, we show this for i = 1 (local

rotations on the first two qubits), but the proof trivially works for any choice of i.

Our strategy is to expand any locally rotated e�H3SAT on the first two qubits and
then to find necessary conditions that any curing rotations on these two qubits
must satisfy. With this motivation, we introduce the following lemma:

Lemma 2 Let θ1; θ2 2 � π
2 ;

π
2

� �
. Consider the 2n-qubit Hamiltonian

H′ ¼ Z1 � Z2 �Mz þ X1 � X2 �Mx þ I1 � I2 �MI ; ð15Þ
where Mz, Mx, and MIare Hamiltonians on 2n−2 qubits satisfying the following two
conditions:

1. The absolute value of at least one element of Mz is different from the absolute
value of the corresponding element in Mx.

2. Both Mx and Mz have at least one negative element.

Then the only rotation R(θ1) ⊗ R(θ2) that can cure H′ has angles given by the
following four points:

ðθ1; θ2Þ 2
π

2
;
π

2

� 	
;

π

4
;
π

4

� 	
; ð0; 0Þ; �π

4
;
�π

4

� 	n o
: ð16Þ

To relate this lemma to our construction, note that any locally rotated e�H3SAT is

in the form of H′. To be more precise, we will choose H′ ¼ R′e�H3SATR
′T , where

R′ ¼ �2n
i¼3 RðθiÞ.

We proceed by first proving the lemma. Then we show that both of the
conditions introduced in the lemma are satisfied for our construction.

Proof. It is straightforward to check that

RðθiÞXRð�θiÞ ¼ cos2θiX � sin2θiZ; ð17Þ

RðθiÞZRð�θiÞ ¼ sin2θiX þ cos2θiZ: ð18Þ
Using this we have

H′′¼ ½Rðθ1Þ � Rðθ2Þ�H′½Rð�θ1Þ � Rð�θ2Þ�
¼ X1 � X2 � ½sin2θ1 sin 2θ2Mz þ cos2θ1 cos 2θ2Mx �

þX1 � Z2 � ½sin2θ1 cos 2θ2Mz � cos2θ1 sin 2θ2Mx �
þZ1 � X2 � ½cos2θ1 sin 2θ2Mz � sin2θ1 cos 2θ2Mx �
þZ1 � Z2 � ½cos2θ1 cos 2θ2Mz þ sin2θ1 sin 2θ2Mx�
þI1 � I2 �MI :

ð19Þ

We next find necessary conditions that θ1 and θ2 must satisfy in order to make
H′′ stoquastic.

Let A to E be arbitrary matrices, and let [0] denote the all-zero matrix. We note
that H′′ can be stoquastic only if the X1Z2 ⊗ B term is zero (where we have
dropped the tensor product between the first two qubits for notational simplicity).
To see this, we first note that the matrix X1Z2 ⊗ B has both +B and −B as distinct

�1

�2

4
3�

4
3�

2
�

4

xi = 0

xi = 1

xi = 0

xi = 1

�

4
�

2
�

Fig. 3 Reducing the continuous region of solutions to a discrete set. The set
of possible orthogonal transformations that can cure e�H3SAT (introduced in
Eq. (10)) reduces to a discrete set. We assign the value of each binary
variable satisfying a 3SAT instance depending on the value of the curing
transformation. We set xi = 0 if the curing transformation has
ðθ2i�1; θ2iÞ 2 ð0;0Þ; π

2 ;
π
2

� �
 �
, while we assign xi = 1 if the curing

transformation has ðθ2i�1; θ2iÞ 2 � π
4 ;� π

4

� �
; π

4 ;
π
4

� �
 �
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off-diagonal elements for any nonzero matrix B (a similar observation holds for
Z1X2 ⊗ C). Second, we note that there are no common off-diagonal elements
between X1X2 ⊗ A, X1Z2 ⊗ B, and Z1X2 ⊗ C. Third, there is no common off-
diagonal elements between these three matrices and Z1Z2 ⊗ D and I1I2 ⊗ E.
Therefore, these terms cannot make the ±B in X1Z2 ⊗ B non-positive.

Thus, for H′′ to become stoquastic it is necessary to have B = [0]:

sin 2θ1 cos 2θ2Mz � cos 2θ1 sin 2θ2Mx ¼ ½0�: ð20Þ
Similar reasoning for Z1X2 ⊗ C yields

cos 2θ1 sin 2θ2Mz � sin 2θ1 cos 2θ2Mx ¼ ½0�: ð21Þ
If the absolute value of at least one element of Mz is different from the absolute

value of the corresponding element in Mx (i.e., Condition 1 is satisfied), comparing
the corresponding expressions from Eqs. (20) and (21), we can conclude that

sin 2θ1 cos 2θ2 ¼ cos 2θ1 sin 2θ2 ¼ 0: ð22Þ
Equation (22) gives rise to two possible cases: (i) sin 2θ1 = sin 2θ2 = 0, or (ii)

cos 2θ1 = cos 2θ2 = 0. For θ1; θ2 2 � π
2 ;

π
2

� �
. These are the eight possible solutions:

ðθ1; θ2Þ 2 0;
π

2

n o
´ 0;

π

2

n o
; or ðθ1; θ2Þ 2 ±

π

4

n o
´ ±

π

4

n o
: ð23Þ

Now, we observe that Condition 2 generates additional constraints on the
allowed values of θ1 and θ2. To see this, we consider the X1X2 ⊗ A term in Eq. (19)
in the two possible cases. For case (i), when sin 2θ1= sin 2θ2= 0 and hence cos
2θ1= ±1 and cos 2θ2= ±1, this term becomes X1X2 ⊗ cos 2θ1cos 2θ2Mx. If Mx has
any negative element, then the two combinations such that cos 2θ1cos 2θ2 = −1
flip the sign of this element and make the term non-stoquastic. That is, if Mx has
any negative element, the only rotations that can keep H′′ stoquastic satisfy cos 2θ1
= cos 2θ2 = 1 or cos 2θ1 = cos 2θ2 = −1. Similarly, for case (ii), when cos 2θ1 =
cos 2θ2 = 0, if Mz has any negative elements, the only rotations that can keep H′′
stoquastic satisfy sin 2θ1 = sin 2θ2 = 1 or sin 2θ1 = sin 2θ2 = −1.

To summarize, if both conditions hold, the solutions are necessarily one of these
four points:

sinð2θ1Þ ¼ 0; cosð2θ1Þ ¼ 1; sinð2θ2Þ ¼ 0; cosð2θ2Þ ¼ 1

) ðθ1; θ2Þ ¼ ð0; 0Þ ð24Þ

sinð2θ1Þ ¼ 0; cosð2θ1Þ ¼ �1; sinð2θ2Þ ¼ 0; cosð2θ2Þ ¼ �1

) ðθ1; θ2Þ ¼ π
2 ;

π
2

� � ð25Þ

sinð2θ1Þ ¼ 1; cosð2θ1Þ ¼ 0; sinð2θ2Þ ¼ 1; cosð2θ2Þ ¼ 0

) ðθ1; θ2Þ ¼ π
4 ;

π
4

� � ð26Þ

sinð2θ1Þ ¼ �1; cosð2θ1Þ ¼ 0; sinð2θ2Þ ¼ �1; cosð2θ2Þ ¼ 0

) ðθ1; θ2Þ ¼ �π
4 ; �π

4

� � ð27Þ

Having proved the lemma, we now proceed with identifying the properties of
Mz and Mx for our construction. As mentioned earlier, we choose

H′ ¼ R′e�H3SATR
′T , where R′ ¼ �2n

i¼3 RðθiÞ.
Mz can be written as Hz−2I, where Hz denotes the terms in Mz coming from

�H3SAT. Similarly, Mx = Hx− I, where Hx denotes the terms in Mx coming from
�H3SAT. The term �Z1 � Hz (recall that �Zi � Z2i�1Z2i and �Xi � X2i�1X2i) is
composed of rotated 3SAT-clause Hamiltonians that share �x1 in their
corresponding 3SAT clauses. Therefore, we have

Hz ¼ R′
X

Cð1βγÞ
1jk 2C

�W
�β
j � �W�γ

k ð�Zj
�Zk � 3� �Zj � �ZkÞ �W

�β
j � �W�γ

k

0B@
1CAR′T : ð28Þ

It is straightforward to check that each of the rotated 3SAT-clause Hamiltonians
has only non-positive diagonal elements. Namely, using Eq. (17), it is
straightforward to check that the max norm, defined as Ak kmax¼ maxijj½A�ijj, of
any rotated Pauli operator is at most 1, and therefore the same is true for any
tensor product of rotated Pauli operators. In each 3SAT-clause Hamiltonian, there
are three non-identity Pauli terms. Therefore, they cannot generate a diagonal
element that is larger than 3. There is a −3 term for each clause, guaranteeing that
all the diagonal terms remain non-positive.

As Hz is a sum of these matrices with all non-positive diagonal elements, we
conclude that all the diagonal elements of Hz are non-positive. Hx is similar to Hz,

but with a sum over Cð0βγÞ
1jk . Using similar arguments, we conclude that all the

diagonal elements of Hx are non-positive.
Therefore, all the diagonal elements of Mx = Hx − I and Mz = Hz − 2I are

negative, and we conclude that Condition 2 is satisfied for our construction.
Now, we show that that the first condition also holds. Using the cyclic property

of the trace and noting that all the terms in Hz except the −3 are traceless, we have
Tr(Hz) = −3k with k 2 N0 (k ¼ 0 only if Hz ¼ 0, i.e., when there is no �x1 in any of
the 3SAT clauses). Therefore we have TrðHz � 2IÞ ¼ �3k� 22n�1. Using similar
arguments, we conclude that TrðHxÞ ¼ �3k′ with k′ 2 N0 and TrðHx � IÞ ¼
�3k′� 22n�2 where k′ 2 N0. (k′ ¼ 0 only if Hx = 0, i.e., when there is no x1 in any
of the 3SAT clauses).

Clearly, the two traces cannot be equal for any value of k and k′. From this, in
addition to the already-established fact that all the diagonal elements of Hx − I and
Hz − 2I are negative, we conclude that at least one diagonal element of Hx−I is
different from the corresponding element of Hz − 2I. Therefore, Condition 1 is also
satisfied.

Grouping terms without changing the basis. As discussed here, one ambiguity in
the definition of stoquastic Hamiltonians is in the choice of the set {Ha}. With this
motivation, and ignoring the freedom in choosing a basis, we address the following
question.

Problem: We are given the k-local H ¼ P
a Ha , i.e., each Ha acts nontrivially on

at most k qubits. In the same basis (without any rotation), find a new set H′
a

satisfying H ¼ P
a H

′
a , where each H′a is k′-local and stoquastic (if such a set

exists).
Obviously, if the total Hamiltonian is stoquastic, then considering the total

Hamiltonian as one single Hamiltonian is a valid solution with k′ = n. This
description of the Hamiltonian requires a 2n × 2n matrix. We would prefer a
k′-local Hamiltonian, i.e., a set consisting of a polynomial number of terms, each
2k′ × 2k′, where k′ is a constant independent of n.

Solution: One simple strategy is to consider any k′-local combination of qubits,

and to try to find a grouping that makes all of these ð n
k′ Þ terms stoquastic. To do

so, for any k′-local combination of qubits, we generate a set of inequalities. First, for
a fixed combination of qubits, we add the terms in H ¼ P

a Ha that act nontrivially
only on those k′ qubits, each with an unknown weight that will be determined later.
Then we write down the conditions on the weights to ensure that all the off-

diagonal elements are non-positive. This is done for all the ð n
k′ Þ combinations to

get the complete set of linear inequalities. By this procedure, the problem reduces
to finding a feasible point for this set of linear inequalities, which can be solved
efficiently. (In practice, one can use linear programming optimization tools to
check whether such a feasible point exists.) When there is no feasible point for a
specific value of k′, we can increase the value of k′ and search again.

Example: Assume we are given H = Z1X2−2X2 + X2Z3 and the goal is to find a
stoquastic description with k′ = 2. We combine the terms acting on qubits 1 and 2
and then the terms acting on qubits 2 and 3 (there is no term on qubits 1 and 3).
We construct h1,2 = α1Z1X2 + α2(−2X2) and h2,3 = α3(−2X2) + α4X2Z3. There are
two types of constraints: (1) constraints enforcing H = h1,2 + h2,3:

α1 ¼ α4 ¼ 1; α2 þ α3 ¼ 1; ð29Þ
and (2) constraints from stoquasticity of each of the two Hamiltonians:

1� 2α2 	 0;�1� 2α2 	 0; ð30Þ

1� 2α3 	 0;�1� 2α3 	 0: ð31Þ
Simplifying these inequalities, we have 0.5 ≤ α2, α3 and α2 + α3 = 1, which

clearly has only one feasible point: α2 = α3 = 0.5. The corresponding terms are
H′1 = h1,2 = Z1X2−X2 and H′2 = h2,3 = −X2 + X2Z3. Both of these terms are
stoquastic and they satisfy H ¼ P

a H
′
a .

Curing using Pauli operators. In the next subsection, we show that conjugating a
Hamiltonian by a tensor product of Pauli X operators or identity operators only
shuffles the off-diagonal elements without changing their values. Recalling that Y =
iXZ, we thus conclude that choosing between Pauli operators to cure a Hamilto-
nian is equivalent to choosing between I and Z operators. Therefore, given local
terms of a k-local Hamiltonian {Ha} as input, the goal is to find a string x = (x1,…,
xn) such that U ¼ �n

i¼1Z
xi cures each of the local terms {Ha} separately.

Each multi-qubit Pauli operator in Ha can be decomposed into X components
and Z components. We group all the terms in each Ha that share the same X
component. For example, if Ha includes Y1Y2, 3X1X2, and X1X2Z3, we combine
them into one single term X1X2(−Z1Z2 + 3 + Z3). Conjugating this term with U
yields ð�1Þx1þx2X1X2ð�Z1Z2 þ 3þ Z3Þ. As terms with different X components do
not correspond to overlapping off-diagonal elements in Ha, the combined Z part
fixes a constraint on {xi} based on the positivity or negativity of all its elements (if
the combined Z part has both positive and negative elements, we conclude that
there is no U that can cure the input H). In this example, ð�1Þx1þx2X1X2ð�Z1Z2 þ
3þ Z3Þ becomes stoquastic iff x1 + x2 ≡ 1 mod 2.

We combine all these linear equations in mod 2 that are generated from terms
with different X components, and solve for a satisfying x. This can be done
efficiently, e.g., using Gaussian elimination. The absence of a consistent solution
implies the absence of a curing Pauli group element.

As the dimension of each of the local terms {Ha} is independent of the number
of qubits n, and there are at most poly(n) of these terms, the entire procedure takes
poly(n) time.

Conjugation by a product of X operators. Here, we show that conjugating a
Hamiltonian by a tensor product of X’s or identity operators only shuffles the off-
diagonal elements without changing their values.
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Lemma 3 Let UX ¼ Xa1 � ¼ � Xan , where ai ∈ {0, 1}. The set of off-diagonal
elements of a general 2n × 2nmatrix B, OFF(B) = {[B]ij|i, j ∈ {0, 1}n, i ≠ j}, is equal to
the set of off-diagonal elements of UXBUXfor all possible {ai}.

Proof. Let a = (a1,...,an). Similarly, let i and j represent n-bit strings. The
elements of the matrix UXBUX are

ijUXBUX jjh i ¼ i1; ¼ ; injUXBUX jj1; ¼ ; jnh i
¼ i1 
 a1; ¼ ; in 
 a1jB jj1 
 a1; ¼ ; jn 
 a1h i
¼ i
 ajB jj
 ah i

ð32Þ

where 
 denotes the XOR operation. Clearly for any fixed a, we have i≠j ,
i
 a≠j
 a and therefore

OFFðUXBUXÞ ¼ f½B�i
a;j
aji; j 2 f0; 1gn; i≠jg
¼ f½B�i
a;j
aji
 a; j
 a 2 f0; 1gn; i
 a≠j
 ag
¼ f½B�i′j′ji′; j′ 2 f0; 1gn; i′≠j′gf½B�i′j′ji′; j′ 2 f0; 1gn; i′≠j′g
¼ OFFðBÞ

ð33Þ

A similar argument proves that UX shuffles the diagonal elements: DIA(UXBUX)
= DIA(B).

Therefore, conjugating a Hamiltonian by UX does not change the set of
inequalities one needs to solve to make a Hamiltonian stoquastic. As a
consequence, whenever we want to pick ui as a solution, we can instead choose Xui.

One-local rotations are not enough. Consider, e.g., the three Hamiltonians

Hij ¼ ZiZj þ XiXj; ði; jÞ 2 fð1; 2Þ; ð2; 3Þ; ð3; 1Þg: ð34Þ
The sum of any pair of these Hamiltonians can be cured by single-qubit

unitaries (e.g., H2 = H1,2 + H2,3 can be cured by applying U = Z2).
In contrast, the frustrated Hamiltonian H = H12 + H23 + H13 cannot be cured

using any combination of single-qubit rotations. To see this, we first note that the
partial trace of a stoquastic Hamiltonian is necessarily stoquastic. By partial trace
over single qubits of H, we conclude that in order for H to be stoquastic, all three
Hij’s must be stoquastic. To find all the solutions that convert each of these
Hamiltonians into a stoquastic Hamiltonian, we expand RiðθiÞ �
RjðθjÞHijR

T
i ðθiÞ � RT

j ðθjÞ and note that it has ±sin 2(θi − θj) and cos 2(θi − θj) as
off-diagonal elements. Demanding that the rotated Hamiltonians are all stoquastic
[so that sin 2(θi − θj) = 0] forces cos 2(θi − θj) = −1 ∀(i, j) ∈ {(1, 2), (2, 3), (3, 1)}.
But this set of constraints does not have a feasible point. To see this note that

cos 2ðθ1 � θ3Þ ¼ cos 2ðθ1 � θ2Þ cos 2ðθ1 � θ3Þ
� sin 2ðθ1 � θ2Þ sin 2ðθ1 � θ3Þ
¼ �1 ´ �1þ 0 ´ 0 ¼ þ1:

ð35Þ

Therefore, H cannot be made stoquastic using 2 × 2 rotational matrices.
Because of the relation between rotation and orthogonal matrices discussed
above, we conclude that H cannot be made stoquastic using 2 × 2 orthogonal
matrices.

Encryption based on secretly stoquastic Hamiltonians. By generating 3SAT
instances with planted solutions (see, e.g., refs. 17,18) and transforming these
to non-stoquastic Hamiltonians via the mapping prescribed by Theorems 1
(or 2), one would be able to generate 3-local (or 6-local) Hamiltonians that
are stoquastic, but are computationally hard to transform into a stoquastic
form.

This construction may have cryptographic implications. For example,
imagine planting a secret n-bit message in the (unique by design) ground
state of a stoquastic Hamiltonian. Since the solution is planted, Alice
automatically knows it. She checks that QMC can find the ground state in a
prescribed amount of time τðnÞ, and if this is not the case, she generates a
new, random, stoquastic Hamiltonian with the same planted solution and
checks again, etc., until this condition is met. Alice and Bob pre-share the
secret key, i.e., the curing transformation, and after they separate, Alice
transmits only the O(n2) coefficients of the non-stoquastic Hamiltonians
(transformed via the mapping prescribed by Theorem 1) for every new
message she wishes to send to Bob. To discover Alice’s secret message, Bob
runs QMC on the cured Hamiltonian. Since Alice verified that QMC can
find the ground state in polynomial time, Bob will also find the ground state in
polynomial time.

This scheme should be viewed as merely suggestive of a cryptographic
protocol, since as it stands it contains several potential loopholes: (i) its security
depends on the absence of efficient two-or-more qubit curing transformations,
as well as the absence of algorithms other than QMC that can efficiently find the
ground state of the non-stoquastic Hamiltonians generated by Alice; (ii) the fact
that Alice must start from Hamiltonians for which the ground state can be
found in polynomial time may make the curing problem easy as well; (iii) this
scheme transmits an n-bit message using rn2 message bits, where r is the
number of bits required to specify the n2 coefficients of the transmitted non-
stoquastic Hamiltonian, so it is less efficient than a one-time pad. Additional

research is needed to improve this into a scheme that overcomes these
objections.

Data availability
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