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Root biomass and soil carbon distribution in
hybrid poplar riparian buffers, herbaceous
riparian buffers and natural riparian woodlots on
farmland
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Abstract

The objectives of this study were to compare coarse root (diameter > 2 mm) and fine root (diameter < 2 mm)
biomass, as well as distribution of soil carbon stocks in 3 types of riparian land uses across 4 sites located in
farmland of southern Québec, Canada: (1) hybrid poplar buffers (9th growing season); (2) herbaceous buffers; (3)
natural woodlots (varying in tree species and age). For all land uses most of the root biomass was within the
0–20 cm depth range. Total coarse root biomass, to a 60 cm depth, ranged from 8.8-73.7 t/ha in woodlots, 0.6-
1.3 t/ha in herbaceous buffers, and 9.2-27.3 t/ha in poplars. Total fine root biomass ranged from 2.68-8.64 t/ha in
woodlots, 2.60-3.29 t/ha in herbaceous buffers, and 1.86-2.62 t/ha in poplars. Total root biomass was similar or
higher in poplar buffers compared to a 27 year-old grey birch forest. This indicates that poplar buffers accelerated
riparian soil colonisation by roots compared to natural secondary succession. Generally, fine root biomass in the
surface soil (0–20 cm) was lower in poplar than in herbaceous buffers; the reverse was observed at greater depth.
Highest coarse root biomass in the 40–60 cm depth range was observed in a poplar buffer, highlighting the deep
rooted nature of poplars. On average, total soil C stocks (0–60 cm) were greater in woodlots than in riparian buffers.
On most sites, soil C stocks tended to be lower in poplar buffers compared to adjacent herbaceous buffers,
especially in surface soil, probably because of lower fine root biomass in poplar buffers. Across all sites and land
uses, highest soil C stocks at the different soil depths were found in the soil layers of woodlots that also had the
greatest fine root biomass. Strong positive linear relationships between fine root biomass and soil C stocks in the
0–20 cm depth range (R2 = 0.79, p < 0.001), and in the whole soil profile (0–60 cm) (R2 = 0.65, p < 0.01), highlight the
central role of fine root biomass in maintaining or increasing soil C stocks.
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Background
Food security and global sustainability is threatened by
the ongoing climate change, which may impact soil ero-
sion processes, crop productivity and soil quality (Lal
et al. 2011). In that perspective, management decisions
that reduce soil erosion and increase carbon (C) storage
to improve soil health will contribute to the resilience of

soils and agricultural systems (Lal et al. 2011). In agri-
cultural landscapes, the implementation of agroforestry
systems has the potential to provide a very high C se-
questration capacity compared to other greenhouse gas
mitigation strategies (Jose and Bardhan 2012). Agrofor-
estry systems such as hybrid poplar (Populus x spp.) ripar-
ian buffers have a high potential to store C in both above
and belowground biomass (Tufekcioglu et al. 2003), with
biomass C storage ability of poplar buffers being largely af-
fected by site fertility (Fortier et al. 2010b).
While aboveground biomass in poplar plantations and

agroforestry systems has been widely studied around the
world (Fang et al. 2007; Fortier et al. 2010a; Laureysens
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et al. 2004; Truax et al. 2012; Zabek and Prescott 2006;
Christersson 2010), fewer studies have evaluated the
belowground biomass of these systems. In 9 year-old
cottonwood (P. deltoides) plantations in India, coarse
root biomass decreased with increasing spacing, from
29.8 t ha-1 (2 × 2 m spacing) to 5.6 t ha-1 (6 × 6 m spa-
cing), while fine root biomass increased with increasing
spacing (from 13.8 to 23 t ha-1) (Puri et al. 1994). How-
ever, Fang et al. (2007) reported little root biomass dif-
ferences for various spacing in 10 year-old hybrid poplar
plantations. Poplar clone selection can also affect below-
ground biomass growth (Heilman et al. 1994; Al Afas
et al. 2008). Stump and large root biomass ranging from
12.3 to 29.6 t ha-1 and, small and fine root biomass ran-
ging from 6.6 to 11 t ha-1 have been observed for differ-
ent clones in a closely spaced 4 year-old plantation (10
000 stems ha-1) (Heilman et al. 1994). Plantation site
quality and management also influence belowground
biomass growth. Across 6 mature plantation sites in
Sweden (361 to 3279 stems ha-1), poplar stump and root
biomass respectively ranged from 12.9 to 66.9 t ha-1 and
4.7 to 10.9 t ha-1 (Johansson and Hjelm 2012). In multi-
species riparian buffer combining hybrid poplars and
cool-season grass, a total root biomass of 14.3 t ha-1 was
observed after 7 years (Tufekcioglu et al. 2003). In short,
these studies suggest that poplar belowground biomass
accumulation can be relatively high, but extremely vari-
able, depending on the poplar system management and
design, but also depending on local ecological condi-
tions. Consequently, there is a need to assess below-
ground biomass in hybrid poplar riparian buffers across
different sites in order to refine C stocks estimates in
agroforestry systems.
In riparian buffers, root system dimensions and distri-

bution, which vary with plant species (Tufekcioglu et al.
1999), are also known to influence important processes
such as nutrient uptake, organic matter supply to soil,
soil stabilisation against erosion, channel formation, run-
off control, etc. (Dosskey et al. 2010). For example, the
use of deep-rooted vegetation is very important for in-
creasing the depth of the active denitrification zone in
restored riparian zones, because organic matter supply
at depth is highly dependent upon soil colonisation by
roots (Gift et al. 2008). Deep rooted tress will also
uptake nutrients and water at greater soil depth than
herbaceous vegetation (Schultz et al. 1995). While most
studies have concluded that the majority of poplar
coarse and fine roots in plantations and agroforestry sys-
tems is located near the soil surface (Douglas et al. 2010;
Tufekcioglu et al. 1999; Puri et al. 1994; Al Afas et al.
2008), poplar roots can extend to more than 3 m deep
into soil after only 4 years (Heilman et al. 1994).
Although soil colonisation by roots may affect import-

ant riparian buffer functions, very few studies have

evaluated root distribution in mature hybrid poplar ri-
parian buffers across different agricultural sites. It is also
important to compare belowground biomass distribution
of riparian agroforestry systems with the riparian land use
they replaced (herbaceous buffers, row crops, hayfields,
pastures) (Tufekcioglu et al. 1999). Locally, poplar planta-
tion attributes can also be compared to those of woodlots
in order to evaluate how different or similar are planted
poplars stands from adjacent naturally regenerated stands
(Boothroyd-Roberts et al. 2013; Coleman et al. 2004).
Unlike C storage in root biomass, soil C storage capacity

of agroforestry and afforested systems is less clear. In the
case of poplar afforestation and agroforestry, C sequestra-
tion in terms of soil C increases remains uncertain, with
studies reporting contrasting results, sometimes showing
positive, negative, or no impacts (Arevalo et al. 2009; Mao
et al. 2010; Coleman et al. 2004; Boothroyd-Roberts et al.
2013; Peichl et al. 2006; Sartori et al. 2007; Teklay and
Chang 2008). This is possibly because of the high impact
of land use changes (from abandoned field, pasture, row
crop, or grassland to plantation), plantation management
(rotation length, site preparation, tending operations, fer-
tilisation, etc.) and local conditions on soil C stocks and
dynamics (Coleman et al. 2004; Laganière et al. 2010;
Sartori et al. 2007; Teklay and Chang 2008; Guo and
Gifford 2002). It was also suggested that short rotation
poplar plantations generally contained less soil C, espe-
cially at depth, when compared to adjacent woodlots
(Coleman et al. 2004). Globally, soils store a larger quan-
tity of C than plant biomass and the atmosphere com-
bined (Jobbagy and Jackson 2000), and a land use change
from agriculture to agroforestry or afforestation can have
important impacts on soil C stocks and dynamics (Guo
and Gifford 2002). In that perspective, the potential of
poplar riparian buffers to store soil C in replacement of
widespread herbaceous buffers, needs to be evaluated.
The objectives of this study were to compare coarse

root (diameter > 2 mm) and fine root (diameter < 2 mm)
biomass, as well as distribution of soil carbon stocks in 3
types of riparian land uses across 4 sites located in farm-
land of southern Québec, Canada: (1) hybrid poplar ri-
parian buffers (9th growing season); (2) herbaceous
riparian buffers; (3) natural riparian woodlots (varying in
tree species and age).

Results
Riparian land use soil characteristics
Results in Table 1 suggest large variation in soil pH and
bulk density (BD) among riparian land use types at each
site. Across the 4 sites, woodlot surface soils tend to be
more acid and less compact (in terms of BD) than ripar-
ian buffer soils. Soil pH in the 0–20 cm depth interval
ranged from 4.25 to 5.35 in woodlots, from 5.44 to 6.37
in poplar buffers and from 5.48 to 7.23 in herbaceous
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Table 1 Soil profile characteristics of three riparian land uses at four sites

pH Bulk density (g cm-3) Stoniness (%) Texture (%)(clay-silt-sand)

Land uses Sites 0-20 cm 20-40 cm 40-60 cm 0-20 cm 20-40 cm 40-60 cm 0-20 cm 20-40 cm 40-60 cm 0-20 cm 20-40 cm 40-60 cm

Woodlot - Hemlock Brompton 5.35 6.50 6.80 0.76 1.21 1.54 0 0 0 17-44-39 27-27-46 21-18-61

Woodlot - White cedar Magog 4.53 4.95 5.45 0.85 0.86 0.92 15 12 14 25-34-41 13-30-57 13-28-60

Woodlot - Grey birch Roxton 4.93 5.15 5.18 1.16 1.33 1.32 0 0 0 16-37-47 18-43-39 21-39-40

Woodlot - Sugar maple St-Isidore 4.25 4.80 4.90 0.66 0.81 0.99 1 1 10 15-42-43 11-52-37 13-50-37

Hybrid poplar buffer Brompton 6.37 6.18 6.22 1.14 1.33 1.22 0 0 0 15-38-47 11-44-45 11-33-56

Hybrid poplar buffer Magog 5.63 5.75 5.85 0.90 1.00 0.87 12 19 35 16-35-49 16-33-51 14-32-54

Hybrid poplar buffer Roxton 6.18 6.09 6.20 1.23 1.35 1.38 1 3 4 19-29-52 17-35-48 28-26-46

Hybrid poplar buffer St-Isidore 5.44 5.78 5.95 1.07 1.03 0.92 2 15 36 22-40-38 13-46-40 16-39-45

Herbaceous buffer Brompton 6.15 5.73 5.95 0.90 1.21 1.32 0 0 0 16-36-48 13-58-29 17-56-27

Herbaceous buffer Magog 5.73 6.10 6.18 1.12 1.08 1.10 13 3 0 13-32-55 8-15-77 11-10-79

Herbaceous buffer Roxton 7.23 6.30 6.35 1.22 1.35 1.40 0 0 0 16-31-53 13-24-63 12-11-77

Herbaceous buffer St-Isidore 5.48 5.78 6.03 0.92 0.98 0.94 1 38 40 21-50-29 13-56-31 13-32-55

Land use × Site p< 0.01 0.001 0.001 0.01 NS NS NS 0.001 0.05

SE 0.16 0.17 0.13 0.06 0.09 0.09 3 4 7

Land use p< 0.001 0.001 0.001 0.001 NS NS NS 0.05 0.05

SE 0.08 0.09 0.06 0.03 0.04 0.05 2 2 3

Site p< 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

SE 0.09 0.10 0.07 0.03 0.05 0.05 2 2 4
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Figure 1 Coarse root biomass vertical distribution (t ha-1) for three soil depths (0–20, 20–40 and 40–60 cm) for three different riparian
land uses at four sites. Site × Land use interaction is significant at p < 0.001 for the three soil depths. Horizontal bars represent SE.
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Figure 2 Fine root biomass vertical distribution (t ha-1) for three soil depths (0–20, 20–40 and 40–60 cm) for three different riparian
land uses at four sites. Site × Land use interaction is significant at p < 0.001 for the 0–20 cm and 20–40 cm soil depths, and at p < 0.05 for the
40–60 soil depth. Horizontal bars represent SE.
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buffers, while bulk density (0–20 cm) ranged from 0.66
to 1.16 in woodlots, from 0.90 to 1.23 in poplar buffers
and from 0.90 to 1.22 in herbaceous buffers (Table 1).
In addition, soil pH tends to substantially increase

with depth in woodlots (especially in older stands), while
soil pH shows little or no decrease with depth across the
four sites in both types of riparian buffers (Table 1). A

similar trend is observed for bulk density. In other words,
soil properties (pH and BD) in poplar and herbaceous
buffers tend to be much more homogeneous down the soil
profile, when compared to older riparian woodlot soils
(hemlock, cedar and sugar maple) (Table 1). Relatively
large volumes of stones (up to 40%) where found, espe-
cially at greater depth, in the poplar and the herbaceous

Table 2 Coarse and fine root biomass (t ha-1) to 60 cm soil depth for three land uses at four sites

Coarse root biomass Fine root biomass Total root biomass

Land uses Sites Total
(t ha-1)

0-20 cm
(%)

20-40 cm
(%)

40-60 cm
(%)

Total
(t ha-1)

0-20 cm
(%)

20-40 cm
(%)

40-60 cm
(%)

(t ha-1)

Woodlot - Hemlock Brompton 73.7 99 1 0 8.48 99 1 0 82.2

Woodlot - White cedar Magog 29.8 80 18 2 4.77 40 39 21 34.6

Woodlot - Grey birch Roxton 8.8 73 21 6 2.68 55 19 26 11.4

Woodlot - Sugar maple St-Isidore 26.7 62 32 6 8.64 55 31 14 35.3

Hybrid poplar buffer Brompton 27.3 61 25 14 2.28 61 22 18 29.6

Hybrid poplar buffer Magog 9.2 73 22 5 1.86 60 24 16 11.0

Hybrid poplar buffer Roxton 20.8 70 22 7 2.62 62 19 19 23.4

Hybrid poplar buffer St-Isidore 12.9 73 17 10 1.91 78 11 11 14.8

Herbaceous buffer Brompton 0.6 100 0 0 2.60 90 10 0 3.2

Herbaceous buffer Magog 0.6 99 1 0 2.80 94 4 2 3.4

Herbaceous buffer Roxton 1.1 98 2 0 3.29 88 9 3 4.4

Herbaceous buffer St-Isidore 1.3 94 3 2 2.79 80 11 9 4.0

SE 2.5 0.45 2.6

p< 0.001 0.001 0.001

Vertical distribution of coarse and fine root biomass in 20 cm intervals expressed as percentages of total root biomass.

y  = -0.69Ln(x ) + 2.9
R 2 = 0.85

y  = -1.60Ln(x ) + 6.1
R 2 = 0.91
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Figure 3 Logarithmic relationships between soil depth (cm) and fine root biomass (t ha-1) for hybrid poplar (Poplar) and herbaceous
(Herb) riparian buffers. Both relationships are significant at p < 0.001. Mean fine root biomass for both land uses at each site and at each depth
were used as response variables and mid-points of depth intervals were used as predictor variables. For each relationship n = 12.
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buffers of the St-Isidore site and in the poplar buffer at
Magog (Table 1).

Root biomass distribution
A significant Land use × Site interaction was observed
for coarse root biomass (> 2 mm) and fine root biomass
(< 2 mm) at each depth range and in the whole soil pro-
file (Figures 1 and 2, Table 2). Total coarse root biomass
ranged from 8.8-73.7 t ha-1 in woodlots, 0.6-1.3 t ha-1 in
herbaceous buffers, and 9.2-27.3 t ha-1 in poplar buffers
(Table 2). Total fine root biomass ranged from 2.68-
8.64 t ha-1 in woodlots, 2.60-3.29 t ha-1 in herbaceous
buffers, and 1.86-2.62 t ha-1 in poplar buffers (Table 2).
Across all land uses and sites, most coarse and fine root
biomass was located near the soil surface (0–20 cm
depth range) (Figures 1 and 2, Table 2). Percentage of
coarse roots located in 0-20 cm soil depth interval
ranged from 62-99% in woodlots, 94-100% in herb-
aceous buffers, and 61 to 73% in poplar buffers (Table 2).
The greatest decrease in coarse and fine root biomass
down the soil profile was observed in the oldest woodlot
(hemlock) and in the herbaceous buffers (Table 2). The
highest coarse root biomass in the deepest soil depth
range studied (40–60 cm) was observed in the poplar
buffer at the Bromptonville site (Figure 1). Compared to
the early successional stand (27 year-old grey birch
woodlot), total root biomass was similar or higher in
poplar buffers (Table 2).
Results in Figure 1 suggest that coarse root biomass is

much greater in poplar buffers lower down the soil pro-
file compared to herbaceous buffers. However, fine root
biomass in surface soil (0–20 cm) tends to be lower in
poplar buffers than in herbaceous buffers, while the
reverse is observed at greater depth (Figure 2). These
observations are supported by significant relationships
between soil depth and fine root biomass (Figure 3).
These relationships suggest that below 30 cm of depth
(Figure 3), fine root biomass becomes greater in poplar
buffers than in herbaceous buffers, while the reverse is
observed above this depth. Still, for the different depth
intervals, fine root biomass was always the greatest in
one or several woodlots compared to both types of ripar-
ian buffers (Figure 2).

Soil carbon stocks distribution
Soil C concentrations near the soil surface (0–20 cm) tend
to be highly variable across the different land uses and
sites. Soil C concentrations ranged from 14.8-75.5 g kg-1

in woodlots, 14.6-35.9 g kg-1 in herbaceous buffers, and
16.1-26.0 g kg-1 in poplar buffers (Table 3). This large
variation was also observed for surface soil C stocks
(0–20 cm) (Figure 4). The greatest C concentration and
stocks in surface soil (0–20 cm) were found in the older
woodlots (hemlock, sugar maple and cedar) and in the

herbaceous buffer of St-Isidore-de-Clifton (Figure 4,
Table 3). A very large decrease in soil C concentration and
stocks with depth was observed in the hemlock woodlot,
which has 89% of its soil C stocks located between 0 and
20 cm of depth (Figure 4, Tables 3 and 4). For the other
woodlots and for the herbaceous and poplar buffers the
decrease in soil C with depth was less abrupt, and some-
times very minor as observed in both buffer types at
Roxton Falls (Figure 4, Table 4).
Overall, total C stocks (0–60 cm) ranged from 91–

173 t ha-1 in woodlots, 88–117 t ha-1 in herbaceous
buffers, and 78–110 t ha-1 in poplar buffers. At some sites,
C stocks and concentration were significantly higher in the
surface and intermediate soil depths of herbaceous buffers
than in those of poplar buffers. This was the case at St-
Isidore-de-Clifton for the 0–20 cm depth interval and at
Bromptonville for the 20–40 cm depth interval (Figure 4).
For the whole profile (0–60 cm), soil C stocks were also
greater in the herbaceous buffer at Bromptonville when
compared to the poplar buffer.
At the land use level, significant Land use effects were

observed with woodlots having greater soil C stocks, on
average, for the 0–20 cm and the 0–60 cm depth inter-
vals compared to both types of buffers (Figure 5). On
average, for the whole soil profile (0–60 cm), herbaceous
buffers tend to have greater soil C stocks, although they
are not statistically different from C stocks of hybrid
poplar buffers. Significant relationships between soil
depth and C stocks also suggest that herbaceous buffers
tend to have more soil C than hybrid poplar buffers, es-
pecially near the soil surface (Figure 6).

Table 3 Vertical distribution of soil carbon concentration
(g kg-1) in three riparian land uses at four sites

Soil C (g kg-1)

Land uses Sites 0-20 cm 20-40 cm 40-60 cm

Woodlot - Hemlock Brompton 75.5 2.5 1.3

Woodlot - White cedar Magog 43.8 16.5 8.2

Woodlot - Grey birch Roxton 14.8 11.5 11.9

Woodlot - Sugar maple St-Isidore 57.8 38.3 19.1

Hybrid poplar buffer Brompton 17.7 7.3 9.5

Hybrid poplar buffer Magog 26.0 15.7 11.4

Hybrid poplar buffer Roxton 16.1 13.9 13.2

Hybrid poplar buffer St-Isidore 22.8 22.7 16.9

Herbaceous buffer Brompton 26.5 19.8 13.3

Herbaceous buffer Magog 20.0 16.0 6.3

Herbaceous buffer Roxton 14.6 14.8 10.4

Herbaceous buffer St-Isidore 35.9 27.0 15.6

SE 5.0 4.0 -

P 0.001 0.05 NS
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Figure 4 Soil C stock vertical distribution (t ha-1) for three soil depths (0–20, 20–40 and 40–60 cm) for three different riparian land
uses at four sites. Site × Land use interaction is significant at p < 0.001 for the 0–20 cm soil depth, and at p < 0.01 for the 20–40 and 40–60 cm
soil depths. Stripped shading in top diagram represents C in the LFH (O horizon). Horizontal bars represent SE.
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Relationship between soil C, fine root biomass and pH
Across all sites and land uses, a strong positive linear re-
lationship was observed between fine root biomass and
soil C stocks in the 0–20 cm depth interval (R2 = 0.79,
p < 0.001) (Figure 7). A strong positive linear relationship
was also observed between those two variables measured
in the whole soil profile (0–60 cm) (R2 = 0.65, p < 0.01)
(Figure 7). Finally, a negative relationship between soil
pH and soil C concentration in the 0–20 cm depth inter-
val was observed (R2 = 0.39, p < 0.05) (Figure 8).

Discussion
Root biomass in the different riparian land uses
This study suggests that the greatest benefits of
establishing an agroforestry system such as a hybrid
poplar buffer, in a riparian zone previously dominated
by herbaceous vegetation, are (1) an important increase

in coarse root biomass down in the soil profile (Figures 1
and 3, Table 2) and (2) an increase in fine root biomass
at greater depth in the soil profile (40–60 cm) (Figures 2
and 3). During the 9th growing season, total root bio-
mass in poplar buffers also varied greatly across sites,
ranging from 11.0 to 29.6 t ha-1, with the greatest bio-
mass observed at the fertile site of Bromptonville, and
the lowest at the low fertility site of Magog (Table 2)
(Fortier et al. 2013). Although most poplar root system
biomass was located near the soil surface (0–20 cm)
(Figures 1 and 2, Table 2), results also highlight the par-
ticular ability of poplar to colonise deeper soil horizons.
At Bromptonville, where hybrid poplar grew best after
9 years (Table 5) (Fortier et al. 2013), a coarse root
biomass of 3.8 t ha-1 was observed in the 40–60 depth
interval; a coarse root biomass that was greater than in
any woodlot studied (Figure 1). Results from Heilman

Table 4 Total soil carbon (t ha-1) to 60 cm soil depth for three land uses at four sites

Land uses Sites Total soil C (t ha-1) LFH (%) 0-20 cm (%) 20-40 cm (%) 40-60 cm (%)

Woodlot - Hemlock Brompton 130 3 89 5 3

Woodlot - White cedar Magog 102 4 61 22 13

Woodlot - Grey birch Roxton 91 0 37 30 33

Woodlot - Sugar maple St-Isidore 173 1 43 35 21

Hybrid poplar buffer Brompton 78 0 47 24 29

Hybrid poplar buffer Magog 78 0 53 32 15

Hybrid poplar buffer Roxton 110 0 35 33 32

Hybrid poplar buffer St-Isidore 104 0 45 37 18

Herbaceous buffer Brompton 117 0 41 33 26

Herbaceous buffer Magog 88 0 46 38 16

Herbaceous buffer Roxton 104 0 35 38 27

Herbaceous buffer St-Isidore 113 0 58 29 13

SE 13

p< 0.05

Vertical distribution of soil carbon in 20 cm intervals expressed as percentages of total soil carbon.
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Figure 5 Land use effect on mean soil C stocks for the different soil depth intervals (*** p < 0.001, ** p < 0.01). Vertical bars represent SE.
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et al. (1994) also highlight the deep rooted nature of
poplars with significant root biomass being observed
below 3 m depth after 4 growing seasons under high in-
traspecific competition. Hybrid poplars have a root dis-
tribution that is typical of early successional species
such as aspen (P. tremuloides), which are generally more
deeply rooted than mid successional and climax species
(Gale and Grigal 1987). By establishing a deep rooting
system, Populus species can effectively exploit an un-
occupied and more homogeneous soil substrate, which
is generally observed following a disturbance (Gale and
Grigal 1987). In this study, riparian soil properties (pH,
bulk density, and soil C) were more homogeneously

distributed with depth in buffer soils than in older
woodlot soils (Tables 1, 3 and 4, Figure 4), probably be-
cause of recent agricultural activities. The establishment
of poplar buffers on those homogeneous riparian soils
seems ecologically sound in order to increase the rooting
depth of a buffer and subsurface nutrient interception. In
comparison, naturally established herbaceous buffers gen-
erally have little root biomass at greater depth (40–60 cm)
(Figures 1, 2 and 3, Table 2) and therefore occupied a
much smaller soil volume.
The deep rooting system of hybrid poplars may be

important for increasing the depth of the active denitri-
fication zone, because organic matter supply at greater
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riparian buffers. Both relationships are significant at p < 0.01. Mean C stocks for both land uses at each site and at each depth were used as
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soil depth is highly dependent on the colonisation of
the soil by roots (Gift et al. 2008). Roots of hybrid pop-
lars and other tree species can also expand several me-
ters away from the trunk and uptake nutrients directly
in the adjacent pasture or crop field (Figure 9) (Addy
et al. 1999). These lateral roots substantially widen the
zone of influence of tree riparian buffers. Moreover,
along unstable agricultural streams, deep rooted trees
such as poplars may be more efficient than herbaceous
vegetation at reducing stream bank erosion (Zaimes
et al. 2004). It is also important to highlight that total

root biomass was similar or higher in 9 year-old poplar
buffers (11.0-29.6 t ha-1) compared to the 27 year-old
woodlot dominated by grey birch (11.4 t ha-1) (Table 2),
a typical coloniser of moist areas of abandoned fields in
southern Québec (Farrar 2006). At the Roxton Falls
site, the 9 year-old hybrid poplar buffer had double the
total root biomass found in the grey birch woodlot.
Therefore, hybrid poplar buffers accelerated riparian
soil colonization by roots compared to natural second-
ary succession over more than 27 years after agriculture
abandonment.
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Figure 8 Negative relationship between soil pH and soil C concentration (excluding LFH) in the 0–20 cm depth range (p < 0.05). Mean
soil pH data and mean C concentration data obtained for each land use at each site (n = 12) were used to obtain this relationship.

Table 5 Characteristics of three types of land use at four sites and DBH range of trees sampled for root biomass

Land uses Sites Description Forest vegetation zone Elev. (m) Age of dominant
trees (yrs)

DBH range (cm)
of sampled trees

Woodlot – Hemlock Brompton Primary forest Sugar maple-Basswood 200 200 20.3-27.6

Woodlot - White cedar Magog Secondary forest - livestock
access

Sugar maple-Basswood 220 72 24.6-33.3

Woodlot - Grey birch Roxton Secondary forest Sugar maple-Basswood 145 27 6.9-12.9

Woodlot - Sugar maple St-Isidore Secondary forest Sugar maple-Yellow birch 420 54 11.6-16.8

Hybrid poplar buffer Brompton Riparian buffer in pasture Sugar maple-Basswood 140 9 17.5-32.3

Hybrid poplar buffer Magog Riparian buffer in pasture Sugar maple-Basswood 210 9 9.8-20.3

Hybrid poplar buffer Roxton Riparian buffer in hayfield Sugar maple-Basswood 145 9 13.4-22.9

Hybrid poplar buffer St-Isidore Riparian buffer in pasture Sugar maple-Yellow birch 360 9 14.8-24.3

Herbaceous buffer Brompton Riparian buffer in pasture Sugar maple-Basswood 140 - -

Herbaceous buffer Magog Riparian buffer in pasture Sugar maple-Basswood 205 - -

Herbaceous buffer Roxton Riparian buffer in annual crop Sugar maple-Basswood 145 - -

Herbaceous buffer St-Isidore Riparian buffer in pasture Sugar maple-Yellow birch 380 - -
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However, hybrid poplars can also cause disservices to
farmers that have sub-surface soil drainage systems. At
the St-Isidore-de-Clifton site, it took less than 9 years to
have such a drain blocked by poplar roots (Figure 10).
While drain blockage may reduce crop yield, it may also
recreate a wet zone where other ecosystem services may
be supported (denitrification or habitat for wetland spe-
cies). Tile drains have been long known to substantially
reduce riparian buffer effectiveness for non-point source
pollution control, as they often bypass the buffer zone
(Osborne and Kovacic 1993). Hence, drain blockage by

poplar roots could increase buffer performances by redu-
cing hydrological connectivity between the drainage sys-
tem and surface water.
This study also shows that root biomass distribution

in poplar buffers sharply contrasts with the distribution
pattern observed in the oldest woodlot, where the hem-
lock root system is almost entirely restricted to the soil
surface (0–20 cm) (Figures 1 and 2, Table 2). This is be-
cause in late successional or climax stands, soil nutrients
and carbon, mainly originating from root detritus and
litter, are concentrated near the soil surface (Gale and

Figure 9 Lateral roots of hybrid poplar expanding several meters away from the riparian buffer zone into the adjacent pasture.

Figure 10 During the 9th growing season, hybrid poplar roots blocked a sub-surface drain, creating a wet zone at the pasture /
riparian buffer interface.
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Grigal 1987) (Figure 4, Table 4). Consequently, shallow
rooted trees such as hemlock are well adapted to such
site conditions, were nutrient cycling occurs in a closed
loop with little nutrient leakage (Odum 1969). However,
more nutrient demanding sub-climax species such as
sugar maple, may have a vertical root distribution that is
similar to that of pioneer species (Gale and Grigal 1987),
as also observed in this study (Figures 1 and 2, Table 2).
Finally, to qualitatively evaluate differences in coarse

root architecture of hybrid poplars, we undertook larger
excavations (1.5 m × 1.5 m × 0.6 m of depth) on a single
tree of the three different clones (Figure 11). Coarse root
structure appears to vary greatly with genotype, with
clone DxN-3570 having fewer much larger horizontal
coarse roots, whereas clones MxB-915311 and DNxM-
915508 have a far more ramified smaller coarse root
system near the tree base.

Soil carbon in the different riparian land uses
In general, soil C stocks and concentrations were similar
or lower in poplar buffers when compared to adjacent
herbaceous buffers (Figure 4, Tables 3 and 4). For the
whole soil profile studied (0–60 cm), site comparisons
suggest that poplar buffers caused insignificant C gains
of 4 t ha-1 at Roxton Falls, insignificant C losses of 9 and
10 t ha-1 at St-Isidore-de-Clifton and Magog, but signifi-
cant losses of 39 t ha-1 at Bromtonpville (Table 4). Site
comparisons also suggest lower C stocks in poplar buffers
for the 0–20 cm depth range at St-Isidore-de-Clifton and
for the 20–40 cm depth range at Bromptonville (Figure 4).
Finally, the regression analysis between soil depth and soil
C stocks suggests that the establishment of a hybrid pop-
lar buffer in a riparian zone previously dominated by per-
ennial herbaceous vegetation may result in a decrease in
soil C, but mostly near the soil surface (Figure 6). This evi-
dence is consistent with previously published studies. In
meta-analyses, it was reported that soil C stocks generally
decrease or are unaffected when tree plantations are
established in pastures or grassland (Guo and Gifford
2002; Laganière et al. 2010). Surface soil C was also similar
when 10 year-old hybrid poplar plantations of southern
Québec were compared to adjacent abandoned fields
(Boothroyd-Roberts et al. 2013). In Alberta (Canada), no
significant differences in soil C stocks (0–50 cm) were
reported when 2 and 9 year-old poplar plantations were
compared to adjacent land uses (agriculture, grassland,
and native aspen) (Arevalo et al. 2009). In chrono-
sequences, a decadal time scale was insufficient to meas-
ure significant changes in soil C of poplar plantations
(Sartori et al. 2007; Teklay and Chang 2008). Across 27
sites of the North Central United States, paired compari-
sons found few soil C differences between poplar planta-
tions and agricultural crops (Coleman et al. 2004). On
marginal agricultural land in China, a decrease in soil C

was observed after 10 years of poplar culture, but an in-
crease in soil C was reported after 20 years, with a recov-
ery time of about 15 years (Mao et al. 2010).
Briefly, this evidence suggests that managing poplar

plantations and agroforestry systems on longer rotations
(more than 15 years), will probably be needed for soil C
sequestration to occur, as also observed for fast-growing
Eucalyptus plantations established on pastures (Berthrong
et al. 2012). In addition, measuring soil C over the first ro-
tation might also yield different results since substantial
root biomass will be decomposing and contributing to soil
C pools at different soil depths after harvest (Table 2)
(Zan et al. 2001). It has also been suggested that intensive
pre-planting disturbances such as intensive mechanical
site preparation could result in a soil C loss in young plan-
tations (Laganière et al. 2010; Shi et al. 2010). However,
this explanation does not hold for interpreting our re-
sults because no mechanical site preparation was done,
and only a single local herbicide application (1 m2/tree)
was done to control weeds in the first year (Fortier et al.
2010a).
The trend towards lower or similar soil C stocks found

in poplar buffers versus adjacent herbaceous buffers, es-
pecially near the soil surface (Figures 4 and 5), might be
related to the lower fine root biomass in the surface soil
(0–20 cm) of poplar buffers (Figures 2 and 3). Fine root
biomass in the surface soil probably decreased as a result
of hybrid poplars shading the herbaceous vegetation, be-
cause canopy closure in these poplar buffers resulted in
a large decrease in understory vegetation biomass after
6 years (Fortier et al. 2011). In addition, compared to
trees, herbaceous vegetation is known to allocate a much
larger proportion of assimilated C to the root system
(Kuzyakov and Domanski 2000), while having higher
root turnover (Guo et al. 2007). On the other hand, the
dense root mat observed in herbaceous communities near
the soil surface may reduce gas and water exchanges
(Yakimenko 1998), which may slow down organic matter
decomposition in herbaceous buffers. Strong positive lin-
ear relationships were observed (across all land uses and
sites) between fine root biomass and soil C stocks in the
0–20 cm depth range (R2 = 0.79, p < 0.001) and in the
whole soil profile (0–60 cm) (R2 = 0.65, p < 0.01) (Figure 7).
These relationships highlight the central role of fine root
biomass in maintaining or increasing soil C stocks, as pre-
viously observed in forest ecosystems (Persson 2012).
Highest soil C stocks in the different soil depths sampled
were also found in the soil depth of woodlots that had the
highest fine root biomass (Figures 2 and 4).
The greatest negative impact of poplar plantations on

soil C have been observed on most fertile sites (Coleman
et al. 2004), as observed at the very fertile site of
Bromptonville (Table 4), where poplar yield was the
highest (Fortier et al. 2010a; Fortier et al. 2013). It was also
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Figure 11 Excavations exposing coarse roots of three hybrid poplar clones (9th growing season), at the interface of a crop field and a
riparian buffer zone.

Fortier et al. SpringerPlus 2013, 2:539 Page 14 of 19
http://www.springerplus.com/content/2/1/539



at the Bromptonville site that the lowest understory bio-
mass (mainly herbaceous species) was observed during
the 6th growing season (Fortier et al. 2011). Having lower
herbaceous biomass in the understory because of rapid
canopy closure, the poplar buffer at Bromptonville might
also have had lower C allocation to herbaceous plant
roots, which may have contributed to the large C loss ob-
served at this site, compared to the adjacent herbaceous
buffer (Table 4). Root systems of understory plants play a
major role in soil C cycling, in both young and older fast-
growing plantations (Wu et al. 2011). The trend towards
lower soil C in poplar riparian buffers may also be related
to the export of a high amount of poplar leaf litter because
of storm flow, flooding and wind, with few leaves reaching
or remaining in the understory (J. Fortier, field observa-
tion). Because leaf litter also has a central role to play in
forest soil development (Côté and Fyles 1994) and soil C
storage in plantations (Laganière et al. 2010), its partial ex-
port outside the poplar buffers constitutes a net loss of an
important input of organic matter to the soil.
On average, woodlots had more soil C in the 0–20 and

0–60 cm depth ranges than both types of buffers
(Figure 5). This is because soil C stocks were particularly
high in the 0–20 cm depth in the hemlock, sugar maple
and cedar woodlots, but also in the 20–40 cm depth in
the sugar maple woodlot (Figure 4). These tree species
have an acidifying litter (Côté and Fyles 1994; Burns and
Honkala 1990), which is consistent with the lower pH
observed in the surface soil of the older woodlots, com-
pared to riparian buffer soils (Table 1). Having lower pH
near the soil surface, the older woodlots may have lower
rates of organic matter mineralization (Paustian et al.
1997), and greater rates of soil C accumulation than agri-
cultural buffers. This interpretation is supported by a sig-
nificant negative relationship between soil pH and soil C
concentration in the 0–20 cm depth range across all sites
and all riparian land uses (Figure 8). Greater surface soil C
concentrations and lower soil pH were also characteristic
of natural woodlot soils when they were compared to ad-
jacent abandoned fields and 10 year-old hybrid poplar
plantations in southern Québec (Boothroyd-Roberts et al.
2013). The particularly high C stocks in the 0–20 cm layer
of the hemlock woodlot is also consistent with the fact
that eastern hemlock litter is highly refractory to decom-
position (Elliott et al. 1993). In addition, even if the soil
surface of older woodlots was much less compact than
buffer soils (Table 1), these woodlots had greater soil C
stocks in the 0–20 cm depth range (Figure 4) because soil
C concentrations were particularly high in that surface soil
depth range (43.8-75.5 g kg-1) (Table 3). Higher bulk
density in buffer surface soil was probably the result of
several years of livestock trampling and agricultural traffic
(Willatt and Pullar 1984; Blackwell and Soane 1981) prior
to buffer establishment. Greater soil C stocks and lower

bulk density were also found in woodlot soils of the North
Central United States compared to adjacent agricultural
crops and poplar plantations (Coleman et al. 2004).
Finally, it should be mentioned that the particularly

high variation in stone volume observed between poplar
and herbaceous buffers at some sites (Magog and St-
Isidore-de-Clifton) (Table 1) adds a great deal of vari-
ability to our soil C stock estimations. Small agricultural
streams of southern Québec have often been straight-
ened and dredged (Beaulieu 2001) and, as observed by
the landowner of the St-Isidore-de-Clifton site, stones lying
in the bottom of the stream have often been piled on
stream banks (A. Doyon, pers. comm.). Soil stoniness at
some sites also greatly complicates soil sampling. However,
although costly and time consuming, stoniness estimations
for stony soils is essential to increasing soil C estimate pre-
cision, because bulk density measurements with a soil
corer alone will lead to overestimations (Andraski 1991;
Vincent and Chadwick 1994; Throop et al. 2012).
Based on this study, the greatest benefits of hybrid

poplar riparian agroforestry systems in terms of C stor-
age is in the tree biomass, since soil C seems unaffected
or depleted. With root biomass reaching 27.3 t ha-1 dur-
ing the 9th growing season (Table 2), and aboveground
woody biomass reaching 193 t ha-1 after 9 years (Fortier
et al. 2013), hybrid poplar buffers clearly have the poten-
tial to increase C storage on farmland. Other C benefits
of poplar agroforestry systems are the potential fossil
fuel displacement by woody biomass production and the
long-term storage of biomass C in solid wood products.

Conclusion
This study suggests that the greatest benefits of establishing
a hybrid poplar buffer in a riparian zone previously domi-
nated by herbaceous vegetation are a large increase in
coarse root biomass down in the soil profile, and an in-
crease in fine root biomass at depth as well. Results also
highlight the particular ability of poplar root systems to col-
onise deeper soil horizons when compared to native wood-
lot species. Conversely, lower or similar soil C stocks were
found in poplar buffers in comparison to adjacent herb-
aceous buffers, especially near the soil surface, probably
because poplars caused a reduction in fine root biomass in
surface soil; an interpretation supported by a strong positive
relationship between fine root biomass and soil C. Finally,
on average, natural woodlot soils (never disturbed or undis-
turbed for several decades) tend to have greater soil C
stocks than buffer soils, which were still agricultural soils
less than 10 years ago.

Material and methods
Study sites and experimental design
This study took place in the southern region of the
province of Québec, Canada. At the four study sites
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(Bromptonville, Magog, Roxton Falls and St-Isidore-
de-Clifton) three types of riparian land uses were
studied for root biomass and soil C stocks distribu-
tion: (1) hybrid poplar riparian buffer, (2) herbaceous
riparian buffer and (3) natural riparian woodlot.
Three of the study sites (Bromptonville, Magog and

Roxton Falls) are located in a hilly landscape (Sherbrooke
unit), which is characterised by gentle slopes and a contin-
ental subhumid moderate climate (Robitaille and Saucier
1998). Land use in this landscape unit is 71% natural and
managed forest (mostly private), 28% agriculture and 1%
urban. Agricultural activities are concentrated in larger
valley bottoms; pastures are frequently found on the
poorer hillside soils. The St-Isidore-de-Clifton site is lo-
cated in the Mont Mégantic landscape unit, which is
characterised by continental subhumid-subpolar cli-
mate, higher elevation, steeper hillside slopes and lower
agricultural land use (9% of land use) (Robitaille and
Saucier 1998). Both landscape units are covered by a
thick surface deposit of till and share a similar precipitation
regime (1000–1100 mm). St-Isidore-de-Clifton, Magog,
and Bromptonville sites are located in the St-François River
watershed, while the Roxton Falls site is in the Yamaska
River watershed. These watersheds both drain into the St.
Lawrence River.
At each site, hybrid poplar riparian buffers where

planted in spring 2003 at a density of 2222 stems per hec-
tare on both sides of the streams for a total length of 90 m
and a width of 4.5 m on each stream bank. Bare-root
hybrid poplar plants were 1 year-old when they were
planted. In the year of the study (2011), the buffers were
in their 9th growing season. No site preparation was done
prior to planting and tending operations consisted in a
single localised herbicide treatment (1 m2/tree) in June
2003. Information regarding hybrid poplar buffer manage-
ment, aboveground biomass and volume growth, above-
ground nutrient and C accumulation, and understory
biomass and diversity can be found in previous studies
(Fortier et al. 2010a, 2010b, 2011; 2012; 2013).
At each site, unmanaged (free-growing) herbaceous

buffers were located within 100 m upstream or down-
stream of the hybrid poplar buffers. These herbaceous
buffers generally consist of a mixture of native and
exotic ruderal species that have naturally colonised the
riparian zone, or that have been sown as pasture forage
(Fortier et al. 2011). The dominant species (in percent
coverage) in such buffers are Phleum pratense, Agropyron
repens, Agrotis spp., Vicia cracca, and Solidago spp. The
unmanaged herbaceous buffers were protected by a fence
for at least two years at the three pasture sites to prevent
livestock grazing.
At each site, a natural riparian woodlot, located as

close as possible from both hybrid poplar and herbaceous
buffers, was selected. These woodlots were located 1 km or

less upstream of the poplar buffers. The 4 riparian wood-
lots were very different among the sites: (1) a 200 year-old
eastern hemlock (Tsuga canadensis) dominated stand at
Bromptonville; (2) a 73 year-old eastern white cedar (Thuja
occidentalis) stand where livestock have complete access at
Magog; (3) a 27 year-old grey birch (Betula populifolia)
stand at Roxton Falls, and (4) a 54 year-old sugar maple
(Acer saccharum) stand at St-Isidore-de-Clifton. The
age of these stands was estimated by coring the domin-
ant trees. Riparian land use characteristics are summa-
rized in Table 5.
In the hybrid poplar buffer land use, a randomized

block design was used at each of the 4 sites, with 4 blocks
(replicates) and 3 hybrid poplar clones: (1) P. deltoides ×
nigra (DxN-3570; also named P. x canadensis); (2) P.
canadensis × maximowiczii (DNxM-915508); and (3) P.
maximowiczi × balsamifera (MxB-915311). A total of 48
hybrid poplar riparian buffer experimental plots were
sampled in this study. These plots are 4.5 m wide and 9 m
long (40.5 m2). Each plot contains 9 trees from a single
clone (3 rows; 3 trees per row).
At each site, four herbaceous buffer plots were sam-

pled (n = 16, 4 sites × 4 plots/site). The size of the herb-
aceous buffer plots was 4.5 m (poplar buffer width) ×
9 m (40.5 m2). At each site, there were 4 riparian wood-
lot plots (n = 16, 4 sites × 4 plots/site). The size of these
woodlot plots was 4.5 m × 9 m (40.5 m2).
In this study, the entire experimental design contains

80 experimental plots covering three types of riparian
land uses: (1) 48 hybrid poplar riparian buffer plots; (2)
16 unmanaged herbaceous riparian buffer plots; (3) 16
natural riparian woodlot plots.

Coarse and fine root sampling
Root sampling was done from mid-June to mid-July
2011. In each plot (n = 80), coarse root biomass (diam-
eter > 2 mm) samples were obtained by excavating pits
(50 × 50 cm by 60 cm deep) and harvesting all coarse
roots in the pits. During the excavations, coarse root dis-
tribution was also measured for three soil depth ranges:
(1) 0–20 cm, (2) 20–40 cm and (3) 40–60 cm. Coarse
root samples where washed with water and air dried.
Coarse root subsamples were collected to determine dry
weight. In the hybrid poplar buffer and woodlot plots,
the pits were located 25 cm away from a representative
tree, so that coarse root samples did not include stump
biomass. The representative tree was the closest to the
average diameter at breast height (DBH) of all trees in
the plot. Diameter at breast height ranges of the sampled
trees for the hybrid poplar buffer and the woodlots at
each site are given in Table 5. In the particular case of
herbaceous buffers, roots having a diameter greater than
2 mm were herbaceous plant rhizomes and they will be
considered as coarse roots in this study.
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In each plot (n = 80), fine root biomass (diameter <
2 mm) samples were obtained by extracting two soil
cores (core diameter = 5.3 cm, core length = 10 cm, vol-
ume of both cores = 220.6 cm3) from pit walls for each
of three depth ranges (10–20, 20–40 and 40–60 cm). In
each plot, two additional soil cores were randomly
extracted vertically from the soil surface (0–10 cm), and
combined with the two cores extracted from pit walls
between 10–20 cm depth, in order to obtain a single fine
root sample for the 0–20 cm depth range. For the 20–40
and 40–60 depth ranges, the two soil cores were com-
bined to produce a single fine root sample per depth.
Fine root biomass samples, which contained both live
and dead fine root biomass, were separated from soil by
hand picking, washed and dried at 65°C to determine
dry weight.

Mineral soil characteristics and carbon stocks and
distribution
Soil sampling was done from mid-June to mid-July 2011.
In each plot (n = 80), soil characteristics and carbon
stocks were obtained by extracting two soil cores (core
diameter = 5.3 cm, core length = 10 cm, volume of both
cores = 220.6 cm3) from pit walls for each of three depth
ranges (0–20, 20–40 and 40–60 cm). For each depth range,
the two cores were combined to produce a single soil sam-
ple. In woodlot plots, the sampling protocol was slightly
modified for the 0–20 cm layer in order to properly sample
the A horizon, which was relatively thin at some sites. In
woodlot plots, one core was extracted vertically from the
soil surface (0–10 cm) and combined with another core
extracted from pit walls between 10–20 cm depth. Soil
samples were air dried and sieved (2 mm). Soil C concen-
trations were determined by the combustion method at
high temperature (960°C) followed by thermal conduct-
ivity detection. These analyses were done by the CEF
lab (Dr. R. Bradley and Dr. W. Parsons) at the University
of Sherbrooke. Soil pH and texture were determined by
the Agridirect Inc. soil analysis lab in Longueuil (Québec).
Methods used are those recommended by the Conseil des
productions végétales du Québec (1988). The determin-
ation of soil pH was made using a 2:1 ratio of water to soil.
For particle size analyses, the Bouyoucos (1962) method
was used. However, due to high analysis costs, particle size
analysis was done on composite soil samples. In the poplar
buffers, soil samples where pooled at the block level at
each site (4 samples were analysed per site). For the herb-
aceous buffers, one composite soil sample was made at
each site by combining soil samples collected in each rep-
licate. The same procedure was used in woodlot plots.
Soil bulk density was determined by drying sieved soil

at 105°C and dividing the soil dry mass by the volume of
soil cores, as recommended by Throop et al. (2012).
Stoniness was assessed visually, by at least two persons,

from the soil pit excavation. For each sampling depth
range, stones (larger than the core diameter) that were
removed by excavation were replaced in the pit to esti-
mate pit volume (in %) that was occupied by stones. In
each plot and for each depth, C stocks and nutrient
stocks were calculated by multiplying soil C and nutrient
concentrations with soil mass, with respect to soil bulk
density and stoniness.

Forest floor sampling
In each woodlot plot that had a LFH Horizon (O Hori-
zon), three LFH samples (50 × 50 cm) were collected at
the end of July 2011. These LFH samples consisted es-
sentially of dead tree leaves, and excluded fine and
coarse woody debris. Subsamples were collected to de-
termine dry weight and C concentrations and contents
of the LFH layer.

Statistical analyses
For data analysis related to hybrid poplars, ANOVA
tables were constructed in accordance with Petersen
(1985), and degrees of freedom, sum of squares, mean
squares and F-values were computed. When a factor was
declared statistically significant (Site, Clone and Site ×
Clone interaction), the standard error of the mean (SE)
was used to evaluate differences between means for three
levels of significance (p < 0.05, p < 0.01 and p < 0.001). All
of the ANOVAs were run with the complete set of data
(4 sites, 3 clones, 4 blocks = 48 experimental plots).
Given that no Clone effect and no Site × Clone inter-

action were detected by the ANOVA on root biomass
and soil variables in the hybrid poplar experimental de-
sign, we have averaged root and soil variables of the 3
clones within a block, in order to produce data at the
block level. Consequently, for statistical analysis, the
number of plots in the hybrid poplar buffer land use
type was reduced from 48 to 16 plots, which is equivalent
to the number of plots found in the two other riparian
land uses (herbaceous buffer and woodlot). Thereafter, a
series of ANOVAs was used to evaluate the riparian Land
use and Site effects and Land use × Site interaction on
root biomass and soil C variables. The model for each
ANOVA included 3 Land uses (hybrid poplar buffer, herb-
aceous buffer and woodlot) and 4 sites (Bromptonville,
Magog, Roxton Falls and St-Isidore-de-Clifton) and 4
replicates of each riparian land use at each site (3 Land
uses × 4 Sites × 4 replicates = 48 plots).
For the presentation of results in figures, abbre-

viations of the names of plantation sites were used
(Bromptonville = Bro, Magog =Mag, Roxton Falls = Rox,
St-Isidore-de-Clifton = Sti). Root biomass and soil car-
bon stocks data were scaled up to the hectare for com-
parison purposes with other studies.
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