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THE BIGGER PICTURE Significant improvements can be made to clinical AI applications when multiple
health-care institutions collaborate to build models that leverage large and diverse datasets. Federated
learning (FL) provides amethod for such AI model training, where each institution shares only model updates
derived from their private training data, rather than the explicit patient data. This has been demonstrated to
advance the state of the art for many clinical AI applications. However, open and persistent federations bring
up the question of trust, andmodel updates have raised considerations of possible information leakage. Prior
work has gone into understanding the inherent privacy risks and into developing mitigation techniques.
Focusing on FL in health care, we review the privacy risks and the costs and limitations associated with
state-of-the-art mitigations. We hope to provide a guide to health-care researchers seeking to engage in
FL as a new paradigm of secure and private collaborative AI.
SUMMARY

Artificial intelligence (AI) shows potential to improve health care by leveraging data to build models that
can inform clinical workflows. However, access to large quantities of diverse data is needed to develop
robust generalizable models. Data sharing across institutions is not always feasible due to legal, security,
and privacy concerns. Federated learning (FL) allows for multi-institutional training of AI models, obvi-
ating data sharing, albeit with different security and privacy concerns. Specifically, insights exchanged
during FL can leak information about institutional data. In addition, FL can introduce issues when there
is limited trust among the entities performing the compute. With the growing adoption of FL in health
care, it is imperative to elucidate the potential risks. We thus summarize privacy-preserving FL literature
in this work with special regard to health care. We draw attention to threats and review mitigation ap-
proaches. We anticipate this review to become a health-care researcher’s guide to security and privacy
in FL.
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INTRODUCTION

The health-care domain has always dealt with privacy concerns

and threats due to the sensitive nature of the information in the

domain. For example, there have always been unauthorized ac-

cess to medical records (which can be mitigated by requiring

string access controls, user authentication, and audit logs),1 in-

sider threats that lead to misuse or inappropriate disclosure of

health-care data (which can bemitigated by specific training, im-

plementing policies that allow data access to employeeswhere it

is needed, and monitoring access to data),2 and data breaches

and/or cyber attacks (which can be mitigated by encrypting

data, implementing robust network security policies, and regular

securitymonitoring).3 Although these challenges are critical, they

have been documented and identified and are well studied. For

the purposes of this review, we will be focusing on the use of

advanced computational techniques in health care, where the

privacy issues are more nuanced and their associated mitigation

strategies are not thatwell studied compared to other fields.4 The

use of such tools (such as artificial intelligence [AI]) canmake ad-

dressing these concerns more complicated due to the possibility

that interactions with the application may leak information about

the data used to train it.3 Since health-care data are almost al-

ways tiedwith specific regulatory provisions,5–7 privacyconcerns

of AI applications in this domain need a deeper understanding of

the technical issues at hand, especially to provide guidelines for

computational researchers developing algorithms and solutions

in this field. This article aims to provide privacy and security

guidelines for both computational researchers developing AI so-

lutions in health care and regulatory authorities, so that they are

mindful of both traditional information security concerns.

AI approaches have shown great promise for augmenting

clinical workflows.8 However, large and diverse datasets are

required to train robust and generalizable AI models for clinical

applications.9–15 One method to acquire sufficient data is

through multi-institutional collaborations, currently following a

paradigm of centrally sharing data, also known as ‘‘data pool-

ing’’16–20 (Figure 1A). However, such centralized data collection

is not always possible due to various factors, such as patient pri-

vacy concerns, prohibitive costs of central data management

and storage, and institutional or even regional data-sharing pol-

icies.21,22 Federated learning (FL) is an alternative approach to

the data pooling paradigm for multi-institutional collaborations

that begins to address some privacy concerns, since model

learning is performed locally at each institution and only the re-

sulting local model parameters are shared (Figure 1B).

Although FL allows for training an AI model across private data

without requiring that data to be shared, there are still questions

that remain regarding the need and the way one needs to protect

against leakage of information about these private data via the

model updates shared throughout the FL workflow. There is

hope that through the incorporation of additional security and pri-

vacy technologies into FL, a level of security and privacy can be

achieved that will enable a greater degree of trust in the resulting

federation. Many factors in addition to trust can prevent institu-

tions from participating in FL training, such as coordination and

overhead of data preparation, institutional information security,

and compute hardware requirements. However, the use of more

secure and private FL frameworks toward increasing trust in the
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system is expected to enable a more diverse collection of clinical

institutionswillingparticipate inFLprojects. Themodels that result

from such collaborations can potentially benefit from the data di-

versity, resulting in better model generalizability. In particular,

secure and private FL has hope to greatly benefit collaborations

in domains with stringent policies around data sharing, such as

is the case for health care.14,21–28 Some literature exists reporting

ongeneral vulnerabilitiesofFL29,30 andevenexploringprivacyand

security concepts related to FL,31–33 albeit without providing a

focus on their implications in the health-care domain. We further

note a survey of open-source frameworks enabling FL, although

without adequately exploring concepts of privacy.34 Thus far,

works that survey privacy issues related to FL in medicine26,35–39

haveprovideddetails about FL in health carewhile not adequately

expanding on the specific privacy threat associated with each

attack.

In this work, we provide an overview of the current privacy

threats and associated threat mitigations for FL workflows40

while keeping the health-care context in mind. We summarize

the key factors involved in determining the nature of privacy viola-

tion that can be related to each threat. Finally, we categorize the

privacy threat mitigation technologies into distinct categories,

and for each group we discuss what threats they address, as

well as the costs associated with each mitigation technique.

We hope that model developers having domain expertise can

use thiswork tomakemore informeddecisionswith regard to pa-

tient privacy when using FL to train their models, and we hope to

provide the context necessary for researchers to design experi-

ments that most effectively advance our understanding of the

problems and potential solutions for their domain.

In order to facilitate the focus on privacy concerns to FL de-

ployments specifically in the health-care setting, we start by

briefly introducing the concept of FL in health care. We then

list the primary assets in AI that need to be protected in such

an FL schema and then proceed with introducing a taxonomy

of the potential threats to these assets, using the well-known

confidentiality, integrity, and availability (‘‘CIA’’) triad.41 Notably,

for each compromise, we consider the way in which it could

adversely affect the collaborators. Finally, we discuss themitiga-

tionmethods that exist for these threats by considering how they

reduce the impact of the threat, as well as the costs that are

associated with the usage of the mitigation.

FEDERATED LEARNING

FL describes a collaborative approach to train AI models across

decentralized collaborators (e.g., client servers on health-care

sites) without directly sharing any training data between

them.22–25 This approach differs from the standard/traditional

approach followed during training of AI models, which typically

assumes that the data and model reside on a single, centralized

location (see Figure 1 for an illustration). FL allows multiple insti-

tutions to train a single aggregatemodelwithout explicitly sharing

any individual institution’s patient data outside of that institution.

For example, to train a neural network (NN) with FL, an NN ar-

chitecture needs to be chosen and code to implement training on

this architecture incorporated into the system code to be distrib-

uted to all collaborators. We consider the use case of tumor

boundary detection14,22,24 for our explanation, where the trained



Figure 1. Illustration of different
collaborative learning approaches
(A) Using a data-sharing paradigm, where data
from the three individual data custodians are shared
to a central data aggregation site for training and
(B) using federated learning, where the training
happens at each individual data custodian and only
the model updates are shared to a secure aggre-
gation server for combination.
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AI model has an image as input and an image as output. The

input image represents a clinically acquired scan, and the output

is meant to identify regions of pathology associated with the

presence of a cancerous tumor. The typical FL system consists

of multiple participant sites, all independently connected via the

network to a (central) ‘‘aggregator’’ node as depicted in Figure 1.

To start the process, model initial weights are chosen at the ag-

gregator as the initial global model and distributed via the

network to all participants.

A typical ‘‘round’’ of federated training proceeds as follows. All

participants perform training and validation on the aggregate

model using their local data and compute resources and send

their local model update as well as local validation scores to the

aggregator node. The aggregator then aggregates all received

local model updates and local validation scores, to form the up-

dated aggregate model and aggregate validation scores for

that round. This updated aggregate model is then sent back to

all participants to initialize the next round of training. The com-

plete course of FL training consists of multiple FL rounds, with

a stopping/convergence condition and model selection criterion

enforced by the aggregator using the model validation scores.

We take the opportunity to point out that model updates and

validation scores should be viewed as a potential way to obtain

information about the training input data. The local training

described above consists of iteratively (1) passing batches of

input images into the model, (2) measuring how well the model

did at predicting the correct pathology locations, and (3) adjust-

ing the model weights using small corrections obtained through

theNN backpropagation process. Each batch of input data shifts

the model weights using the information in that batch for perfor-

mance to increase. This influence can potentially lead to informa-

tion about the batches being detectable in the resulting model

weights, as we will see in subsequent sections. The same is

true for the validation metrics, although to a lesser degree. The

intuition here is that patterns may be unique enough for one

particular data sample that the results of training or validating

on it could indicate its presence.

Bybeing anapproach inwhichdata fromone institute arenever

seen by another, it helps alleviate someprivacy and security con-

cerns, especially when dealing with sensitive medical data.25,42

This potentially enables collaborations to be formed with larger

andmorediverse trainingdata,which can result in trainedmodels

that generalize better.22,43 In most FL algorithms, each institution

independently performs training on their respective (local) data
and provides the results of their computa-

tion (usually weights of a model) to be

incorporated by the FL workflow (such as

peer-to-peer aggregation or based on an

aggregation server25; see Figure 1 for an
illustration of FL using an aggregation server). Details of the

typical central aggregator-based version that we provide as an

example above can also differ depending on the implementation,

for example, howmodel aggregation is performed or how the cli-

ents are selected in each round.44–47

FL has the potential to play a critical role in the next generation

of privacy preservation strategies for health care, as evidenced

by several recent high-impact studies.14,22,24,25,27,48,49 The de-

gree towhich an FL system can be thought to be ‘‘secure and pri-

vate’’ largely depends on the additional security and privacy

technologies that it incorporates into the system. Concerns

need to be addressed to mitigate malicious code execution,

such as processes running at the collaborating institution’s infra-

structure that ex-filtrate their raw data or execute malicious

forms of training. However, there are also threats from collabora-

tors during FL that may attempt to extract information about the

training data via the model updates that are shared between col-

laborators in the workflow. These updates may indeed leak infor-

mation if in the hands of an adversary, as was suggested above.

SECURITY AND PRIVACY FOR FL IN HEALTH CARE

Importance of privacy in health care
Privacy attacks during the course of an FL collaboration result in

exposure of data, model, or code (see Figure 2). Data privacy in

health-care scenarios is crucial toward ensuring confidentiality

and ethical handling of protected health information (PHI). Iden-

tifying robust mitigation techniques corresponding to specific

threats, as well as implementing security measures, adopting

encryption technologies, and adhering to privacy regulations

(such as Health Insurance Portability and Accountability Act

[HIPAA] from the United States5 and General Data Protection

Regulation [GDPR] from the European Union6 or Digital Informa-

tion Security in Healthcare Act [DISHA] from India7), is essential

for safeguarding sensitive patient information and maintaining

trust in health systems. Key health-care scenarios relevant to pri-

vacy preservation related to FL include (1) electronic health re-

cords (EHRs), which contain verbose textual data about a pa-

tient’s medical history, procedures, diagnoses, medical scans,

treatments, andmedications, exposure of whichwould be a sub-

ject to patient confidentiality loss; (2) wearable devices, which

collect health-related, fitness, and nutrition patient data directly

associated with PHI; (3) local/institutional data repositories

such as Biobanks and picture archiving and communication
Patterns 5, July 12, 2024 3



Figure 2. Illustration of overall privacy threat
categories and their associated risks for
stakeholders in a federated learning system
The ‘‘system-level threats’’ (in the green box) target
the data and model; the ‘‘poisoning’’ attacks (in the
orange box) attempt to expose the data, model, and
code; and ‘‘information extraction’’ (in the blue box)
targets model inversion, membership inference,
data attribute inference, and model extraction.
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systems (PACSs), including both data from routine clinical prac-

tice, clinical trials, and emergency services and unpublished

research outcomes; (4) health insurance/billing; and (5) health-

care policy.

Assets
There are threeAI-specific assets to considerwith regard to secu-

rity and privacy around FL deployments. These are (1) the entire

data cohort to be used for training; (2) the quantitative perfor-

mance evaluation metrics that signify model performance, gener-

ated against both the local and the aggregated model updates;

and (3) the model parameters themselves, for both the local

and the aggregated model updates. In addition, the system on

which the AI system is being deployed includes three additional

assets that should be considered: (1) the hardware on which all

the computations (i.e., training and FL aggregation) occur, (2)

the actual source code for model training and FL execution,

and (3) any additional metadata or configuration information

that can be defined either in memory or as files on disk. Table 1

offers a summary of each asset and the properties we propose

to address in this work. In the following sections, we will proceed

through each of the CIA properties and elaborate on their mean-

ing.On a high level, hardware protection is expected to alreadybe

in place, participants are expected to report correct validation

metrics with what we see as minimal privacy consequences

otherwise, and we see minimal privacy impact to participants

dropping out and/or network connections being lost and so do

not address issues of unavailable FL system resources.

Confidentiality
By ‘‘confidentiality’’we refer to thedegree towhich theasset ishid-

den fromothers.Asanexample, if collaboratorAsends theirmodel
Table 1. Security and privacy assets in an FL system, including

the CIA properties we propose to address in this work

Asset Confidentiality Integrity Availability

Training data U U 7

Quantitative metrics U 7 7

Model parameters U U 7

Hardware 7 7 7

Source code U U 7

Additional files or

information

U U 7
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update to the aggregator using transport

layer security (TLS), then A has some assur-

ances as to the confidentiality of the update

while it is being transmitted to the aggrega-
tor.Once the aggregator receives the updateand the decryption in

TLS is performed, the degree to which the update remains confi-

dential depends on what the aggregator code logic does with

the update (for example, it could simply broadcast it to others),

as well as how protected the aggregator processes are (e.g.,

code, memory, hardware instructions) from inspection by other

processes and users on the aggregator infrastructure. These is-

sues are exacerbated in the case of peer-to-peer aggregation

methods,25 where each collaborator performsweight aggregation

on the model updates received by a peer-collaborator.

The confidentiality of any part of the data cohort andmodel pa-

rameters is considered here, with a break in confidentiality of

either representing either a privacy violation or a leak of intellec-

tual property (IP). Exposure of the complete data cohort in gen-

eral can be a privacy violation, and model parameters can be

used in an effort to reverse engineer training data.50,51 Both

model parameters and data can be considered IP, as both have

value to organizations.We also consider exposure of approxima-

tions to these assets (i.e., data andmodel parameters) as a break

in confidentiality. In the health-care setting, an approximation of a

medical image may violate privacy just as much as the originally

acquired image, and an approximation tomodel parametersmay

preserve enough model utility as to continue to hold a great deal

of value as IP. The confidentiality of quantitative evaluation mea-

sures of model performance will also be considered, because

such scores can be used to approximately recover the parame-

ters of the model being evaluated, which, as discussed earlier,

can further lead to approximate recovery of the underlying data.

Although physical isolation of hardware as well as the confi-

dentiality of system code and additional files may be a general

concern, they are considered out of the scope of this review,

which instead focuses on the privacy and security aspects of

medical data to be used in FL.

Integrity
By ‘‘integrity’’ wemean the degree to which the asset is precisely

what it was expected to be. As an example, collaborator A may

want to establish the integrity of the code running on the

compute infrastructure of collaborator B. In some rare cases,

though, A may trust B and their infrastructure to the extent that

A is confident of such integrity.

The integrity of system hardware, i.e., being able to rely on the

proper execution of hardware for a given hardware state, will be

considered as out of scope of this work. This work shall instead

focus on the integrity of training data and model parameters, as
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well as the integrity of systemcode and additional files andmeta-

data. Although the integrity of model validation scores could be a

concern in the general setting, we will not address this issue

here, as the corruption of such scores would primarily be

involved in an attack that was attempting to alter model selection

(as such scores inform that process) and, as such, is not a signif-

icant concern in the health-care domain.

Availability
By ‘‘availability’’ we mean the degree to which an asset is avail-

able to use. As an example, a local model update may not be

available at the aggregator if the network infrastructure at that

collaborator is down, or the entire federation might get

hampered if the network access at the aggregator level is lost.

Addressing availability issues for all listed assets in the previ-

ous section is considered out of the scope of this work, as we

start with the assumption that the networking infrastructure for

all collaborators in an FL system focusing on health care data

is controlled by the respective clinical entities and, as such, is

reliable and stable throughout the computation process.

THREATS TO PRIVACY DURING FL

In this section, we will be discussing the various threats to pri-

vacy in an FL system, an illustration of which can be found in

Figure 2.

System-level threats
The threats in this category involve an adversary gaining access

to either the rawdata or themodel weights. The adversary can ac-

quire direct access through different means, such as privilege

escalation and/or physical access, but always ends up with the

requisite assets in their raw exact form. In contrast, all other threat

categories in this section involve an adversary deriving approxi-

mations to these raw assets, such as extraction of training data

information via the model weights52 or manipulating their local

data and/or training algorithm to exacerbate such an attack.

(1) Data ex-filtration: this involves an adversary obtaining ac-

cess to the raw data (such as health-care scans or med-

ical records) of one or multiple collaborators. The nature

of privacy violation in this case is given by a patient’s right

to not have their data given to anyone whom they did not

explicitly authorize to have them.5,6

(2) Model ex-filtration: this involves an adversary obtaining

access to the weights and biases of a local model update

or global model aggregate(s). The primary concern would

be either that the model represents IP or that the model

could be used to extract information about the raw data

used to train it.52 Therefore, the nature of the privacy viola-

tion in this case can be the peculation of IP or could be any

of the privacy violations5,6 that can come from a success-

ful attack to extract information about the training data

from the model.
Information extraction
There are different types of privacy attack objectives related to

the extraction of information about the training data from the
model weights during, or at the conclusion of, the model training

process. Multiple studies show that rare or unique parts of the

training data are unintentionally retained by NNs.52–54 The

trained model weights transferred from a local institution (as

well as the aggregate models they become a part of) can there-

fore be potentially exploited by any user with access to the

model, taking advantage of this unintended memorization to

gain sensitive information about the dataset being used by other

collaborators in a federated setting. Some of the examples of

such threats are illustrated below, and clinical researchers

should consider the privacy impact of each of these threats inde-

pendently.

After the attacks that use model access to approximate infor-

mation about the data used to train it, we include one more

attack that instead uses access to the model validation scores

to approximate the model itself. This is an attack that is of

concern in a federation that was otherwise acting to control ac-

cess to the model (as IP) and, in addition, is a concern because

such an approximate model can also be further used to approx-

imate the training data themselves.

(1) Model inversion: such attacks involve an adversary with

the ability to query the model or observe a model update,

constructing a data sample meant to approximate an

actual sample in a collaborator’s dataset.55–57 Although

the accuracy of these reconstructions can vary, the expo-

sure of such a reconstruction may violate a patient’s

privacy if features in the reconstruction are highly corre-

lated to the original samples (for example, chest radio-

graphs48). One form of this attack is carried out by an ad-

versary with access to any version of the model and has

been demonstrated outside of the FL context. Fredrikson

et al.56 showed how an adversary may use the prediction

confidence values to approximate associated faces in a

facial recognition system. Zhang et al.58 demonstrated

that an adversary with access to the model weights can

approximate training examples for various classes using

some auxiliary knowledge, such as blurred images from

each of those classes. Other forms of this attack utilize

single FL model updates from a particular collaborator

and may make certain assumptions about the setting

and attempt to approximate aspects of local training,

such as batch normalization statistics or what labels

were used for the batches.59 State-of-the-art versions of

these stronger attacks have demonstrated pixel-perfect

reconstruction of images60 when the attacker has access

to local updates created with few samples, so that each

sample has more relative influence. However, most FL

round model updates are processed using many local

data samples so that individual sample influence is

reduced. In these cases, it is more difficult to reconstruct

an exact training data sample from a local model update

and even harder to reproduce one from the global aggre-

gate model(s) it is included in. An overview of model inver-

sion attack implementations and defense approaches is

already described in prior work.61 Advancements in these

attacks continue to be put forward, and works that

demonstrate such attacks in the setting of FL for medical

models that demonstrate successful approximation of
Patterns 5, July 12, 2024 5
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hidden batch normalization statistics, for example,62

acknowledge the importance of understanding such

threats in these settings.

(2) Membership inference: membership inference is the pro-

cess bywhich an adversary has possession of a particular

data sample and is attempting to infer whether it was

included in the training set of the model.50,51,63 Exposure

of whether a specific patient’s data sample was used in

training may be sensitive information, for example, if the

presence of that sample implied something about the

sample custodian (i.e., the dataset consisted of informa-

tion about known felons or the dataset consisted of pa-

tients with a certain type of cancer). Success in accurately

predicting which samples were involved in training a

model is correlated with the degree to which a model en-

codes sample-specific information during training.64,65

Due to this fact, membership inference attack success

measurements are thought of as building blocks for

state-of-the-art tools for generically determining the

amount to which a model leaks information about its

training data.66 Clinicians and researchers should there-

fore consider successful membership inference attacks

as a privacy concern, regardless of how compelling the

concern is regarding the leakage of membership informa-

tion alone. Such success may indicate that other more

concerning attacks may be successful as well. For more

details regarding the various membership inference at-

tacks and defenses, see Hu et al.67.

(3) Data attribute inference: instead of attempting to recover

an entire data sample, this type of attack is characterized

when an adversary attempts to recover only a subset of

the data attributes from particular samples in the training

set or, alternatively, the adversary attempts to learn attri-

butes of the training set as a whole (such as aggregate sta-

tistical information). Suchattackshavebeendemonstrated

outside of the FL setting,68 as well as within the FL setting

with the attacker being an FL participant that only has ac-

cess to the aggregated model,50 although the use of alter-

native aggregation functions other than a simple weighted

average could make this more difficult. Here, the attacker

mayestimate the accuracyof the reconstruction over other

possible alternate values for the unknowndata fields.Mea-

sures of confidence in the reconstructionmay play a role in

the impact of its exposure. Take the case of an attack to

disclose the value (‘‘true’’ or ‘‘false’’) of the attribute indi-

cating a positive diagnosis of a particular medical condi-

tion. A confidence measure of 80% for such an attack,

conditioned on a specific gender, location, and age of pa-

tient, may be used to assert that 80%of the samples in the

training set corresponding to that specificgender, location,

and age had a positive test result, which (depending on the

characteristics) could be considered as exposure of PHI

(defined as any information about health status, provision

of health care, or payment for health care that is created

or collected by a covered entity [or a business associate

of a covered entity] and can be linked to a specific individ-

ual5) and, hence, identifying specific subjects from the

training data. Such confidence measures have indeed

been considered in previous studies and are easier to inter-
Patterns 5, July 12, 2024
pret when the feature space is relatively limited, such as

when using categorical data with numerical digits (demon-

strated by the attack example seeking to recover social se-

curity numbers52), andalternatives tostandardmodel aver-

aging, such as having collaborators withhold a subset of

their local update, have been demonstrated to influence

the effectiveness of such attacks.50 Such confidencemea-

surementswould bemore challenging to obtain for training

sets containing only high-resolution images, for example.

(4) Model extraction: the traditional forms of this attack use

the ability to obtain model outputs associated with arbi-

trary inputs chosen by the adversary69,70 in order to esti-

mate the model weights after a number of such queries.

This is especially related to ‘‘black box’’-style attacks,

where a black box system71 (basically, any system that

does not expose any aspect of the inference process,

starting from the data processing to the model weights,

and only provides inference results) is used to generate

outputs for multiple inputs in the form of predictions or

validation scores. Depending on the amount of informa-

tion provided by validation scores during FL training,

such attacks based on validation scores alone may be

more limited in their ability to approximate the model pa-

rameters, and with increasing numbers of input samples,

the adversary can obtain a closer approximation to the

model under attack. Such efforts to attain model weights,

despite an appearance that access to such weights is

restricted, could result in loss of valuable IP to a partici-

pant during a medical model federation.
Poisoning
This type of threat is specifically relevant for an adversary that is

part of an FL system, such as a collaborator. A collaborator during

the FL training process can maliciously alter their computations

(by virtue of changing the local code, or data, or model) in order

to magnify the effect of one of the attacks listed above on the pri-

vate assets of others in the system, for example, by increasing

data memorization. As such behavior serves to modify the model

behavior in a malicious way, this falls under the category of model

poisoning. Such advanced attacks are demonstrated for stan-

dard FL (where aggregation is simple model averaging) in Nasr

et al.51 and Hitaj et al.72 and provide for a significant increase in

the severity of the baseline attack. Alternative mechanisms for

model averaging, such as limiting the portion of the local updates

shared to the aggregator or employing a more robust aggrega-

tion, such as median rather than mean, can have an effect on

the adversary’s success but also affect the convergence proper-

ties of the global model. As such, these alternatives need to be

considered together with the potential drawbacks to final model

utility. Therefore, model poisoning can be considered fundamen-

tally as a security attack by nature, since the primary attack vector

is system asset corruption.

APPROACHES TO MITIGATE PRIVACY THREATS
DURING FL

The amount of information that is exposed by the attacks

described in the previous section can depend on the adversary’s



Figure 3. Various mitigation strategies and
the respective privacy threats they aim to
address
The ‘‘controlled-use protection’’ mechanisms of
secure multi-party computation and homomor-
phic encryption are used to mitigate the system-
level threats. The ‘‘free-use protection’’ mecha-
nisms of differential privacy and privacy-aware
model objective can be used to mitigate against
information extraction. Confidential computing,
on the other hand, can be used to counteract
poisoning attacks in addition to the system-
level threats and information extraction. The
computational performance decreases as we
move from secure multi-party computation to

homomorphic encryption, confidential computing, differential privacy, and, finally, the privacy-aware model objective, being the most computationally
inefficient.
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level of access to the various assets in an FL system. As a basic

requirement for considerations in health-care information tech-

nology (IT) infrastructures, we will assume that all FL systems

will incorporate basic security measures, such as authentication

to verify identities, support for encrypted communication, and

other access control mechanisms meant to prevent exposure

of assets to those who do not need to use them. However, since

FL is a collaborative procedure, involving many parties who do

need to handle assets in the system, the focus of the threat mit-

igations in this paper is to share assets and computational duties

on those assets whilemitigating the threats that exist when doing

so with potentially untrusted parties. As an example, this in-

cludes the use of the final model, hosted by or with an untrusted

user. As mentioned in the last section, such access can be suf-

ficient for extractingmodel IP and/or carrying out membership or

attribute inference attacks.

Some mitigations provide confidentiality of data while being

used for computation, and others provide assurances that

system code preapproved by participants matches identically

to that being used at execution time. In addition, when an

asset will be exposed due to requirements for its use, there

are technologies to employ before the release of that asset

to help mitigate a potential information extraction attack.

We therefore consider two broad non-overlapping categories

for the technologies that can be used during FL to mitigate

the threats discussed in the previous section, which can be

combined as needed (for an illustration, please refer to

Figure 3): (1) controlled-use protection and (2) free-use protec-

tion technologies.

Controlled-use protection
These methods perform little to no alteration of the asset, but

instead provide away for potentially untrusted entities to perform

computations on those assets without accessing the assets

themselves, potentially controlling what computations are per-

formed. None of the solutions in this category provide any pro-

tection against attempts to reverse engineer information from

the outputs of the computations. For example, cryptography-

based algorithms can be used to carry out remote algorithm

execution with limitations on exposure of information to the

remote parties during their calculation tasks (software-based

confidentiality, such as homomorphic encryption [HE]).73–75 In

addition, specialized hardware solutions can provide computa-

tional resources while limiting the exposure of data used in the
computation, by incorporating integrity checks during code

execution to ensure that the appropriate code is being executed

(hardware-based confidential computing [CC] with trusted

execution).76–78

The first two solutions belonging to this category, i.e., secure

multi-party computation (SMPC) and HE, allow for outsourcing

computation with confidentiality of the inputs, intermediate re-

sults, and outputs and are implemented via software. These so-

lutions may or may not provide assurances as to the integrity

(correctness) of the computation. The other solution (i.e., confi-

dential computing) is a hardware-based approach providing

confidentiality of inputs, intermediate results, and outputs, while

also providing assurances as to the integrity of the computa-

tion,14 though usually with different assumptions as to in which

circumstances protection is provided. CC solutions can gener-

ally help mitigate all threats listed in the previous section. Due

to this broad threat coverage, combining CCwithmitigation stra-

tegies that tackle broad information extraction threats (i.e., free-

use protection category) can ensure the most robust security

design. None of the solutions in this category provide any protec-

tion against reverse engineering of inputs to the computation it-

self. In general, there is a cost associated with these solutions

that comes in the form of either increased computation and

communication or special hardware requirements, in the case

of CC.

Secure multi-party computation

SMPC73–75 is an umbrella term that refers to a set of algorithms

used to allow multiple entities to collectively calculate some

function with controls as to what is exposed to the individual en-

tities regarding both the inputs and the outputs of the function.

As an example, suppose we wanted the aggregator in an aggre-

gator-based FL22,24,25 to know the output of a function of two in-

puts, and we want this to be computed using an input from each

collaborator of a two-collaborator federation. The most basic

example of an SMPC protocol here would be to use the trusted

third party (TTP) protocol79 to allow a third party (trusted by each

collaborator and the aggregator) to take the inputs from each

collaborator and send the output of the function applied to these

inputs to the aggregator, without sharing either collaborator’s in-

puts nor sharing the output to anyone except the aggregator. Us-

ing TTP, each collaborator would not learn anything new by

participating in the protocol, and the aggregator only learns

whatever can be deduced from the output of the function that

was provided to it. Due to its simplicity, as well as the minimal
Patterns 5, July 12, 2024 7
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information exposure involved, TTP is the benchmark protocol

used to evaluate the properties of all other SMPC protocols.79

Ongoing research is exploring the use of SMPC as a privacy

enhancement to FL on medical data either by helping to prevent

malicious models or by improving the confidentiality of model

aggregation80,81 or by making progress on the overhead that is

incurred by its use.82,83 These protocols can incur high compu-

tational and network communication overhead costs, as signifi-

cant computation can be required to obfuscate information by

encrypting/encoding and splitting into parts to avoid recovery,

and significant communication protocols can be involved in or-

der to coordinate the compute on the information pieces as

well as combining the results to recover the function output

without revealing information to unwanted parties in the process.

Homomorphic encryption

Although SMPC allows multiple institutions to jointly evaluate a

function without needing to share their respective private inputs,

the design of an SMPC protocol needs to take into account the

specific function whose output is desired from the protocol, and

a good deal of the protocol itself is dedicated to obfuscating the

inputs. In contrast, HE84–87 is a type of data encryption (and

therefore provides cryptographic guarantees of confidentiality)

that allows for generic computation on the data when in its en-

crypted form. The result of a computation on the encrypted

data, when decrypted, is identical (or very close) to the result

of the same computation performed on the unencrypted data.

One benefit over SMPC is that multiple adversaries cannot

collude to significantly increase the threat. However, the encryp-

tion for HE requires keys, and so keymanagement is a necessary

consideration here. HE by design provides a robust privacy so-

lution for the application of FL.88 However, almost all efforts in

this regard suffer from a huge computational cost, and even an

incremental increase in the data size (or in the NN layers) leads

to an exponential increase in runtime. As such, more work needs

to be done on improving the computational efficiency to render

this approach practical for modern NN architectures. Although

we list this as a software-based approach, efforts are ongoing

to provide hardware acceleration for HE89,90 (https://www.

darpa.mil/news-events/2021-03-08), which has the potential to

significantly reduce the overhead of this solution. It can be said

that HE in its present technological development is most suited

to those applications that are not time sensitive, where it can

offer an extremely secure form of privacy preservation solution.

A recent work by Froelicher et al.91 shows the success of HE in

providing truly private federated evaluation for applications

within oncology and medical genetics, and work by Chen

et al.92 demonstrates success using HE for model aggregation

during FL when transfer learning is used to reduce the size of

the model weights that are processed using HE.

Confidential computing

In the previous points, we described methods that use encryp-

tion, encoding, or secret sharing to increase data confidentiality

during computation. Alternatively, such confidentiality can also

be obtained by means that are hardware enabled with so-called

hardware-based CC with trusted execution,78 though usually

there are different assumptions here as to in which circum-

stances protection is provided. In CC, processes can be run in-

side so-called ‘‘enclaves’’ that essentially serve as a trusted third

party in the sense that we used in the points related to SMPC and
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HE (not evenprivilegedusers on the systemcanaccess themem-

ory or alter the execution). Code to run an algorithm can be put

into the enclave, encrypted data can be passed in and unencryp-

ted inside the enclave, then the algorithm can execute on the in-

puts and the result can be encrypted and passed out. In contrast

to the previous solutions, these enclaves generally have the abil-

ity to attest to the fact that the code run inside the enclave was

precisely what was expected, providing assurance as to the cor-

rectness of the result. Trust in theCC itself depends on trust in the

hardware vendor that designs and distributes it, and trust in

attestation will depend on trust in those who implement the ser-

vice that carries it out. This feature allows for trust in all compo-

nents of the FL system provided they are run with CC.26 For

example, during FL, running local training at a particular collabo-

rator with CC can help prevent an insider adversary on that

compute infrastructure from modifying their training code to

compute updates using only a few data samples, in order to in-

crease the easewithwhich another adversary could extract infor-

mation about those fewsamples from the local updates sent from

this collaborator. In addition, CC is more scalable and provides

faster computation time compared to SMPC and HE.

Free-use protection
These approaches do nothing to protect data confidentiality

while the computations are conducted and do nothing to ensure

that the computations proceed as intended. However, they have

the advantage of limiting howmuch of the result of the computa-

tion can be used to infer information about the original inputs.

Therefore, solutions in this category are ideal for mitigating the

threats of the previous section in the information extraction cate-

gory. The costs associated with these solutions are increased

computation and a reduction in the asset’s utility due to its modi-

fication. For example, we will see that differentially private model

training is a modification of a standard training algorithm that re-

duces the ability for someone with free access to the resulting

model to carry out an information extraction attack that exposes

information about the training data used to create it.

Differential privacy

When using the mitigation strategies described in the previous

section for model training during FL, we are able to prevent

data exposure during training. However, these techniques do

nothing to prevent an adversary from using the trained model

to reverse engineer information about (memorized/learned)

training data, as is possible in a membership inference attack.93

Differentially private model training, however, is a common

approach toward mitigating the degree to which a model mem-

orizes individual contributions to the data during training. It does

so by introducing randomization during training to obfuscate the

influence of these individual contributions while being able to

learn over the data as a whole. DP algorithms come with privacy

guarantees that relate to the likelihood that any single data point

can be detected.93

An algorithm can be loosely defined as ‘‘differentially private’’ if

the output of the algorithm cannot be used to distinguishwhether

a particular contribution to the data is present in the dataset used

as input for the algorithm training.93 Common examples of what

type of contribution DP considers are those of a single data re-

cord or contributions of whole collaborator datasets. While the

concepts surrounding DP were generally developed for use in

https://www.darpa.mil/news-events/2021-03-08
https://www.darpa.mil/news-events/2021-03-08
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data analytics, DP training algorithms have become a popular

method for addressing user privacy concerns in AI.94,95

In the federated setting, DP algorithms can be used indepen-

dently to train local model updates (local DP FL) or instead for the

global consensus model aggregation (global DP FL). In local DP

FL, each participating institution applies a DP training algorithm

to perform their local training.96 Here, the local model updates

sent to the aggregator are produced with a DP privacy guar-

antee. This may be desired when the entity administering or

running the aggregator is not trusted to prevent privacy attacks

on its infrastructure. For global DP FL, the aggregation of model

updates is made DP but there may be no guarantee with respect

to the privacy of the local model updates handled by the aggre-

gator.97 If trust in the aggregator infrastructure is not already es-

tablished, this may be done through the use of privacy solutions

discussed in the previous section. Global DP FL is preferable to

local, as it allows more data (all collaborator updates) to be com-

bined before noising, which in principle improves the utility that is

obtained for a given privacy level.98

Although DP has started gaining traction for deep-learning ap-

plications in medicine, it comes at the cost of a reduction in

‘‘model utility,’’ which defines how well the model generalizes

to new data when deployed,99 as well as increased computa-

tion.94 The model utility reduction comes from the noise addition

during the training process, and the increased computation re-

lates to potential changes in the way the training utilizes the un-

derlying computational framework,100 in addition to the potential

need for more rounds of training. Importantly, DP training in FL

could inhibit the use of data quality checks from specific collab-

orators, as privatized local model updates at the aggregator may

mask signals that would otherwise indicate issues.

Survey articles for DP101–104 can help to summarize the

various approaches, best practices, and future research needed.

However, more work is needed to understand the trade-offs

associated with specific use cases, such as how much utility

loss will be incurred at a given privacy level. We find in recent

work105–109 on DP FL training in medicine that federated training

using DP (at e = 4, for example) can reach within 5% of the

scores that would be achievable if DP were not used. As more

research is done across different datasets and model architec-

tures, a better understanding will form around how well these

initial results will generalize. The privacy achieved by a DP algo-

rithm should also be carefully considered. Most papers explore

only e values (lower indicates more privacy) greater than 1, and

many explore e values that are much greater. Since the worst-

case odds of privacy exposure for an e-DP algorithm is ee : 1,

the value e = 4, for example, is associated with worse than

50 : 1 odds of privacy exposure.

Another complicating factor is the difficulty for data custo-

dians to understand the privacy guarantee associated with the

use of DP training, as it is very technical. In addition, the likeli-

hood of specific privacy threats is even less likely to be under-

stood until more research is done. This makes the proper bal-

ance of utility loss against true privacy concerns difficult to

reason about, which is a very important aspect for the design

of a practical solution.

Privacy-aware model objective

An alternative to making model training DP during FL is to incor-

porate the incentive against susceptibility to privacy attack into
the training objective. Here an ‘‘attack model’’ is used during

training in order to simulate a privacy attack on the primary

model. Adversarial training is then performed at each collabo-

rator during each round, alternating between improving a locally

held attack model and improving the primary model by attempt-

ing to minimize a privacy-aware model objective (PAMO) (for

example, the sum of the primary model loss and a measure of

success for the attack model).110,111 Such approaches may uti-

lize mutual information estimations in order to establish a mea-

sure of success in minimizing information leakage or could use

other measures to determine this success. The privacy protec-

tions afforded by this approach are similar to that of DP; how-

ever, the measure of protection is usually empirically based, in

contrast to the theoretical privacy guarantee provided by DP.

The costs associated with this approach are that of potential

loss in model utility as well as potentially increased computation

and overall local training required, as the local training is more

complex.
An information conservation approach
In this section we describe a general approach that is meant to

address the concern of information leakage frommodel updates

concerning the individual data samples used during training. The

mitigation measures discussed here are ones that restrict or

obscure information during training, but without formal analysis

on how such measures affect information flow. As such, an

empirical assessment of the utility loss in the model as a result

of each technique must be weighed against the ease of use, as

well as any loss of privacy (calculated with privacy risk scores

coming from empirical privacy vulnerability tools such as those

discussed in Murakonda and Shokri66 and Jayaraman and

Evans112).

Some examples are as follows:

(1) Privacy-goal-oriented training methods: perform local

training in a way that has been demonstrated as resistant

to subsequent privacy attacks against the data used in

training. In this approach, the training is tailored (e.g., by

loss function or data pipeline specifications) to reduce

memorization of the training data during training. Such ef-

forts are described in Liu et al.113 The PAMO mitigations

of the previous section that are not accompanied by a

measure of privacy afforded by the training fall into this

category.

(2) Partial weight sharing: instead of sharing all the weights

of the model to the aggregator during FL, only a prede-

fined percentage (largest components) of the model is

shared.43,49
DISCUSSION AND CONCLUSIONS

In this work, we provide a taxonomy and a deeper understanding

of current privacy threats with their associated mitigation ap-

proaches, by keeping the focus on the context of FL in a

health-care setting. We have provided common definitions that

could be used in this field, while giving the reader detailed sum-

maries of possible violations of privacy and their strategies to

mitigate them, along with a meaningful categorization for both.
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Table 2. Comparison of privacy-enhancing techniques in terms of properties that would need to be considered for deployment

Technique SMPC HE CC DP PAMO

Exposure of data in use no no no yes yes

Integrity of data in use no no no yes no

Result unprotected from

information extraction

yes yes yes no no

Execution integrity depends on protocol no yes no no

Performance overhead

(implementation dependent)

high high medium medium medium

Mathematical parity to the

original results

yes yes yes no no

Threats mitigated system threats system threats system threats,

information extraction,

poisoning

information

extraction

information

extraction

Each row is the property and the head of each column is the name of a privacy-enhancing technique.
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We have begun to explore the veracity of these techniques in the

context of FL for health care, following the mounting evidence

that FL represents a potential paradigm shift on how multiple

health-care institutions can collaborate to develop AI models

without sharing any of their local data.14,21,22,24,49,97,114 We

hope that, by building upon previous works in the field,26,29–32,34

we have provided an opportunity to current and future re-

searchers in the field of health-care informatics to make better

informed decisions during model training to appreciate potential

security issues.

All the privacy threats and threat mitigation technique cate-

gories discussed in this review have been encapsulated in

Table 2. The appropriate techniques to employ for a specific

case differ due to the variety of protections afforded by each.

Although SMPC, HE, and CC (which protect the assets during

controlled use) provide confidentiality of input data, as well as

the intermediate results (‘‘exposure of data in use’’), they do

not provide protection against an adversary reverse engineering

this information from the final results (‘‘results unprotected from

information extraction’’). In contrast, the DP and PAMO mitiga-

tion strategies (which provide free-use protection) alone do not

address the confidentiality of input or intermediate results, but

instead have the advantage of limiting the amount with which

the final result of the computation can be used to infer informa-

tion about the original inputs. Mitigations in the CC category

may provide assurances as to the correctness of the computa-

tions being performed (‘‘execution integrity’’), whereas those in

the other categories generally do not.

Although the costs associated with mitigation solutions can

vary significantly, in general, the categories SMPC, HE, PAMO,

and DP incur the cost of increased computation. In addition,

SMPC can incur the cost of increased communication, and CC

implementations in general have specific hardware requirements

associated with enablement of hardware-supported trusted

execution environments.115 Finally, mitigations in the categories

DP and PAMO generally incur the cost of a reduction in model

utility (e.g., classification accuracy).

Protecting patient privacy must always be one of the primary

considerations of health-care institutions, and it becomes more

important as more clinical sites are initiating or joining collabora-

tions that leverage health-care data to train AI models for further
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precision medicine.14,16–20,116,117 As outlined in Kairouz et al.,31

privacy attacks within the FL setting are a cause for concern. A

significant amount of experimentation on the associated threats

and mitigations, crucially in realistic scenarios on real-world

data, is required to understand how they play out in different set-

tings where health-care models are trained using FL. Under-

standing of the costs and benefits of these additional privacy

protections during FL for health care is also critical, as there is

mounting evidence14,21,22,24,49,97,114 that FL with additional pri-

vacy protections may represent a potential paradigm shift on

how multiple health-care institutions can collaborate to develop

AI models without sharing any of their local data.

Application of the threat mitigation techniques outlined in this

paper poses particular challenges in health care. There are no

turnkey implementations, as solutions require careful configura-

tion (and in some cases iterative tuning) to be effective. It is diffi-

cult to ensure that solutions will be accepted by the stakeholder

involved, as policies on data security vary widely by institution.

Even performing FL with no additional privacy threat mitigation

can be difficult in the health-care domain, since most data that

could be used for these purposes reside in private institutions

that lack incentives to participate in FL activities, and often insti-

tutions use operational systems for data handling thatmake con-

necting the data to FL platforms a difficult task. This is in addition

to the requirement that institutions export the data cohort and

de-identify them prior to starting any research. These issues,

specific to the health-care setting, will need to be addressed

as research activities in privacy-threat-mitigating machine

learning (ML) model training for medicine are undertaken. Solu-

tions for these issues require community-driven standards to

be developed in concert with relevant stakeholders.118 Other-

wise, the legal risks of loss of patient privacy due to an improp-

erly designed solution may outweigh the benefits of integrating

AI models in clinical workflows.

We are still in the early days of considering these privacy con-

cerns and using the security technologies highlighted in this re-

view in large-scale FL deployments. There is a significant

amount of research to be done, especially into how the incorpo-

ration of select privacy mitigations into a federated study will

impact the stakeholders involved. As we discussed above, the

costs and benefits of individual solutions are being explored
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and improved in the literature against standard measures. The

results are frequently dependent on specifics such as the trained

algorithm, the data distributions involved, and the compute and

physical network infrastructure to be used. More studies are

needed to get a better understanding of how the current results

will generalize in large-scale federations. In addition, it can be

difficult for prospective FL participants to make decisions based

only on the measures of privacy benefit currently reported for a

solution in the literature. These measures may not map well to

either regulation or common patient privacy concerns. Although

some work exists, more research to help bridge this gap would

be valuable for those trying to balance the concerns of stake-

holders to a federation.39,45,61,67,82,104,119

In conclusion, this review encapsulates and illustrates some of

the major research directions pertaining to privacy in FL, and we

hope it can be used as a primer and reference for future research

studies as security becomes a growing concern in the health-

care informatics community. Although a lot of work has been

done in this area, more detailed experimentation of these

methods in realistic scenarios with ample, diverse, and clinically

relevant use cases will be essential for their proper quantification

and subsequent evaluation for clinical deployment.
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