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The gold standard for the treatment of critical-size bone defects is autologous or allogenic 
bone graft. This has several limitations including donor site morbidity and the restricted 
supply of graft material. Cell-based tissue engineering strategies represent an alternative 
approach. Mesenchymal stem cells (MSCs) have been considered as a source of osteo-
progenitor cells. More recently, focus has been placed on the use of endothelial progenitor 
cells (EPCs), since vascularization is a critical step in bone healing. Although many of 
these approaches have demonstrated effectiveness for bone regeneration, cell-based 
therapies require time consuming and cost-expensive in vitro cell expansion procedures. 
Accordingly, research is becoming increasingly focused on the homing and stimulation 
of native cells. The stromal cell-derived factor-1 (SDF-1) – CXCR4 axis has been shown 
to be critical for the recruitment of MSCs and EPCs. Vascular endothelial growth factor 
(VEGF) is a key factor in angiogenesis and has been targeted in many studies. Here, 
we present an overview of the different approaches for delivering homing factors to the 
defect site by absorption or incorporation to biomaterials, gene therapy, or via genetically 
manipulated cells. We further review strategies focusing on the stimulation of endogenous 
cells to support bone repair. Finally, we discuss the major challenges in the treatment of 
critical-size bone defects and fracture non-unions.
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introduction

Bone fracture healing is a tightly regulated process involving different cell types. The first hours after 
trauma are characterized by hematoma formation and an acute inflammatory response. Blood and 
bone marrow-derived leukocytes express pro-inflammatory cytokines and initiate the healing process. 
Eventually, mesenchymal stem cells (MSC) are attracted from the surrounding tissue, bone marrow, 
and/or the circulation (Shirley et al., 2005) to serve as osteoprogenitor cells. Different mechanisms 
have been described for the homing of MSCs to the fracture site.

Mesenchymal stem cells express the chemokine receptor CXCR4, and MSC migration toward 
stromal cell-derived factor-1 (SDF-1) has been confirmed in vitro and in vivo (Abbott et al., 2004; Ji 
et al., 2004; Wynn et al., 2004). At injury sites, tissue ischemia induces expression of hypoxia-inducible 
factor-1 (HIF-1), which in turn triggers SDF-1 expression (Ceradini et al., 2004). Accordingly, upregu-
lation of SDF-1 expression was shown during fracture healing in mice (Kitaori et al., 2009). Further, 
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it has been shown that osteoblast progenitor cells express CXRC4 
prompting their migration to regions of new bone formation 
(Otsuru et al., 2008). Inhibition of SDF-1 or blocking of its receptor, 
CXCR4, prevents MSC recruitment and results in impaired bone 
healing (Kitaori et al., 2009). It has also been shown that long-term 
administration of the CXCR4 antagonist AMD3000 specifically 
decreases hyaline cartilage volume at early time points, as well as 
the volume of callus and mineralized bone at later stages of the 
healing cascade (Toupadakis et al., 2013).

Along with other pro-inflammatory cytokines, tumor necrosis 
factor alpha (TNFα) accumulation peaks in the first 24 h after 
fracture and again during the remodeling phase (Kon et  al., 
2001). Transgenic mice lacking the TNFα receptor suffer from 
impaired intra-membranous bone formation suggesting a critical 
role of TNFα in fracture healing (Gerstenfeld et al., 2001). It has 
been further suggested that TNFα is specifically involved in the 
attraction of osteoprogenitor cells from surrounding soft tissues 
(Glass et  al., 2011). However, depending on the concentration, 
TNFα may also have an anti-regenerative effect. In a murine model 
of subcutaneous bone formation, it has been demonstrated that 
T-lymphocyte secreted TNFα-induced apoptosis of transplanted 
MSCs, which resulted in inhibition of new bone formation (Liu 
et al., 2013).

Revascularization is a critical step in the process of fracture heal-
ing (Laroche, 2002). Vascularization ensures an adequate nutrient 
supply, the removal of metabolic waste products, and supports 
the influx of immune and progenitor cells from the circulation. 
Revascularization is mediated by two different mechanisms: (i) 
angiogenesis: involving sprouting and ingrowth from pre-existing 
blood vessels, i.e., from the periosteum and (ii) the de novo forma-
tion of blood vessels by endothelial progenitor cells (EPCs) referred 
to as neovascularization. The importance of neovascularization in 
bone healing is evident from the fact that mobilization of EPCs has 
been observed after musculoskeletal trauma (Laing et al., 2007), 
fracture (Matsumoto et  al., 2008), and during fracture healing 
(Ma et al., 2012).

Endothelial progenitor cell mobilization and homing mecha-
nisms have been studied in great detail in the context of ischemic 
diseases; for review, see Verloop et al. (2009); vascular endothelial 
growth factor (VEGF) and SDF-1 have been identified as key 
mediators of EPC mobilization (Asahara et al., 1999; Kawakami 
et al., 2015). Besides SDF-1, VEGF is also expressed in bone, and 
VEGF serum levels have been shown to increase after polytrauma 
(Grad et al., 1998). Thus, both factors contribute to the recruitment 
of EPCs to the fracture site. Furthermore, VEGF is expressed by 
hypertrophic chondrocytes and plays a crucial role in endochon-
dral ossification (Gerber et al., 1999). Interestingly, it has been 
proposed that VEGF does not only stimulate angiogenesis during 
fracture repair but also has a direct effect on osteoblast attraction 
and differentiation as well as bone turnover (Mayr-Wohlfart et al., 
2002; Street et al., 2002; Orlandini et al., 2006).

Stem cell recruitment is a critical step in bone regeneration, 
and failed healing has been correlated with a decreased MSC pool 
in patients suffering from atrophic non-union fractures (Mathieu 
et al., 2013). Similarly, a lack in vascularization leads to delayed or 
failed tissue regeneration. In this review, we first summarize tissue 
engineering strategies focusing on the local delivery of homing 

factors. We then present an overview of the approaches to mobilize 
stem cells from their niche in order to increase the pool of circulat-
ing stem cells. Finally, the clinical challenges of critical-size bone 
defects and fracture non-union repair are discussed in context to 
the development of future cell-based therapies.

Strategies to Promote Homing

Different approaches have been used to deliver homing factors to 
the fracture site (Table 1, Figure 1B).

In scaffold-based tissue engineering strategies, homing factors 
can be covalently bound or absorbed to the scaffold. Drug delivery 
systems such as hydrogels, microspheres, and nanoparticles have 
been used on their own or in combination with scaffolds and/
or biomaterials (see Local delivery of Homing Factors). Of note, 
the carrier material has a significant impact on the release profile 
of the homing factor in question. Alternatively, protein may be 
delivered via plasmid- or virus-based induction of homing factors 
(see Delivery of Genes). A recent study incorporated angiogenic 
and osteogenic small interfering RNAs into a tissue-engineered 
construct for bone regeneration (Jia et al., 2014). Finally, co-trans-
planted cells have been targeted to promote expression of homing 
factors by genetic manipulation (see Genetically Manipulated 
Cells). In the case of MSCs, the natural secretome itself might be 
a source of chemoattractants (Caplan et al., 1998; Kinnaird et al., 
2004; Stoddart et al., 2014), which in turn mediate recruitment of 
endothelial cells (Seebach et al., 2014).

Local Delivery of Homing Factors
For the local administration of growth factors, different delivery 
strategies have been investigated as reviewed by Chen et al. (2010). 
The delivery system determines the release profile of the growth 
factor and has to be carefully chosen based on the requirements 
of the targeted tissue. Most systems display a continuous release 
of the growth factor. Here, the direct adsorption of growth factors 
results in a burst release, while a sustained and delayed release can 
be achieved by encapsulation of growth factors in microspheres 
(Chen et al., 2010). A responsive system can be created, whereby 
growth factors are entrapped, ionically or covalently bonded to the 
carrier material. Growth factor release is then indirectly modulated 
by physical and chemical microenvironmental changes.

Vascular endothelial growth factor is a key mediator in 
angiogenesis, but has also been suggested to directly support 
bone formation. This dual function has made VEGF an attractive 
target for bone tissue engineering in the past decade. Recombinant 
VEGF has been delivered with various biomaterials and tested in 
different preclinical bone fracture models. VEGF delivery with 
poly(lactide-co-glycolide) (PLGA) scaffolds has been shown to 
increase vascular density as well as bone mineral formation in a 
critical-size cranium defect (Murphy et  al., 2004) and calvarial 
defects (Kaigler et al., 2006) in rats. A similar positive outcome was 
reported when VEGF was administered on a (i) collagen sponge 
into mandibular (Kleinheinz et al., 2005) or calvarial defects (Behr 
et al., 2012; Jin and Giannobile, 2014); (ii) polymeric scaffolds with 
a bioactive glass coating (Leach et al., 2006) in a rat critical-size 
defect; and (iii) β-tricalcium phosphate scaffold in a rabbit ulna 
defect (Clarke et  al., 2007). By contrast, other studies failed to 

TabLe 1 | Homing factors for bone regeneration.

agent Delivery system animal model Reference

Protein delivery
FGF-2 Collagen sponge Mouse, calvarial defect Behr et al. (2012)

PDGF-BB Fibrin gel Rat, femur delayed union Kaipel et al. (2012)

PDGF-BB + BMP-2 Fibrin gel (functionalized) Rat, calvarial defect Martino et al. (2011)

PDGF-BB/PlGF-2123-144 +  
BMP-2 PlGF-2123-144

Saline or fibrin gel Rat, calvarial defect Martino et al. (2014)

SDF-1 Collagen gel matrix Mouse, DO model Fujio et al. (2011)
Fibrin gel Mouse, tibial defect Li et al. (2011)
PCL/gelatin electrospun membranes Rat, calvarial defect Ji et al. (2013)
Collagen sponge Mouse, calvarial defect Jin and Giannobile (2014)
PLGA scaffold Mouse, calvarial defect Liu et al. (2014)

SDF-1 + BMP-2 Collagen sponge Mouse, calvarial defect Jin and Giannobile (2014)

SDF-1 + PDGF Collagen sponge Mouse, calvarial defect Jin and Giannobile (2014)

SDF-1 + VEGF Collagen sponge Mouse, calvarial defect Jin and Giannobile (2014)

Simvastatin α-TCP Rat, calvarial defect Nyan et al. (2009)
PLA scaffold Rat, rabbit, calvarial defect Yueyi et al. (2013)
PLGA scaffold Mouse, calvarial defect Liu et al. (2014)

TNF Saline Mouse, tibial defect Glass et al. (2011)

VEGF β-TCP Mouse, calvarial defect Wernike et al. (2010)
Rabbit, ulna defect Clarke et al. (2007)

CaP coated titanium Pig, calvarial defect Ramazanoglu et al. (2013)
Chitosan sponge Rabbit, intercondylar defect De la Riva et al. (2010)
Collagen Rabbit, mandibular defect Kleinheinz et al. (2005)
Collagen sponge Mouse, calvarial defect Behr et al. (2012), Jin and Giannobile (2014)
Fibrin Rat, femur delayed union Kaipel et al. (2012)
Gelatin spheres, PPF scaffold Rat, calvarial defect Patel et al. (2008a)

Rat, femoral defect Kempen et al. (2009)
Hyaluronic acid Rabbit, tibial defect Eckardt et al. (2005)
PLGA scaffold Rat, calvarial defect Murphy et al. (2004), Kaigler et al. (2006)
PLGA scaffold BG coated Rat, calvarial defect Leach et al. (2006)
PLGA spheres, fibrin Dog, femoral neck defect Zhang et al. (2014a)
Silk fibroin/CaP/PLGA Rabbit, calvarial defect Farokhi et al. (2014)

VEGF + BMP-2 Allograft, PLGA Rat, femoral defect Mattar et al. (2013)
CaP coated titanium Pig, calvarial defect Ramazanoglu et al. (2013)
Gelatin spheres in PPF scaffold Rat, calvarial defect Patel et al. (2008a)

Rat, femoral defect Kempen et al. (2009)
PLGA, alginate Mouse, femoral defect Kanczler et al. (2010)
Silk fibroin Rabbit, maxillary sinus Zhang et al. (2011)

Rabbit, calvarial defect Zhang et al. (2014b)
Rat, calvarial defect Zhang et al. (2014c)

VEGF + PDGF-BB Silk fibroin/CaP/PLGA  Rabbit, calvarial defect Farokhi et al. (2013)

Plasmid/virus delivery
VEGF AV, intramuscular injection Rat, femur drill hole Tarkka et al. (2003)

plasmid-DNA Rabbit, radius defect Geiger et al. (2005)
Corraline scaffold coated with plasmid-DNA Rabbit, radius defect Geiger et al. (2007)

Genetically manipulated cells
MCP-3 LV-transduced MSC, bone graft Mouse, fibular osteotomy Shinohara et al. (2011)
SDF-1 AV-transduced MSC, collagen sponge Rat, femoral defect Ho et al. (2014)

LV-transduced MSC, bone graft Mouse, fibular osteotomy Shinohara et al. (2011)

SDF-1 + BMP-2 AV-transduced fat tissue graft Mouse, femoral defect Zwingenberger et al. (2014)

VEGF Plasmid-transfected MSC, corraline scaffold Rabbit, radius defect Geiger et al. (2007)
Rabbit, orbital defect Xiao et al. (2011)

Plasmid-transfected fibroblasts, gelfoam Rabbit, tibial defect Li et al. (2009)

VEGF + BMP-2 AV-transduced MSC, corraline scaffold Rabbit, orbital defect Xiao et al. (2011)
BV-transduced ASC, PLGA scaffold Rabbit femoral defect Lin et al. (2014)

VEGF + BMP-4 RV-transduced MDSC, gelfoam Mouse, skull defect Peng et al. (2002)

The table lists chemoattractants, which have been delivered as protein or on the gene level to the bone defect site. Alternatively, genetic manipulation has been applied to 
overexpress homing factors in transplanted cells. Of note, the table includes only factors, which have been tested in orthotopic models of bone regeneration in vivo. ASC, adipose-
derived stem cells; AV, adenovirus; BV, hybrid baculovirus; DO, distraction osteogenesis; LV, lentivirus; MDSC, muscle-derived stem cells; PCL, poly(epsilon-caprolactone); PPF, 
poly(propylene fumarate); RV, retrovirus.
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factors. We then present an overview of the approaches to mobilize 
stem cells from their niche in order to increase the pool of circulat-
ing stem cells. Finally, the clinical challenges of critical-size bone 
defects and fracture non-union repair are discussed in context to 
the development of future cell-based therapies.

Strategies to Promote Homing

Different approaches have been used to deliver homing factors to 
the fracture site (Table 1, Figure 1B).

In scaffold-based tissue engineering strategies, homing factors 
can be covalently bound or absorbed to the scaffold. Drug delivery 
systems such as hydrogels, microspheres, and nanoparticles have 
been used on their own or in combination with scaffolds and/
or biomaterials (see Local delivery of Homing Factors). Of note, 
the carrier material has a significant impact on the release profile 
of the homing factor in question. Alternatively, protein may be 
delivered via plasmid- or virus-based induction of homing factors 
(see Delivery of Genes). A recent study incorporated angiogenic 
and osteogenic small interfering RNAs into a tissue-engineered 
construct for bone regeneration (Jia et al., 2014). Finally, co-trans-
planted cells have been targeted to promote expression of homing 
factors by genetic manipulation (see Genetically Manipulated 
Cells). In the case of MSCs, the natural secretome itself might be 
a source of chemoattractants (Caplan et al., 1998; Kinnaird et al., 
2004; Stoddart et al., 2014), which in turn mediate recruitment of 
endothelial cells (Seebach et al., 2014).

Local Delivery of Homing Factors
For the local administration of growth factors, different delivery 
strategies have been investigated as reviewed by Chen et al. (2010). 
The delivery system determines the release profile of the growth 
factor and has to be carefully chosen based on the requirements 
of the targeted tissue. Most systems display a continuous release 
of the growth factor. Here, the direct adsorption of growth factors 
results in a burst release, while a sustained and delayed release can 
be achieved by encapsulation of growth factors in microspheres 
(Chen et al., 2010). A responsive system can be created, whereby 
growth factors are entrapped, ionically or covalently bonded to the 
carrier material. Growth factor release is then indirectly modulated 
by physical and chemical microenvironmental changes.

Vascular endothelial growth factor is a key mediator in 
angiogenesis, but has also been suggested to directly support 
bone formation. This dual function has made VEGF an attractive 
target for bone tissue engineering in the past decade. Recombinant 
VEGF has been delivered with various biomaterials and tested in 
different preclinical bone fracture models. VEGF delivery with 
poly(lactide-co-glycolide) (PLGA) scaffolds has been shown to 
increase vascular density as well as bone mineral formation in a 
critical-size cranium defect (Murphy et  al., 2004) and calvarial 
defects (Kaigler et al., 2006) in rats. A similar positive outcome was 
reported when VEGF was administered on a (i) collagen sponge 
into mandibular (Kleinheinz et al., 2005) or calvarial defects (Behr 
et al., 2012; Jin and Giannobile, 2014); (ii) polymeric scaffolds with 
a bioactive glass coating (Leach et al., 2006) in a rat critical-size 
defect; and (iii) β-tricalcium phosphate scaffold in a rabbit ulna 
defect (Clarke et  al., 2007). By contrast, other studies failed to 

TabLe 1 | Homing factors for bone regeneration.

agent Delivery system animal model Reference

Protein delivery
FGF-2 Collagen sponge Mouse, calvarial defect Behr et al. (2012)

PDGF-BB Fibrin gel Rat, femur delayed union Kaipel et al. (2012)

PDGF-BB + BMP-2 Fibrin gel (functionalized) Rat, calvarial defect Martino et al. (2011)

PDGF-BB/PlGF-2123-144 +  
BMP-2 PlGF-2123-144

Saline or fibrin gel Rat, calvarial defect Martino et al. (2014)

SDF-1 Collagen gel matrix Mouse, DO model Fujio et al. (2011)
Fibrin gel Mouse, tibial defect Li et al. (2011)
PCL/gelatin electrospun membranes Rat, calvarial defect Ji et al. (2013)
Collagen sponge Mouse, calvarial defect Jin and Giannobile (2014)
PLGA scaffold Mouse, calvarial defect Liu et al. (2014)

SDF-1 + BMP-2 Collagen sponge Mouse, calvarial defect Jin and Giannobile (2014)

SDF-1 + PDGF Collagen sponge Mouse, calvarial defect Jin and Giannobile (2014)

SDF-1 + VEGF Collagen sponge Mouse, calvarial defect Jin and Giannobile (2014)

Simvastatin α-TCP Rat, calvarial defect Nyan et al. (2009)
PLA scaffold Rat, rabbit, calvarial defect Yueyi et al. (2013)
PLGA scaffold Mouse, calvarial defect Liu et al. (2014)

TNF Saline Mouse, tibial defect Glass et al. (2011)

VEGF β-TCP Mouse, calvarial defect Wernike et al. (2010)
Rabbit, ulna defect Clarke et al. (2007)

CaP coated titanium Pig, calvarial defect Ramazanoglu et al. (2013)
Chitosan sponge Rabbit, intercondylar defect De la Riva et al. (2010)
Collagen Rabbit, mandibular defect Kleinheinz et al. (2005)
Collagen sponge Mouse, calvarial defect Behr et al. (2012), Jin and Giannobile (2014)
Fibrin Rat, femur delayed union Kaipel et al. (2012)
Gelatin spheres, PPF scaffold Rat, calvarial defect Patel et al. (2008a)

Rat, femoral defect Kempen et al. (2009)
Hyaluronic acid Rabbit, tibial defect Eckardt et al. (2005)
PLGA scaffold Rat, calvarial defect Murphy et al. (2004), Kaigler et al. (2006)
PLGA scaffold BG coated Rat, calvarial defect Leach et al. (2006)
PLGA spheres, fibrin Dog, femoral neck defect Zhang et al. (2014a)
Silk fibroin/CaP/PLGA Rabbit, calvarial defect Farokhi et al. (2014)

VEGF + BMP-2 Allograft, PLGA Rat, femoral defect Mattar et al. (2013)
CaP coated titanium Pig, calvarial defect Ramazanoglu et al. (2013)
Gelatin spheres in PPF scaffold Rat, calvarial defect Patel et al. (2008a)

Rat, femoral defect Kempen et al. (2009)
PLGA, alginate Mouse, femoral defect Kanczler et al. (2010)
Silk fibroin Rabbit, maxillary sinus Zhang et al. (2011)

Rabbit, calvarial defect Zhang et al. (2014b)
Rat, calvarial defect Zhang et al. (2014c)

VEGF + PDGF-BB Silk fibroin/CaP/PLGA  Rabbit, calvarial defect Farokhi et al. (2013)

Plasmid/virus delivery
VEGF AV, intramuscular injection Rat, femur drill hole Tarkka et al. (2003)

plasmid-DNA Rabbit, radius defect Geiger et al. (2005)
Corraline scaffold coated with plasmid-DNA Rabbit, radius defect Geiger et al. (2007)

Genetically manipulated cells
MCP-3 LV-transduced MSC, bone graft Mouse, fibular osteotomy Shinohara et al. (2011)
SDF-1 AV-transduced MSC, collagen sponge Rat, femoral defect Ho et al. (2014)

LV-transduced MSC, bone graft Mouse, fibular osteotomy Shinohara et al. (2011)

SDF-1 + BMP-2 AV-transduced fat tissue graft Mouse, femoral defect Zwingenberger et al. (2014)

VEGF Plasmid-transfected MSC, corraline scaffold Rabbit, radius defect Geiger et al. (2007)
Rabbit, orbital defect Xiao et al. (2011)

Plasmid-transfected fibroblasts, gelfoam Rabbit, tibial defect Li et al. (2009)

VEGF + BMP-2 AV-transduced MSC, corraline scaffold Rabbit, orbital defect Xiao et al. (2011)
BV-transduced ASC, PLGA scaffold Rabbit femoral defect Lin et al. (2014)

VEGF + BMP-4 RV-transduced MDSC, gelfoam Mouse, skull defect Peng et al. (2002)

The table lists chemoattractants, which have been delivered as protein or on the gene level to the bone defect site. Alternatively, genetic manipulation has been applied to 
overexpress homing factors in transplanted cells. Of note, the table includes only factors, which have been tested in orthotopic models of bone regeneration in vivo. ASC, adipose-
derived stem cells; AV, adenovirus; BV, hybrid baculovirus; DO, distraction osteogenesis; LV, lentivirus; MDSC, muscle-derived stem cells; PCL, poly(epsilon-caprolactone); PPF, 
poly(propylene fumarate); RV, retrovirus.
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show a beneficial effect of VEGF delivery on bone regeneration 
in different models including a rabbit non-union model (Geiger 
et al., 2005), a rat model of delayed union (Kaipel et al., 2012), and 
an ectopic bone formation model using cancellous bone scaffolds 
(Lenze et al., 2014).

It has been shown that adsorbed VEGF is released within few 
days (Leach et al., 2006; Kempen et al., 2009). A too high local 
concentration of VEGF might, however, cause malformation and 
malfunction of blood vessels (Neufeld et al., 1999; Ozawa et al., 
2004). In addition, a more sustained release of VEGF might be 
desirable to efficiently support vascularization and bone formation. 
Therefore, several studies attempted a more controlled release of 
VEGF aiming to sustain a low dose of VEGF during the first weeks 
after trauma. Mostly, these approaches follow the route of encapsula-
tion of VEGF in microspheres or nanoparticles. Pre-encapsulation 
of VEGF in PLGA microspheres before scaffold fabrication has 
been shown to delay the growth factor release compared to 
direct incorporation into PLGA scaffolds (Ennett et  al., 2006). 
Encapsulation of VEGF in alginate microspheres delivered with a 
chitosan/poly(lactide) scaffold has also been promising, showing 
only a 13% release within the first 24 h followed by a sustained 
release throughout 5 weeks (De la Riva et al., 2009, 2010). Similarly, 
encapsulation of VEGF in gelatin microparticles, which have been 
included in a composite scaffold, could maintain VEGF bioactivity 
above 90% over 14 days (Patel et al., 2008a). In orthotopic bone 
formation models, VEGF delivery via a PLGA-composite scaffold 
has shown a sustained VEGF release over 28 days, resulting in new 
bone formation observed 10 weeks after implantation in a rabbit 
cranial defect (Farokhi et al., 2013, 2014). Similarly, the combined 
administration of PLGA-encapsulated VEGF with fibrin resulted 
in a sustained VEGF release for up to 42  days, with improved 
vascularization and accelerated healing of a femoral head fracture 
model in dogs (Zhang et al., 2014a). Burst release of VEGF was also 
prevented by co-precipitating VEGF onto basic calcium phosphate 
(BCP), resulting in vascularization and osseointegration of the 
biomaterial, and finally to new bone formation in a critical-size 
cranial defect in Balb/c mice (Wernike et al., 2010).

Ehrbar and colleagues introduced an innovative approach to 
control the release of VEGF by cell-mediated enzyme activity 
(Ehrbar et  al., 2004). Here, authors engineered a recombinant 
form of VEGF containing an alpha2-plasmin inhibitor (alpha2-
PI1-8) sequence, which is a substrate for factor XIIIa. Covalently 
linked to the fibrin matrix, alpha2-PI1-8-VEGF is released upon 
remodeling of the fibrin by cell-associated enzymatic activity, such 
as plasmin or matrix metalloproteinases. Authors demonstrated 
that cell-controlled release of the VEGF from the fibrin gel carrier 
led to an increase in formation of new arterial and venous branches 
in an embryonic chicken chorioallantoic membrane model 
(Ehrbar et al., 2004). Recently, it was shown that the system was 
therapeutically effective both in ischemic hind limb and wound-
healing models (Sacchi et al., 2014).

Several studies have combined VEGF with other chemoattrac-
tive or osteoinductive factors. For example, VEGF has been applied 
in combination with BMP-2. Most of these studies showed the 
expected strong osteoinductive effect of BMP-2. However, further 
addition of VEGF, while leading to slightly increased vascular den-
sity, did not exhibit enhanced bone formation (Patel et al., 2008b; 

Kempen et al., 2009; Young et al., 2009; Kanczler et al., 2010; Zhang 
et al., 2011, 2014b; Mattar et al., 2013; Ramazanoglu et al., 2013; 
Cai et al., 2014). Interestingly, Kempen and colleagues presented a 
delivery system allowing for a sequential release of the two growth 
factors. Here, BMP-2 was encapsulated in PLGA microspheres, 
which were delivered in a poly(propylene) scaffold surrounded 
by a gelatin hydrogel loaded with VEGF (Kempen et al., 2009).

Platelet-derived growth factor (PDGF) is involved in angio-
genesis, in particular, it mediates migration of pericytes from the 
vessel wall toward sites of new vessel formation, which is thought 
to be critical for the stabilization of newly formed blood vessels 
(Armulik et  al., 2005). In addition, a chemoattractive effect of 
PDGF-BB on MSCs has been reported (Fiedler et  al., 2004). 
This was confirmed in a study testing the release of PDGF-BB 
from a poly(ϵ-caprolactone) (PCL) – collagen – hydroxyapatite 
scaffolds, showing a sustained release of bioactive PDGF-BB, 
which was able to stimulate MSC migration (Phipps et al., 2012). 
Interestingly, PDGF-BB has been FDA approved for periodontal 
repair (Pellegrini et al., 2009). Recently, PDGF delivery has been 
tested in orthotopic bone formation models. Here, administration 
of PDGF on a collagen sponge in a critical-size calvarial defect has 
been shown to increase bone mineral content to a similar extent 
than VEGF, but significantly less than BMP-2 (Jin and Giannobile, 
2014). In line with this, in a rat model of delayed union, PDGF-BB 
delivery alone did not support bone formation (Kaipel et al., 2012). 
Farokhi et al. (2013) studied the controlled release of VEGF and 
PDGF from a silk/calcium phosphate/PLGA scaffolds and found 
that the combination of the two homing factors supported new 
bone formation and neovascularization in a rabbit drill hole model. 
Martino and co-workers reported that the delivery of PDGF-BB 
and BMP-2 in a fibrin gel functionalized with an integrin binding 
domain and allowing for sequestration of the growth factors greatly 
enhanced bone regeneration in a rat calvarial defect compared 
to growth factors encapsulated in unmodified fibrin (Martino 
et al., 2011). Recently, the same group reported on an interesting 
approach to fuse extracellular matrix super-affinity binding sites 
to growth factors. Applying such engineered variants of PDGF-BB 
and BMP-2 for the treatment of a calvarial defect in rats resulted 
in greater bone regeneration compared to wild type growth factors 
(Martino et al., 2014).

The recruitment of MSCs to the fracture site is predominantly 
regulated via the SDF-1 – CXCR4 axis (Kitaori et  al., 2009). 
Interestingly, homing of EPCs may be triggered by the same 
pathway. Accordingly, several tissue engineering strategies have 
been using SDF-1 to stimulate MSC and EPC homing. Indeed, 
local administration of SDF-1 in a distraction osteogenesis mouse 
model has been shown to increase the recruitment of MSCs and 
EPCs, to induce callus formation and blood flow (Fujio et al., 2011). 
Li and colleagues reported that SDF-1 administered in fibrin glue 
enhanced the healing process in a mouse tibia fracture model with 
intramedullary fixation (Li et al., 2011).

Absorption of SDF-1 to an electrospun gelatin/PCL membrane 
was shown to efficiently recruit MSCs to a cranial defect and resulted 
in a sixfold increase in bone formation compared to membrane 
alone (Ji et al., 2013). A positive effect on MSC recruitment and 
bone formation was also shown for PLGA loaded with SDF-1 in a 
critical-size calvarial defect in mice (Liu et al., 2014). A comparative 
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study evaluating the effect of different chemoattractants applied 
on a collagen sponge in a critical-size calvarial defect is presented 
by Jin and Giannobile (2014). The authors report on a moderate 
effect on bone formation by SDF-1 alone or in combination with 
PDGF or VEGF. By contrast, significant more bone volume was 
seen when SDF-1 was administered in combination with BMP-2. 
In a model of ectopic bone formation, Chim et al. (2012) used a 
customized microdelivery apparatus to maintain constant cytokine 
release over a period of 4 weeks within the subcutaneous implanted 
PLGA scaffolds. The experiment revealed that a higher cellular 
infiltration was seen when SDF-1 was administered in addition 
to BMP-2 or TGFβ.

It has been reported that statins, such as simvastatin, have the 
potential to induce bone formation (Mundy et al., 1999). Recent 
work suggested that this effect is driven by the stimulation of MSC 
and EPC homing. Accordingly, simvastatin-based tissue engineer-
ing strategies showed increased recruitment of osteoprogenitor 
cells and EPCs (Nyan et al., 2009; Yueyi et al., 2013). Furthermore, 
it has been suggested that the outcome of such approaches may be 
improved by combining simvastatin and SDF-1 (Liu et al., 2014). 
On the other hand, an in vitro study suggested that high doses of 
statins may have a cytotoxic effect on MSCs (Kupcsik et al., 2009).

Besides SDF-1, it has been suggested that TNFα plays a role in 
the recruitment of osteoprogenitor cells to the fracture site and 
local injection of TNFα upon initiation of trauma and the day after 
accelerated fracture healing (Glass et al., 2011).

An alternative approach to the use of defined amounts of 
recombinant growth factors are platelet-released growth fac-
tors. Platelet-rich plasma (PRP) refers to a concentrate of blood 
platelets, which upon activation releases various growth factors, 
including VEGF, CCL5, PDGF-AB, and PDGF-BB (Fekete et al., 
2012). Although standard protocols for the preparation of PRP are 
missing and its efficacy is under debate, PRP in combination with 
scaffolds or bone graft has been variously used in preclinical and 
clinical approaches. These studies have been reviewed elsewhere 
and are not described in this article (Malhotra et al., 2013).

Another method is to use the secretome of MSCs. Wang et al. 
(2012) demonstrated that a galantine sponge soaked in MSC-
conditioned medium supported angiogenesis and bone healing 
in a model of fracture non-union in diabetic rats.

Delivery of Genes
Gene therapies have been developed aiming to deliver the genetic 
information of homing factors into the defect site, with VEGF 
being the main target gene. Gene delivery methods have the main 
advantage to promote sustained and regulated expression of pro-
teins at the defect site (Evans, 2012). Some approaches incorporate 
plasmids in tissue-engineered constructs; however, low efficacy 
prompted researchers to develop alternative approaches, such as 
adenoviral delivery of the genetic information. While dramatically 
increasing gene transfer efficiency, there are also drawbacks to the 
use of viral vectors. Lentiviral and retroviral vectors permanently 
modify the cells genome, with the risk of insertional mutagenesis. 
Adenoviral transduction has the advantage that the absence of 
vector genome integration minimizes the risk of germ-line trans-
mission and insertional mutagenesis. It does, however, trigger an 
immunological response at higher doses. Adeno-associated virus 

(AAV) is increasing in popularity due to its low immunogenicity 
and lack of integration. AAV vectors are currently difficult to 
produce to a high titer.

Geiger et al. (2005) report on a VEGF-gene-activated matrix 
promoting vascularization and bone formation in a critical-size 
radius defect in rabbits. A positive effect of VEGF on vasculariza-
tion was also reported in an ectopic bone formation model in mice, 
while the most efficient bone formation was detected in constructs 
containing MSCs along with VEGF and BMP-4 plasmids (Huang 
et al., 2005). It has been shown that local administration of a VEGF 
adenovirus in the distal femur of rabbits was able to transduce 
endogenous bone marrow cells and in turn to enhance osteoblast 
number, osteoid volume, and bone volume (Hiltunen et al., 2003). 
In a rat femoral defect, injection of a VEGF adenovirus in the 
adjacent muscle has shown to promote endochondral bone healing 
(Tarkka et al., 2003). Similarly, it has been shown that a VEGF 
adenoviral vector containing chitosan/hydroxyapatite scaffold 
promoted recruitment of endogenous endothelial cells and sup-
ported ectopic bone formation (Koc et al., 2014).

Genetically Manipulated Cells
Transplantation of autologous stem cells is widely used in bone 
tissue engineering strategies. Several studies have used genetically 
modified cells to induce expression of homing factors, which in 
turn promotes the recruitment of host osteogenic and EPCs. 
Here, most studies have applied viral transduction strategies (for 
details, see Table 1) to introduce the specific gene sequence prior 
to transplantation of cells into the bone defect. Again, the main 
interest has been in overexpression of VEGF.

Promising results were reported for adipose-derived stem cells 
(ASCs) transduced with an adenovirus to release VEGF that led to 
vascular ingrowth into PLGA scaffolds (Jabbarzadeh et al., 2008). 
An approach using VEGF-plasmid-transfected fibroblasts showed 
improved vascularization and bridging of a segmental bone defect 
in rabbits, while unmodified fibroblasts did not support bone 
regeneration (Li et  al., 2009). By contrast, a study comparing 
the healing of a critical-size radius defect in rabbits revealed that 
substantial bone formation was only seen in groups with MSCs 
transfected with control plasmid, while VEGF transfected MSCs 
prompted a higher vascular density (Geiger et al., 2007). In line with 
this, Helmrich and colleagues demonstrated that subcutaneously 
implanted osteogenic constructs containing MSCs, transduced 
with a retroviral vector to overexpress VEGF, led to an increase 
in vascular density but caused a global decrease in bone quality by 
increasing the recruitment of osteoclasts (Helmrich et al., 2013).

In order to also address osteoinduction, several groups fol-
lowed a combined approach with overexpression of VEGF and 
BMP-2. Cell transplantation of human periosteum-derived cells 
transfected with VEGF and BMP-2 plasmids resulted in improved 
osteogenesis and vascularization in an ectopic bone formation 
model and a critical-size orbital defect (Samee et al., 2008). A simi-
lar finding was reported with adenoviral-transduced MSCs (Xiao 
et al., 2011). Long time evaluation of the healing of a rabbit femoral 
defect treated with baculovirus-engineered ASCs overexpressing 
VEGF/BMP-2 further revealed a positive effect on endochondral 
ossification and bone remodeling (Lin et  al., 2014). A similar 
observation was made in a study applying retroviral-transduced 
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critical-size defect in a healthy environment and those parameters 
resulting in non-unions in humans are not addressed. Accordingly, 
therapies proven successful in preclinical models might thus be 
ineffective upon clinical application.

The availability of stem and progenitor cells might be a crucial 
factor for bone healing. A low number of bone marrow progeni-
tor cells were found in patients suffering from pseudoarthrosis 
(Hernigou and Beaujean, 1997). Similarly, it has been reported 
that the number of circulating progenitor cells was significantly 
lower in patients with non-union fractures compared to healthy 
individuals (Seebach et al., 2007). Interestingly, the authors fur-
ther report on an elevated stem cell accumulation in polytrauma 
patients; at the same time polytrauma is also associated with 
increased serum accumulation of VEGF (Grad et  al., 1998). 
Recent work evaluated the abundance of EPCs in patients with 
atrophic non-unions (Mathieu et  al., 2013). In line with the 
previous studies, a decreased pool of MSCs was detected; but 
the EPC level was not affected. Future studies will be required to 
verify these results and to assess stem and progenitor cell avail-
ability, mobilization, and recruitment in non-union fractures in 
detail. However, assuming that fracture non-unions are indeed 
correlated with a decreased pool of circulating and bone marrow 
MSCs, this would be a major limitation for cell-based therapies in 
those patients. Besides preventing the mobilization and recruit-
ment of endogenous cells, the cell harvest for transplantation is 
limited by a low frequency of MSCs. Recent work suggested a 
perivascular origin of MSCs suggesting that multipotent cells 
are available in virtually all vascularized tissues (Crisan et al., 
2008). The function of these cells in (local) tissue regeneration 
has, however, not been explored to date. It has still not been 
determined to which extent the abundance and regeneration 
potential of these perivascular MSCs (pericytes) are affected by 
certain disease states, i.e., the situation of fracture non-union. The 
investigation of the endogenous regeneration potential of these 
cells might help to develop new strategies for MSC recruitment 
to the defect site.

Fracture non-union often occurs in elderly patients. Patient 
age might have an important influence on the bone regeneration 
capacities, representing another challenge for both the develop-
ment of suitable models to test therapeutic strategies and finally 
the treatment of the patients. Preclinical studies are normally 
performed in young animals, which are in some cases not even 
skeletally mature and are not representative for bone healing in 
elderly patients. The age of patients is also an important considera-
tion with regards to MSC functionality as it has been suggested 
that proliferation and differentiation abilities are altered in MSCs 
from donors above 50 years (Mendes et al., 2002; Zhou et al., 2008; 
Siegel et al., 2013).

Although atrophic non-unions are not always avascular 
(Reed et  al., 2002) and EPC mobilization appears not to 
be affected (Mathieu et  al., 2013), revascularization is an 
important event in bone regeneration and endochondral bone 
formation (Gerber et  al., 1999; Keramaris et  al., 2008). The 
molecular mechanisms and timing of the revascularization 
process are still poorly understood. Most importantly, little 
is known about how these processes are altered in non-union 
patients. For the development of strategies to improve the 

FiGuRe 1 | Cell therapy vs. homing and mobilization of native cells for 
bone regeneration. (a) For an autologous cell transplantation, donor cells 
have to be harvested and expanded in vitro before they are eventually 
re-transplanted in the patient. The amplified cells can be seeded on a 
biomaterial or incorporated in a carrier for local administration or injected in the 
circulation to increase the pool of available stem cells, which in turn may home 

to the defect site. (b) Homing factors are directly delivered to the defect site. 
The release and diffusion of the factor create a gradient subsequently 
attracting stem and progenitor cells from the local tissue environment or the 
circulation. (C) Native stem and progenitor cells may be mobilized into the 
circulation by the administration of a stimulation factor enhancing the level of 
available cells.

muscle-derived stem cells overexpressing BMP-4 and VEGF in a 
skull defect in mice (Peng et al., 2002). Adenoviral delivery of the 
angiogenic factor angiopoitin-1 (ANG-1) along with BMP-2 and 
VEGF led to enhanced osteogenesis and angiogenesis in a rabbit 
radial defect treated with MSCs overexpressing all three factors 
compared to the other study groups (Hou et al., 2009).

A study from Shinohara et al. (2011) suggested that lentiviral-
overexpression of SDF-1 or monocyte chemotactic protein-3 (MCP-
3) may be used to attract MSCs to the fracture site. The authors 
performed a parabiosis of a GFP and a wild-type mouse and studied 
the homing of GFP-positive stem cells into an osteotomy gap in the 
wildtype mouse; this experiment revealed significantly enhanced 
cell recruitment when the defect was treated with MSCs overex-
pressing MCP-3 or SDF-1 (Shinohara et al., 2011). The stimulatory 
effect of SDF-1 on cell homing was confirmed in a study applying 
SDF-1- and/or BMP-2-lentivirus-transduced fat grafts in a femoral 
defect in mice (Zwingenberger et al., 2014), a significant increase 
in bone volume compared to untreated fat grafts was, however, 
only observed in groups with combined expression of both fac-
tors. A rat study testing the effect of SDF-1-adenovirus-transduced 
MSCs implanted on a collagen sponge in a femoral defect showed 
a significant increase in new bone formation compared to cell-free 
or untransduced control groups (Ho et al., 2014).

Stem Cell Stimulation

Local or systemic transplantation of stem- and progenitor 
cells has been used for bone tissue engineering and bone 

regeneration (Figure 1A). For example, transplantation of EPCs 
has shown promising results with regards to the regeneration 
of vascularized bone tissue (Matsumoto et al., 2006; Kuroda 
et  al., 2011, 2014). These strategies have several limitations. 
Harvesting of cells is associated with donor site morbidity, pain, 
and additional hospitalization of the patient. Cell purification 
and expansion is expensive and time consuming and associated 
with safety concerns such as mutagenesis or contaminations. 
Therefore, there has been an interest to circumvent cell har-
vesting and amplification steps and to develop strategies to 
stimulate the mobilization of native endogenous stem cells 
(Figure 1C).

Granulocyte colony-stimulating factor (G-CSF) induces the 
mobilization of CD34-positive, hematopoietic cells representing 
a source of EPCs (Peichev et al., 2000). Subsequently, G-CSF has 
been used to enrich CD34-positive cells prior cell harvest and 
local or systemic transplantation (Mifune et  al., 2008; Kuroda 
et al., 2011). In addition, G-CSF has been applied as a homing 
factor at the defect site in a segmental bone defect (Ishida et al., 
2010). Finally, some studies evaluated the effect of G-CSF stimu-
lation in bone defect models hypothesizing that the enhanced 
accumulation of CD34-positive progenitor cells may promote 
revascularization and thus bone healing (Bozlar et  al., 2005; 
Kaygusuz et al., 2006; Marmotti et al., 2013). Indeed subcutaneous 
injection of G-CSF on seven consecutive days after creation of a 
tibia defect in rats accelerated bone healing (Bozlar et al., 2005); 
in line with this another study reported improved fracture healing 
scores in a tibia defect model in rats after administration of G-CSF 
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(Kaygusuz et al., 2006). A recent phase II clinical trial evaluated 
the preoperative administration (three consecutive days) of 
G-CSF in patients undergoing opening-wedge high tibial valgus 
osteotomy (Marmotti et al., 2013). The study including 12 patients 
in both the G-CSF treated- and the control group, reported on 
a successful mobilization of CD34-positive cells upon surgery, 
which in turn resulted in an improved osseointegration of grafts 
(Marmotti et al., 2013).

The SDF-1/CXCR4 axis is involved in the retention of hemat-
opoietic progenitor cells in the bone marrow (Levesque et  al., 
2003). Accordingly, it has been shown that AMD3100, a CXCR4 
antagonist promotes stem cell mobilization into the circulation, 
with the most efficient cell mobilization seen in combination 
with G-CSF (Broxmeyer et al., 2005). Conversely, the biological 
function of AMD3100-mobilized cells has been questioned in an 
in vitro study (Yin et al., 2007). In addition, interference with the 
SDF-1/CXCR4 axis can also impair homing of stem cells toward 
the defect site (Toupadakis et al., 2013). Nonetheless, a positive 
effect of AMD3100 administration on the healing of a segmental 
defect in mice was reported (Kumar and Ponnazhagan, 2012). The 
authors show that a combined treatment with insulin-like growth 
factor-1 (IGF-1) and AMD3100 resulted expectably in an increased 
accumulation of colony-forming cells and finally augmented bone 
growth (Kumar and Ponnazhagan, 2012).

It has been suggested that low-intensity pulsed ultrasound 
(LIPUS) might be used to promote fracture healing (Duarte, 1983; 
Leung et  al., 2004; Khan and Laurencin, 2008). Interestingly, a 
recent study investigating the underlying mechanisms revealed 
that LIPUS stimulates MSC homing to the fracture site by upregu-
lating local and serum SDF-1 levels (Wei et al., 2014).

Sildenafil, a potent vasodilator and stimulator of angiogenesis, 
has been proposed to increase circulating EPCs (Foresta et  al., 
2009) and sildenafil has been used for the treatment of ischemic 
diseases (Hart et al., 2006; Koneru et al., 2008). Histing et al. (2011) 
investigated the effect of sildenafil during the process of fracture 
healing in a drill hole model in mice. The study revealed that daily 
oral administration of sildenafil accelerated bone healing indicated 
by increased osseous fracture bridging, biomechanical stiffness, 
and a smaller callus area after 2 weeks (Histing et al., 2011).

Challenges and Future Perspectives

Bone has a high natural regeneration capacity. Tissue engineering 
strategies and cell therapies for bone repair are focusing on critical-
size defects and fracture non-unions, which fail to heal spontane-
ously. A main challenge is the treatment of atrophic non-unions, 
which are defined as bone defects showing no healing progress 
within 6  months after fracture. This has been associated with 
risk factors including smoking and chronic diseases like diabetes 
(Gaston and Simpson, 2007) but may also be idiopathic. In both 
cases, the underlying mechanisms still remain elusive. A better 
understanding of the pathology of non-unions will certainly help 
to find new treatment strategies. A major limitation preventing the 
development of efficient therapies so far is the lack of appropriate 
animal models. While various non-union models in rodents, 
rabbits, and sheep have been established (Garcia et  al., 2013), 
most of these models only simulate the situation of a non-healing 

critical-size defect in a healthy environment and those parameters 
resulting in non-unions in humans are not addressed. Accordingly, 
therapies proven successful in preclinical models might thus be 
ineffective upon clinical application.

The availability of stem and progenitor cells might be a crucial 
factor for bone healing. A low number of bone marrow progeni-
tor cells were found in patients suffering from pseudoarthrosis 
(Hernigou and Beaujean, 1997). Similarly, it has been reported 
that the number of circulating progenitor cells was significantly 
lower in patients with non-union fractures compared to healthy 
individuals (Seebach et al., 2007). Interestingly, the authors fur-
ther report on an elevated stem cell accumulation in polytrauma 
patients; at the same time polytrauma is also associated with 
increased serum accumulation of VEGF (Grad et  al., 1998). 
Recent work evaluated the abundance of EPCs in patients with 
atrophic non-unions (Mathieu et  al., 2013). In line with the 
previous studies, a decreased pool of MSCs was detected; but 
the EPC level was not affected. Future studies will be required to 
verify these results and to assess stem and progenitor cell avail-
ability, mobilization, and recruitment in non-union fractures in 
detail. However, assuming that fracture non-unions are indeed 
correlated with a decreased pool of circulating and bone marrow 
MSCs, this would be a major limitation for cell-based therapies in 
those patients. Besides preventing the mobilization and recruit-
ment of endogenous cells, the cell harvest for transplantation is 
limited by a low frequency of MSCs. Recent work suggested a 
perivascular origin of MSCs suggesting that multipotent cells 
are available in virtually all vascularized tissues (Crisan et al., 
2008). The function of these cells in (local) tissue regeneration 
has, however, not been explored to date. It has still not been 
determined to which extent the abundance and regeneration 
potential of these perivascular MSCs (pericytes) are affected by 
certain disease states, i.e., the situation of fracture non-union. The 
investigation of the endogenous regeneration potential of these 
cells might help to develop new strategies for MSC recruitment 
to the defect site.

Fracture non-union often occurs in elderly patients. Patient 
age might have an important influence on the bone regeneration 
capacities, representing another challenge for both the develop-
ment of suitable models to test therapeutic strategies and finally 
the treatment of the patients. Preclinical studies are normally 
performed in young animals, which are in some cases not even 
skeletally mature and are not representative for bone healing in 
elderly patients. The age of patients is also an important considera-
tion with regards to MSC functionality as it has been suggested 
that proliferation and differentiation abilities are altered in MSCs 
from donors above 50 years (Mendes et al., 2002; Zhou et al., 2008; 
Siegel et al., 2013).

Although atrophic non-unions are not always avascular 
(Reed et  al., 2002) and EPC mobilization appears not to 
be affected (Mathieu et  al., 2013), revascularization is an 
important event in bone regeneration and endochondral bone 
formation (Gerber et  al., 1999; Keramaris et  al., 2008). The 
molecular mechanisms and timing of the revascularization 
process are still poorly understood. Most importantly, little 
is known about how these processes are altered in non-union 
patients. For the development of strategies to improve the 

FiGuRe 1 | Cell therapy vs. homing and mobilization of native cells for 
bone regeneration. (a) For an autologous cell transplantation, donor cells 
have to be harvested and expanded in vitro before they are eventually 
re-transplanted in the patient. The amplified cells can be seeded on a 
biomaterial or incorporated in a carrier for local administration or injected in the 
circulation to increase the pool of available stem cells, which in turn may home 

to the defect site. (b) Homing factors are directly delivered to the defect site. 
The release and diffusion of the factor create a gradient subsequently 
attracting stem and progenitor cells from the local tissue environment or the 
circulation. (C) Native stem and progenitor cells may be mobilized into the 
circulation by the administration of a stimulation factor enhancing the level of 
available cells.
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vascularization in bone defects, it might be of interest to adapt 
methods, which have been well established for the treatment 
of ischemic diseases.

Conclusion

Cell-bases therapies have shown promising results for the repair 
of bone tissue; for review, see Ma et al. (2014), Romagnoli and 
Brandi (2014), and Asatrian et al. (2015). Most of these approaches 
require, however, time- and cost-extensive in  vitro expansion 
procedures and finally regulatory issues have to be considered. 
This has prompted the development of strategies to stimulate native 
cells. Homing factors supporting the migration of osteoprogeni-
tor and EPCs toward the fracture site have been administered as 
microspheres, hydrogels, adsorbed to biomaterials, or delivered as 

plasmid or viral vector. Here, the combination of a pro-angiogenic 
stimulus (e.g., VEGF) and an osteoinductive signal, such as BMP-2 
has shown most promising results. Besides, mobilization of stem- 
and progenitor cells from their niche has been shown to facilitate 
bone healing. Although some of the approaches have shown a 
promising outcome in preclinical studies, the main challenge 
remains their translation to the clinical situation. In addition, the 
lack of a good understanding of the pathological mechanisms, in 
particularly of fracture non-unions, prevents the development of 
effective therapies.
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