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Although breast ultrasonography is the mainstay modality for differentiating between benign 
and malignant breast masses, it has intrinsic problems with false positives and substantial 
interobserver variability. Artificial intelligence (AI), particularly with deep learning models, is 
expected to improve workflow efficiency and serve as a second opinion. AI is highly useful 
for performing three main clinical tasks in breast ultrasonography: detection (localization/
segmentation), differential diagnosis (classification), and prognostication (prediction). This article 
provides a current overview of AI applications in breast ultrasonography, with a discussion of 
methodological considerations in the development of AI models and an up-to-date literature 
review of potential clinical applications.
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Introduction

Breast cancer is the most common type of cancer in women in Korea according to data from the 
Korea National Cancer Incidence Database [1]. Its incidence rate has been increasing, with an annual 
percentage rise of 6%, and is expected to further increase in the next 10 years. The rise in cases may 
be related to reproductive/lifestyle factors and an aging society [2]. These epidemiological findings 
underscore the importance of effective and accurate diagnoses of breast cancer using mammography 
and ultrasonography, which lead to an increased workload for radiologists. Although mammography 
is known to reduce breast cancer mortality, mammography is limited as a diagnostic modality because 
of its wide variability in interpretation and diagnostic performance among radiologists. A benchmark 
study showed that considerable rates of radiologists in the Breast Cancer Surveillance Consortium 
had suboptimal performance measures in terms of the abnormal interpretation rate and specificity [3]. 
Moreover, mammography has an intrinsic problem of imperfect sensitivity due to obscured cancers, 
especially in women with dense breasts. As breast density notification legislation in the United States 
has been widely implemented, radiologists are now required to inform women with dense breasts 
that additional supplemental screening modalities (e.g., ultrasonography) may be necessary [4,5].

Ultrasonography is the mainstay modality for differentiating between benign and malignant 
breast masses and has been traditionally used in the diagnostic setting. Due to growing evidence 
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that ultrasonography can detect mammographically occult cancers, 
interest in the use of ultrasonography for screening has increased 
[6,7]. Moreover, ultrasonography has several advantages in 
comparison with other modalities (e.g., mammography, digital breast 
tomosynthesis, and magnetic resonance imaging). It is generally 
safer (non-ionizing), more economical, easy to use, and allows real-
time guidance and monitoring. However, interobserver variability 
is high in the acquisition and interpretation of ultrasound images, 
even among experts [8], which contributes to a high rate of false 
positives, leading to unnecessary biopsies and surgical procedures. 

Deep learning (DL), as a subset of artificial intelligence (AI), 
has made great strides toward the automated detection and 
classification of medical images. For mammography, as a modality 
with commercially available DL-based decision support systems, 
recent validation studies have shown that several AI systems can 
perform at the level of radiologists. These studies suggest that AI 
has the potential to democratize expertise in settings with a lack of 
experienced radiologists. In addition, the radiologists’ workload is 
reduced by improving workflow efficiency, and AI systems prevent 
overlooked findings or interpretation errors by giving a second 
opinion. These advantages may translate to ultrasonography. In 
recent years, DL algorithms have been increasingly applied to 
breast ultrasonography, mostly in feasibility studies for automated 
detection, differential diagnosis, and segmentation [9-15]. The 
development of DL-based AI systems for ultrasonography is in its 
early stages relative to mammography, and ultrasonography has 
unique characteristics in terms of the development process. This 
article provides a current overview of AI applications in breast 
ultrasonography, along with a discussion of methodological 
considerations in the development of these applications and an up-
to-date literature review of potential clinical applications.

Methodological Considerations

Datasets
AI is a data-driven technology, and its performance is highly 
dependent on the quantity and quality of training data. To develop 
a robust AI model for ultrasonography, a multi-institutional large-
scale dataset is required with a wide spectrum of diseases and non-
disease entities, as well as images obtained from ultrasound devices 
from multiple vendors. Depending on the working conditions, the 
same lesion can be captured and interpreted differently, because 
more than 10 companies produce ultrasound equipment with 
various transducers and technical settings. In addition, ultrasound 
technology has evolved over the decades. Older ultrasonographic 
images are normally of lower resolution and have a higher noise 
level, while newer images are of higher resolution and have lower 

noise levels. Thus, AI algorithms trained with older images may not 
be externally valid for newer images.

The number of images used per patient in AI development has not 
been specified or standardized. Although most studies have used 
more than one image per patient for training and validation, specific 
details on the number of patients and images are needed based on 
the recently proposed Checklist for Artificial Intelligence in Medical 
Imaging [16]. Further studies or guidelines may be necessary to 
specify the structure and details of the dataset according to the type 
of dataset (training/validation/test) for a generalizable AI system, by 
minimizing selection and spectrum bias [17,18].

Image Preprocessing and Data Augmentation
An image annotation process involving manual delineation of the 
region of interest (ROI) of the lesion is usually required to train 
AI models in a supervised manner. The ROI can be automatically 
detected using various computer-aided segmentation techniques. 
However, human verification of the ROI is still required to guarantee 
the quality of training data. The need for a massive number (usually 
more than thousands) of annotated images is a barrier in the 
development of well-performing and robust AI systems, because 
the image annotation process is both time- and labor-intensive. 
In addition, manual annotation can be biased due to subjective 
prejudgment of the lesion character. To relax the requirements of 
manual ROI delineation in training data, weakly-supervised or semi-
supervised methods are now emerging, in which unannotated 
images with only image-level labels (i.e., benignity and malignancy) 
are used for image classification and localization [19-21]. After 
image annotation, the images are usually cropped with a fixed 
margin around the ROI and resized. The margin is defined as 
the distance between the lesion boundary and the boundary of 
the cropped image itself. In a previous study, a 180-pixel margin 
showed the best performance [15]; however, cropping with variable 
margins (0–300 pixels) has been used in AI studies of breast 
ultrasonography. To input cropped images into AI models, it is 
necessary to resize cropped images to a fixed size, which also varies 
from study to study. 

Data augmentation is commonly used to avoid overfitting and to 
increase the volume of training data [22,23]. Data augmentation 
is a process of creating new data (images) by manipulating the 
original data using a variety of augmentation strategies, including 
flipping, rotation, translation, and noise injection (Fig. 1). Even 
though resizing and data augmentation are essential steps for 
AI model training, these processes also carry the risk of reducing 
classification performance by altering some breast lesion attributes 
in ultrasonographic images. Byra et al. [13] suggested that images 
should not be rotated so that the longitudinal direction is shifted. 

http://www.e-ultrasonography.org


AI in breast ultrasonography

e-ultrasonography.org	 Ultrasonography 40(2), April 2021 185

For example, the posterior acoustic shadowing of a breast mass, 
which is one of the signs of malignancy, can be located anteriorly by 
longitudinal flipping [13].

Explainable AI
Since decisions derived from AI systems affect clinical decisions and/
or outcomes, there is a need to understand the AI decision-making 
process. Considering the deep nature of current AI techniques with 
hundreds of layers and millions of parameters, this is a "black box" 
problem, in which AI output lacks explainability and justification. 
Thus, eXplainable AI (XAI) is now a crucial trend in the deployment 
of responsible AI models in medical imaging. One of the well-
known approaches in XAI is the class activation mapping (CAM), 
which provides weighted feature maps of each class at the last 
convolution layers. CAM helps to understand the decision-making 
process by mapping the output back to the input image to see 
which parts of the input image were discriminative for the output 
[24-26]. With a CAM, breast lesions can be recognized (localized) 
in ultrasonographic images, and this localization is relevant for 
classification (Figs. 2, 3). Recent approaches and related issues have 
been reviewed [27-30]. However, much work remains to be done in 
the clinical interpretation of the explainable outputs provided by AI 
models.

Potential Clinical Applications

In breast ultrasonography, AI performs three main clinical tasks: 

detection (localization or segmentation), differential diagnosis 
(classification), and prognostication (prediction).

Detection (Localization or Segmentation)
As with other medical imaging modalities, DL-based lesion detection 
on breast ultrasonography is mostly performed by convolutional 
neural networks (CNNs). The CNN-based detection methods 
have shown superior accuracy in object detection compared with 
conventional computerized methods (i.e., radial gradient index 
filtering and multifractal filtering). For hand-held ultrasound (HHUS) 
images, Yap et al. [31] reported the performance of DL models with 
three different DL-based methods (a patch-based LeNet, a U-Net, 
and a transfer learning approach with FCN-AlexNet). They found 
that the transfer-learned FCN-AlexNet outperformed the other 
methods, with a true positive fraction (TPF) ranging from 0.92 to 
0.98. Kumar et al. [32] proposed an ensemble model of multi U-Net 
models for automated segmentation of suspicious breast masses 
seen on ultrasonography, and reported that the model showed a TPF 
of 0.84. 

DL research using HHUS has intrinsic limitations because still 
images are obtained from HHUS after a decision is made on whether 
and how to capture a certain portion of a lesion or an anatomical 
structure; thus, the process of image acquisition is highly dependent 
on the human imager. Hence, the clinical need for AI applications 
using HHUS necessarily extends to real-time detection. Zhang et al. 
[33] embedded a lightweight neural network, which was trained 
using a knowledge distillation technique to transfer knowledge 

Fig. 1. Examples of ultrasonographic image augmentation for convoluted neural network architectures. Augmentation methods in the 
first row and scale in the second row show geometric transformations of ultrasound images. The rest of the figures present photometric 
methods to augment training datasets with random changes in image appearance.
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patient generated by ABUS necessitate a prolonged interpretation 
time. Several computer-aided detection (CAD) algorithms, including 
the commercial software QV CAD (QView Medical, Los Altos, CA, 
USA), have been developed [34-37]. Studies have shown that the 
QV CAD system, with marks potentially malignant lesions, was 
helpful for radiologists (especially less-experienced radiologists) to 
improve cancer detection and reduce interpretation time [38]. Moon 
et al. [39] and Chiang et al. [40] proposed a 3-D CNN with a sliding 
window method and achieved high sensitivity (91%-100%) with a 
false-positive rate per case of 3.6%-21.6%. 

from deeper models to the shallow network, into ultrasonographic 
equipment. They reported successful test performance using real-
time equipment at 24 frames per second [33]. This is the only study 
so far to implement real-time automated detection using single-
source data, but it lacked performance metrics; thus, further studies 
are required to ascertain the potential clinical applications of AI to 
HHUS. 

Automated breast ultrasonography (ABUS) is the modality of AI-
powered lesion detection that is most strongly expected to assist 
radiologists in performing initial screenings and reducing the need 
for observational oversight because the thousands of images per 

Fig. 3. Class activation mapping (CAM) for a benign breast mass on an ultrasound image. The left is a pre-processing image and the right 
is an image of the overlapping CAM using a convolutional neural network (CNN). It can be seen that the CNN recognized the benign mass 
well, and the probability of benignity predicted by the CNN model was 99.25%.

Fig. 2. Class activation mapping (CAM) for a malignant breast mass on an ultrasound image. The left is a pre-processing image and 
the right is an image of the overlapping CAM using a convolutional neural network (CNN). It can be seen that the CNN recognized the 
malignant mass well, and the probability of malignancy predicted by the CNN model was 99.25%.
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Differential Diagnosis (Classification)
Differential diagnosis refers to the process of distinguishing a 
particular disease from others, and in the context of breast imaging, 
it usually refers to a distinction between benignity and malignancy. 
In clinical practice, the Breast Imaging Reporting and Data System 
(BI-RADS) developed by the American College of Radiology is used 
to standardize the reporting of breast ultrasound interpretation. 
Although the BI-RADS provides a systemic approach for lesion 
characterization and assessment, interobserver and intraobserver 
variability has been a subject of intense scrutiny, and AI solutions 
are expected to provide more reliable diagnoses [41,42].

Byra et al. [13] presented a CNN model with a transfer learning 
strategy using the VGGNet-19 which was pretrained on the 
ImageNet data set and fine-tuned on 882 breast ultrasound 
images with a matching layer to classify breast lesions as benign or 
malignant. The area under the receiver operating characteristic curve 
(AUC) of the better-performing CNN model was significantly greater 
than the highest AUC value for the radiologists (0.936 vs. 0.882). 
Other DL studies with CNN variants trained from scratch have 
demonstrated comparable or even higher diagnostic performance 
relative to radiologists [9,12,43]. Despite these promising results, 
further studies are warranted to prove the clinical utility of AI-
powered classification systems. Most of the algorithms developed 
in up-to-date studies were trained through images obtained from 
a limited number of institutions and ultrasound systems; therefore, 
the developed algorithms do not necessarily perform well in 
different circumstances. Furthermore, ultrasound still images taken 
by an imager that capture a certain portion of the lesion, instead 
of viewing the whole lesion range, may contribute to under-
representation or exaggeration of the ground-truth characteristics. 

Han et al. [15] employed a transferred GoogLeNet model on 7,408 
breast ultrasound images (4,254 benign and 3,154 malignant), 
which showed an AUC >0.9. This model is a component algorithm 
of S-Detect, which is a commercial CAD program embedded in 
ultrasound equipment that provides an automatic analysis based 
on BI-RADS descriptors. It has been implemented in the RS80A 
ultrasound machine (Samsung Medison Co. Ltd., Seoul, Korea). 
With its feature extraction technique and support vector machine 
classifier, it predicts the final assessment of breast masses in a 
dichotomized form (possibly benign or possibly malignant). Choi et 
al. [44] found that significant improvements in AUC were seen with 
CAD (0.823–0.839 vs. 0.623–0.759), especially for less-experienced 
radiologists. However, this program has limited applications with 
other vendors and requires user-defined lesion annotation, which is 
also a time-consuming process.

Differential diagnosis concurrent with detection or segmentation 
using DL models has been reported in various studies. Yap et al. 

[45] simultaneously performed both localization and classification 
using their model, and obtained sensitivity of 0.80-0.84 and 0.38-
0.57 and dice scores of 0.72-0.76 and 0.33-0.76 for benign 
and malignant masses, respectively. Shin et al. [46] proposed a 
semi-supervised method, for which a small number of extensively 
annotated images and a larger number of image-level labeled 
images were used for model training, and they reported a 4.5 
percentage point improvement in the correct localization measure, 
compared with the conventional fully-supervised methods with only 
the extensively annotated images, although quantitative metrics 
for classification were not presented. Kim et al. [47] introduced 
a weakly-supervised deep network with box convolution to 
detect suspicious regions of breast masses with various sizes and 
shapes in AI-based differential diagnosis. The box convolution 
method (accuracy, 89%) more accurately classified breast masses 
than conventional CNN models (86%-87%), by learning the 
clinically relevant features of the masses and their surrounding 
areas. Moreover, their proposed network provided more robust 
discrimination localization than conventional methods (AUC, 0.89 
vs. 0.75-0.78). Although these efforts toward a framework for both 
localization and classification of breast lesions with less manual 
annotation are still on the level of feasibility studies, without clear 
performance metrics or validation through a multi-reader study 
design, they will provide the groundwork for AI application in ABUS 
or real-time ultrasonography. 

Prognostication (Prediction)
Prognostication in breast cancer patients is usually conducted to 
predict the histopathological characteristics of the tumor before 
surgery or treatment, as well as treatment response and survival 
time. AI technologies involving prognostication have been rarely 
studied, because they are now beginning to be understood mostly at 
the level of detection and diagnosis. Several studies have attempted 
to predict axillary nodal status, which is of clinical significance 
because it guides treatment selection (i.e., the type of axillary 
surgery) [48]. Zhou et al. [49] found that the best-performing CNN 
model yielded a satisfactory prediction, with an AUC of 0.89-
0.90, a sensitivity of 82%-85%, and a specificity of 72%-79% 
and this model outperformed three experienced radiologists in the 
receiver operating characteristic space. Another study reported that 
the DL radiomics of conventional ultrasonography and shear wave 
elastography, combined with clinical parameters, showed the best 
performance in predicting axillary lymph node metastasis, with an 
AUC of 0.902 [50]. In addition, this model could also discriminate 
between a low and heavy metastatic axillary nodal burden, with an 
AUC of 0.905. 

AI with DL is expected to further reveal information that human 
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experts cannot recognize and integrate imaging features and 
clinical variables. Further studies may provide insights into whether 
and how AI-aided predictions of clinical outcomes can be made 
with superior and reliable accuracy compared with human-crafted 
features. For now, very limited DL studies have been published on 
predictions of tumor response to neoadjuvant chemotherapy using 
magnetic resonance imaging [51,52].

Summary

AI has tremendous potential to contribute to workflow efficiency and 
the reduction of interobserver variability in breast ultrasonography. 
The studies reviewed in this article have reported potential clinical 
applications of AI for breast cancer detection, characterization, 
and prognostication using ultrasonography. However, some 
methodological considerations should be carefully considered for 
the development of more robust and responsible AI systems.
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