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Abstract: Indoor fires cause huge casualties and economic losses worldwide. Thus, it is critical to
quickly and accurately perceive the fire. In this work, an indoor fire perception algorithm based on
multi-sensor fusion was proposed. Firstly, the sensor data features were fully extracted by improved
temporal convolutional network (TCN). Then, the dimension of the extracted features was reduced
by adaptive average pooling (AAP). Finally, the fire classification was realized by the support vector
machine (SVM) classifier. Experimental results demonstrated that the proposed algorithm can
improve accuracy of fire classification by more than 2.5% and detection speed by more than 15%,
compared with TCN, back propagation (BP) neural network and long short-term memory (LSTM). In
conclusion, the proposed algorithm can perceive the fire quickly and accurately, which is of great
significance to improve the performance of the current fire prediction systems.

Keywords: fire perception; multi-sensor fusion; trend extraction; TCN; AAP; SVM

1. Introduction

In recent years, the development of electrical equipment and new organic materials
has brought about huge fire hazards, resulting in huge casualties and economic losses
worldwide. China reported 748,000 fires including 2225 injuries, 1987 deaths, and CNY
6.75 billion of direct property damage in 2021 [1]. In the above events, the most prominent
point was that residential fires only occupied 34.5% of all fires, but up to 73.8% of all deaths.
For indoor fires, the potential danger which causes larger casualties and economic losses
will become more prominent as related technology and materials rapidly develop. In such
circumstances, the study and solution of indoor fires need to be updated in order to reduce
the various losses. Therefore, the research of indoor fire perception is quite necessary
and urgent.

Many physical characteristics change in the early period of the fire, such as temper-
ature, smoke, CO, and so on [2]. Thus, the aim of indoor fire perception is capturing
corresponding changes quickly and accurately, and then responding. Sensor-based fire
detectors have been widely used in various fields of fire detection, owing to convenient in-
stallation and real-time monitoring [3–6]. Fire detection technology has developed rapidly
over the past 100 years since the first temperature-sensitive fire detector was designed
and implemented in 1890 in the UK [7]. Nowadays, multi-sensor synergistic fire detectors
are booming [8,9]. The sensors work together to more accurately capture the anomalous
changes of various features during a fire, which greatly improves the performance of fire
detectors. However, the multiple information sensed have complex non-linear relationships
with each other, and the information is fused by using intelligent algorithms to make scien-
tific decisions [10]. In view of the intelligent algorithms, numerous experts and scholars
have conducted relative studies.
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The prevailing multi-sensor data fusion methods for fire perception can be divided
into two categories:

(1) The methods based on Bayesian estimation, statistics, and inference [11]: Wang et al. [12]
proposed a fire detection system based on Kalman filter. The Kalman filter was
used to fuse the data of sensors, then output the probabilities of no-fire, flaming,
and smoldering into the system. Rachman et al. [13] used fuzzy logic rules to fuse
data from various sensors in complex fire scenarios. Wang et al. [14] designed and
performed modified hierarchical analysis to calculate the weight of each sensor. Then
the method of multivariate weighted fusion was used to assess the probability of fire
occurrence. Avgeris et al. [15,16] used edge computing technology to overcome the
shortcomings of the fire perception system based on the Internet of Things, such as
limited energy resources and lack of real-time processing computing ability. Therefore,
the fire perception system with edge computing technology can quickly detect the fire
situation and take appropriate measures. Real-time performance of the fire perception
system was improved on account of the above computational simplicity methods.

(2) The methods based on artificial intelligence: Zheng et al. [17,18] proposed the method
that combined intelligent algorithms with a BP neural network to fuse multi-sensor
data for fire perception. Similarly, Deng et al. [19] used a weight adaptive adjustment
method to combine a BP neural network in order to achieve good performance. The
described methods ameliorated the problem that BP neural networks tended to fall
into local minima during the training process. Baek et al. [20] used a dynamic time
warping (DTW) algorithm to evaluate the similarity of sensor data before and after a
fire. In addition, the k-out-of-p rule based on p-channel sensor data was proposed to
make decisions adaptively. Sun et al. [21] used LSTM to extract multi-sensor features
and output the probabilities of no-fire, flaming, and smoldering. Moreover, a decision
tree algorithm was used to produce the final fire detection result. The characteristic of
the above method was to make scientific decisions while fusing sensor data, which
enhanced the robustness of the fire perception system.

Each of the above solutions has its advantages for fire perception, but several defi-
ciencies ought to be studied and solved. To begin with, the time dimension information
of sensor data was not sufficiently considered. In the early stage of a fire, the sensor data
showed a steady upward or downward trend in the long term, but showed a random
opposite trend or even irregular fluctuation in the short term [20]. Therefore, false alarms
or missing alarms were prone to occur, which challenged accuracy and stability of fire
perception systems. Besides, the methods based on Bayesian estimation, statistics, and
inference had low computational complexity, but the coupling relationship among the
sensors was not adequately considered. Simultaneously, the fire perception systems using
the methods based on artificial intelligence had excellent stability and robustness, but
detection speed of the systems ought to be improved due to the complexity of algorithm
calculation. Finally, the difficulty of fire experiments and high risk factors led to the lack of
relevant sensor data, which made the development of deep learning algorithms requiring a
large amount of fire sensor data slow [22].

The characteristic data captured by the sensors in a fire are essentially time-series
data [23]. Bai et al. [24] proposed TCN by improving the special structure on the basis
of a convolutional neural network (CNN). TCN has been shown to outperform common
deep learning models in processing time-series data in multiple domains, such as natural
language processing [25], traffic flow prediction [26], sound event localization and detection
(SELD) [27], and fault diagnosis [28]. After extracting sensor data features, the TCN
connected to the Softmax function through the fully connected (FC) layer for prediction.
What is more, the Softmax function simply converted the features processed by the FC layer
into probability distributions. Thus, classification accuracy was affected by the features
without great linear separability.

In conclusion, aiming at the shortcomings of existing fire classification algorithms, a
multi-sensor fusion indoor fire perception algorithm named TCN-AAP-SVM was proposed
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in this work. First of all, sensor data were preprocessed. Preprocessing contained data
cleaning, data filtering, trend extraction, and sliding window processing. Compared with
the BP neural network mentioned in the literature, the time dimension information was
sufficiently considered by the methods of trend extraction and sliding window in this work.
Then, the features of processed data were fully extracted by improved TCN. Based on the
TCN in the literature, a new residual block was designed to meet the requirements of fast
feature extraction and accurate classification of fire perception. What is more, the AAP
layer was utilized to reduce the dimension of the extracted features and improve detection
speed of the subsequent classifier. Compared with the FC layer, no parameter needed to be
optimized in the AAP layer. Thus, the speed of the training and detection was improved.
Finally, the fire classification was realized by the SVM classifier with a Gaussian radial basis
kernel function instead of the Softmax function. The SVM classifier had excellent nonlinear
classification ability because of the soft interval maximization classification method.

2. Materials and Methods

The structure of the TCN-AAP-SVM proposed in this work is presented in Figure 1.
TCN-AAP-SVM is composed of the input layer, improved TCN layer, the AAP layer, and
the SVM classifier. The input layer is used for data preprocessing, starting with cleaning
and filtering of the raw data. Then, the trend of the filtered sensor data is extracted by the
Mann–Kendall algorithm. Moreover, the data is cut with length n by the sliding window
method. The output of the input layer consists of filtered and trend data of Ci sensors,
with the size of 2× Ci × n. The current and n− 1 historical data of sensors are handled by
the improved TCN layer which consists of several residual blocks. The channel count of
the hidden layer in the improved TCN layer is Ch, and the output size of the improved
TCN layer is Ch × n. The training of TCN-AAP-SVM is based on the backpropagation and
optimization of the Adam optimizer until loss convergence stops. The feature size extracted
from the improved TCN layer can be transformed into 1× 3 according to the category
count in the AAP layer, which simplifies the calculation of the subsequent classifier when
analyzing feature data. Finally, the fire classification results are worked out according to
the output of the AAP layer by the SVM classifier. The proposed algorithm in this work
extracts the feature data sufficiently and reduces structural redundancy in TCN. Therefore,
it is expected to achieve excellent performance in fire perception classification.
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Figure 1. The structure of TCN-AAP-SVM.

2.1. Trend Extraction

Trend extraction is the key point of data preprocessing in the input layer. The trend
data of the sensor, including direction and magnitude, are placed into the improved
TCN layer together with the sensor data. The Mann–Kendall algorithm is used for trend
extraction in this work, which is simple to calculate and suitable for fire scenes requiring
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fast perception. The trend statistic (S) of time-series data P = {x1, x2, . . . , xT} is described
as Equations (1) and (2):

S =
T−1

∑
l=1

T

∑
k=l+1

sgn(xk − xl) (1)

sgn(xk − xl) =


1 , xk − xl > 0
0 , xk − xl = 0
−1 , xk − xl < 0

(2)

where T is the length of time-series data, and S contains T(T − 1)/2 trend components.
The trend components are normalized to [−1, 1] to obtain the trend value τ representing
the entire time-series data. The trend is increasing when τ > 0, and decreasing when τ < 0.
The closer τ approaches 1 or −1, the greater the trend. The calculation of τ is shown in
Equation (3):

τ =
2S

T(T − 1)
(3)

2.2. Improved TCN Layer

The improved TCN layer contains several residual blocks. As shown in Figure 2, a
new residual block structure is designed. The new residual block includes a dilated causal
convolution and non-linear layer. A leaky Relu activation function is used in the non-linear
layer, which is mathematically expressed as Equation (4):

yi =

{
xi, | xi ≥ 0
xi
ai

, | xi < 0 , i = 1, 2, . . . , m (4)

where ai is a fixed parameter in the range of (1,+∞).
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The leaky Relu assigns a non-zero slope to the value of the negative half axis based on
the Relu activation function. Reasonable selection of ai increases the fitting ability of the
improved TCN layer near zero, thus the risk of overfitting is reduced effectively. Besides,
weight normalization and dropout are added to the new residual block for regularization
to avoid gradient disappearance and gradient explosion during the training. The features
at both endpoints of the residual connection are added directly unless the sizes of the
features are different. To account for discrepancy in the sizes of the features, an additional
convolution with s = 1× 1 is used to ensure the residual connection features are of the
same size.

The position diagram of the new residual block in the improved TCN layer is exhib-
ited in Figure 3. The receptive field of the improved TCN layer is related to the hidden
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layer depth, kernel size, and expansion coefficient. The relationship between expansion
coefficient d and hidden layer depth j is described as d = 2j. Therefore, the receptive
field increases exponentially with the increase of the hidden layer depth. The size of the
receptive field is expressed as (s− 1)× d. Since the convolution is causal, the output at
moment n of the j layer is only determined by the data from moment n to moment n− d× s
of the j− 1 layer. Thus, the future information in the data cannot be disclosed, which causes
the proposed algorithm to have the potential to be applied to real-time perception systems.
Moreover, the computation is greatly reduced due to the interval sampling and weight
sharing of dilated convolution.
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2.3. The AAP Layer

The AAP layer is an average pooling layer with adaptive dimension, which is used to
replace the FC layer for dimension reduction and improving detection speed of the subse-
quent classifier. The kernel size Sk and stride St of pooling are adaptively calculated accord-
ing to input size Si and output size So of the AAP layer, as shown in Equations (5) and (6):

Sk = Si − (So − 1)× St (5)

St = floor(Si − So) (6)

where floor() is round down calculation.
The output size of the AAP layer is relative to the number of categories. In the m

classification problem, m pooling cores are used to perform the average pooling process for
the characteristic output of the improved TCN layer. Due to no parameters needing to be
optimized in the AAP layer, the speed of the training and detection is improved. What is
more, the risk of over-fitting in training is reduced.

2.4. The SVM Classifier

It is difficult to distinguish sensor data between smoldering that has just occurred and
no-fire. Therefore, the part with linear inseparability in the output features of the AAP layer
limits classification accuracy. The SVM classifier, instead of the Softmax function, is used
for improving classification accuracy of the fire perception system. The SVM classifier has
better non-linear classification performance than the Softmax function in handling multi-
classification tasks with small samples [29]. The SVM classifier constructs the maximum
soft interval separation hyperplane in the high-dimensional feature space. Moreover,
Gaussian radial basis function (GRBF) and soft interval maximization are used for binary
classification of the feature data extracted from the above hidden layers. Then, the binary
classification is extended to multiple classification by treating each class as a positive set and
the other classes as negative sets, respectively. Finally, the classification probability of each



Sensors 2022, 22, 4550 6 of 16

positive category is compared, and the maximum corresponds to the final classification
result. For the sample set Z = {(x1, y1), (x2, y2), . . . , (xn, yn)}, the objective function of the
SVM classifier is demonstrated as Equations (7) and (8):

min
w,b,ξ

1
2
‖w2‖+ c

n

∑
i=1

ξi, ξi > 0 (7)

s.t.yi

(
wT ϕ(xi) + b

)
≥ 1− ξi, i = 1, 2, . . . , n (8)

where ξi is the relaxation variable which is shown as Equation (9), and ϕ(xi) is the formula-
tion of GRBF shown as Equation (10):

ξi = max
(

0, 1− yi

(
wT ϕ(xi) + b

))
> 0 (9)

ϕ(xi) = e(−
‖xi−li‖

2σ2 ) (10)

where w and b are optimization parameters, which are adjusted to minimize the value of
the objective function to maximize the soft interval segmentation surface.

2.5. Data Set and Data Preprocessing

The effectiveness of the proposed algorithm in this work is tested on the open-source
home smoke alarm test data set of the National Institute of Standards and Technology
(NIST) [30]. The NIST conducted a series of experiments in residential buildings to in-
vestigate the performance of different sensors in fire detection and alarms. The ignition
chamber included a bedroom, living room, and kitchen. Sensors were arranged in the
ignition chamber, such as temperature, smoke, CO, CO2, oxygen, ions smoke alarm, pho-
toelectric smoke alarm, and so on. The plan of the experimental site is shown in Figure 4.
All experiment equipment was corrected twice before the start of all experiments, and
recalibration was performed in the fire emulator/detector evaluator (FE/DE) before the
start of each experiment. The FE/DE is a single-channel wind tunnel that meet all the
conditions required to evaluate the performance of point-type sensors. The experimental
data had high reliability due to the above operations.
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In this work, the training set contains 16 experimental data, and the test set contains
8 experimental data. The experimental situation of the training set and the test set is
summarized as shown in Tables 1 and 2. It should be pointed out that the bedroom door
was closed in SDC09, SDC14, and SDC36, while the bedroom door was open in the rest of
the experiments.



Sensors 2022, 22, 4550 7 of 16

Table 1. The experimental situation of the training set.

Scenario Fire Type Fire Material Fire Location Division Time (s) No-Fire Data Count Fire Data Count

SDC02 Flaming Chair Living area 84 13 15
SDC04 Smoldering Mattress Bedroom 8 13 98
SDC05 Flaming Mattress Bedroom 87 10 6
SDC08 Smoldering Mattress Bedroom 131 19 177
SDC11 Smoldering Chair Living area 53 30 209
SDC12 Flaming Oil Kitchen 233 48 71
SDC13 Flaming Oil Kitchen 100 33 88
SDC31 Smoldering Chair Living area 4931 270 158
SDC34 Smoldering Chair Living area 218 40 184
SDC35 Flaming Chair Living area 94 63 8
SDC36 Flaming Mattress Bedroom 32 145 98
SDC37 Smoldering Mattress Bedroom 130 70 88
SDC38 Flaming Mattress Bedroom 35 60 59
SDC39 Flaming Mattress Bedroom 22 85 5
SDC40 Smoldering Mattress Bedroom 522 45 142
SDC41 Flaming Oil Kitchen 110 35 98

Table 2. The experimental situation of the test set.

Scenario Fire Type Fire Material Fire Location Division Time (s) No-Fire Data Count Fire Data Count

SDC01 Smoldering Chair Living area 377 16 138
SDC06 Smoldering Mattress Bedroom 83 9 118
SDC07 Flaming Mattress Bedroom 59 33 18
SDC09 Flaming Mattress Bedroom 31 36 56
SDC10 Flaming Chair Living area 100 50 17
SDC14 Flaming Mattress Bedroom 3398 193 41
SDC15 Flaming Chair Living area 271 27 13
SDC33 Flaming Chair Living area 88 28 7

As shown in Tables 1 and 2:

(1) The training data overview: The training data is count is 2483, containing 979 no-fire
data, 448 flaming data, and 1056 smoldering data.

(2) The test data overview: The test data count is 800, containing 392 no-fire data,
152 flaming data, and 256 smoldering data.

In view of the above data, the following processing is carried out in each experiment:

(1) Data cleaning: The temperature, smoke, and CO data are selected from more than
100 sensors in each experiment. In addition, the current data and historical data are
very inconsistent with the no-fire characteristics of each experiment before ignitions
are deleted.

(2) Data filtering: The Kalman filter algorithm is used to suppress and attenuate the noise
in the sensor data.

(3) Trend extraction: The Mann–Kendall algorithm is used to extract the trend of real-
time data and 15 historical data in the three sensors. Note: The initial 15 data of each
experiment are stable no-fire data, thus the corresponding trend value is determined
to be 0.

(4) Sliding window processing: After the above processing, the data contains temperature,
smoke, and CO in each experiment, as well as the corresponding trend values. Then
the data required for TCN-APP-SVM is constructed by the sliding window method.
The window size and step size are set to 20 and 10. Therefore, each data contains
current data and historical data in the time dimension. The processed results are
displayed in Figure 5. The data are tagged as no-fire, flaming, and smoldering
according to the type of fire experiment and when the first sensor responded to
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the fire [31]. After the normalization of the data in Figure 5, data preprocessing
is completed.
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3. Results
3.1. Evaluation Index

The performance of algorithms was evaluated by indexes in this work, which included
accuracy, precision, recall, F1 score, receiver operating characteristic (ROC) curve, and area
under ROC curve (AUC). Accuracy is the percentage of the correctly predicted samples in
the total samples in the whole test set, which intuitively reflects the overall classification
ability of algorithms. Precision is the percentage of the correctly predicted positive samples
to the predicted positive samples, which can accurately reflect accuracy of each category of
prediction results. Recall is the percentage of positive samples correctly predicted in actual
positive samples, which can represent the probability of each category predicted. F1 score
is the harmonic average of precision and recall, which can characterize the comprehensive
performance measurement of algorithms in precision and recall well. The value of the
preceding indicators ranges from 0 to 1. The closer the indicator is to 1, the better the
performance is. The indexes are shown as Equations (11)–(14):

Accuracy =
TN + TP

TN + FP + TP + FN
(11)

Precision =
TP

TP + FP
(12)

Recall =
TP

(TP + FN)
(13)

F1 score =
2× Precision× Recall

Precision + Recall
(14)
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where TP is the number of correctly classified positive samples, TN is the number of
correctly classified negative samples, FP is the number of incorrectly classified positive
samples, and FN is the number of incorrectly classified negative samples.

The vertical axis of ROC curve is true positive rate (TPR). TPR represents the pro-
portion of the predicted positive and actually positive samples to all positive samples,
as shown in Equation (15). The horizontal axis of ROC curve is false positive rate (FPR).
FPR stands for the proportion of positive predicted and actually negative samples in all
negative samples, as shown in Equation (16). The ROC curve can embody the classification
performance of algorithms at each sample point. The closer the curve is to the top left, the
better the performance, which is not affected by the imbalance of samples. AUC, which
can more accurately reflect the overall numerical classification ability of the algorithms, is
generally calculated by the statistical method displayed in Equation (17).

TPR =
TP

TP + FN
(15)

FPR =
FP

FP + TN
(16)

AUC =
∑i∈positive ranki −

M(1+M)
2

M× N
(17)

where M is the count of positive samples and N is the count of negative samples.

3.2. Contrast Experiment

The algorithms in the work were implemented on a Dell Inspiron-3558 laptop equipped
with an i5-4210U@1.70GHz CPU and 8 GB of operating memory. The algorithms were trained
and tested in PyCharm. The experimental results were the average of 20 repeated experiments.

In the NIST open-source home smoke alarm test data set, TCN-AAP-SVM was com-
pared with TCN, BP neural network, and LSTM. The settings of the adjustable parameters
of TCN-AAP-SVM are shown in Table 3.

Table 3. The setting of adjustable parameters of TCN-AAP-SVM.

Adjustable Parameters Value

Batch size 3
Train epoch 30

Dropout 0.5
Kernel size 1× 3

Expansion coefficient 2
Window size 20

Step size 10
Hidden layer depth 4

Channel count 24
Optimizer Adam

Learning rate 0.002
Punish coefficient 0.1
Kernel function RBF

The settings of the adjustable parameters of TCN are the same as TCN-AAP-SVM. The
network structure and the settings of the adjustable parameters of the BP neural network
and LSTM are the same as [2,21]. Accuracy, training time, and test time of each comparative
algorithm are shown in Table 4.
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Table 4. The performance of each comparison algorithm.

Performance TCN-AAP-SVM TCN BP Neural Network LSTM

Accuracy 97.49 94.99 88.54 94.74
Train time (s) 289.6270 576.0081 1025.4182 584.0498
Test time (s) 1.1643 2.1718 2.4536 1.3782

Table 4 shows that accuracy of TCN-APP-SVM is improved by 2.5%, 8.95%, and 2.75%,
respectively, compared with TCN, BP neural network, and LSTM. The corresponding
training speed is improved by 49.72%, 37.58%, and 50.51%, respectively. The corresponding
detection speed is improved by 46.39%, 52.55%, and 15.52%, respectively. It can be seen that
TCN-APP-SVM is more effective than the comparison algorithms in classification ability
and operation speed. The multi-category confusion matrix is utilized to further quantify
the count and position of correct and incorrect classification of each algorithm, as shown in
Figure 6.
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The horizontal axis represents the classification results of fire perception, and the
vertical axis represents the actual label in Figure 6. The test data for no-fire, flaming, and
smoldering are 390, 152, and 256, respectively. The no-fire test data is slightly different
from the statistical data in Table 2 due to the existence of batch size. The numbers on the
main diagonal represent the data correctly classified for each category of fire perception.
However, it is worth mentioning that the test data for no-fire, flaming, and smoldering of
the BP neural network are 4042, 1516, and 2557, respectively, because the BP neural network
can only process single point data without the sliding window method. Precision, recall,
and F1 score of each class can be calculated from the confusion matrix of each algorithm, as
shown in Table 5. ROC curve and AUC of each algorithm are shown in Figure 7.
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Table 5. The evaluation indexes of each comparison algorithm.

Evaluation Index TCN-AAP-SVM TCN BP Neural Network LSTM

No-fire precision 97.49 93.98 81.37 92.86
Flaming precision 100 100 99.67 100

Smoldering
precision

96.17 94.07 99.94 95.12

No-fire recall 99.49 100 99.85 100
Flaming recall 91.45 85.83 99.01 86.75

Smoldering recall 98.05 92.97 64.45 91.41
No-fire F1 score 98.48 96.90 89.67 96.30
Flaming F1 score 95.53 92.20 99.34 92.90

Smoldering F1 score 97.10 93.52 78.36 93.23
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As can be seen from Table 5, TCN-AAP-SVM has the highest precision for no-fire,
reaching up 97.49%. TCN has a slightly higher precision for no-fire than LSTM, while the
BP neural network has the lowest precision, only 81.37%. However, there is no significant
difference in no-fire recall for each algorithm. According to the comprehensive analysis
of no-fire F1 score, the no-fire classification ability of TCN-AAP-SVM is superior to all
comparison algorithms.

Flaming precision of each algorithm is basically the same, but there is a great difference
in flaming recall. Although flaming recall of TCN-AAP-SVM is 7.56% lower than the BP
neural network, it is 4% higher than TCN and LSTM. According to the comprehensive
analysis of flaming F1 score, the flaming classification ability of the proposed algorithm is
better than TCN and LSTM, even if it is inferior to the BP neural network.

The BP neural network also has good performance in smoldering precision, but smol-
dering recall is unacceptably poor, at only 64.45%. However, TCN-AAP-SVM shows the
most outstanding performance, reaching up to 98.05%. According to the comprehensive
analysis of smoldering F1 score, TCN-AAP-SVM has the most excellent smoldering classi-
fication ability, while the smoldering classification ability of the BP neural network is far
inferior to TCN and LSTM.

ROC curve of TCN-AAP-SVM is closest to the upper left corner as Figure 7 shows,
which indicates that the overall classification effect is remarkable. Meanwhile, the overall
classification effects of TCN and LSTM are highly similar, which are more excellent than
the BP neural network. The value of AUC accurately quantifies the above analysis. AUC
of TCN-AAP-SVM is 98.42%, slightly higher than that of TCN and LSTM, while the BP
neural network has the lowest AUC of 96.71%. Therefore, the proposed algorithm in
this work has the most superior classification performance overall compared with other
comparison algorithms.
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3.3. Ablation Study

Ablation experiments are carried out to explore the influence of different classifier
selections, the AAP layer, and different adjustable parameter selections on the classification
performance of the proposed algorithm. In order to explore the influence of different
classifier selections on the proposed algorithm, five classifiers are selected for comparison
with the SVM classifier, containing the Softmax function, multi-layer perceptron (MLP),
Gaussian naive Bayes (GNB), K-nearest neighbor (KNN), and random forest (RF). The
comparison results are shown in Table 6.

Table 6. The performance of the proposed algorithm with different classifiers.

Performance SVM Softmax MLP GNB KNN RF

Accuracy 97.49 96.99 96.87 96.12 96.62 96.37
Test time (s) 1.1533 1.0194 1.0214 1.0204 1.2842 1.1263

As Table 6 shows, the SVM classifier has the highest classification accuracy, reaching
up to 97.49%, but the corresponding detection speed is inferior to other classifiers except
KNN. Meanwhile, detection speed of KNN is the slowest, but the corresponding classifi-
cation accuracy is medium. Classification accuracy of RF is second only to KNN, and the
corresponding detection speed is slightly higher than the SVM classifier. Softmax function,
MLP, and GNB have similar detection speeds, while GNB has the lowest classification
accuracy among all kinds of classifiers.

In order to explore the influence of the AAP layer on the proposed algorithm, the
performance of the proposed algorithm with AAP layer and FC layer is explored. The
results are shown in Table 7.

Table 7. The performance of the proposed algorithm with AAP layer and full connected layer.

Performance TCN-AAP-SVM TCN-FC-SVM

Accuracy 97.49 96.74
Test time (s) 1.1533 1.2927

As is shown in Table 7, compared with TCN-AAP-SVM, the classification accuracy and
the detection speed of TCN-FC-SVM decrease by 0.75% and 12.09%, respectively. Therefore,
the classified results of the model without the AAP layer become worse.

In order to explore the influence of different adjustable parameter selections on the
proposed algorithm, a series of experiments are conducted to analyze four selected param-
eters. To begin with, the influence of different window size and step size selections in the
sliding window method on classification accuracy of the proposed algorithm are explored.
The window size and step size intervals are 5. Window size ranges from 10 to 20, and step
size ranges from 5 to 25. The results are shown in Figure 8.

It can be seen from Figure 8 that high classification accuracy appears when step size
ranges from 10 to 15 and window size ranges from 20 to 25. The area is surrounded by low
elevations, which shows that classification accuracy will decline when window size or step
size is too large or too small. It is worth mentioning that no matter what the window size
is, classification accuracy will be greatly reduced if the step size is less than 10. To sum up,
it is vital to choose appropriate window size and step size.

Moreover, different hidden layer depths and channel counts are set in the training and
test process to explore the influence of different choices of hidden layer depth and channel
count on classification accuracy of the proposed algorithm. The interval of hidden layer
depth is 1, and the value ranges from 2 to 6. Channel count increases by a multiple of 2,
and the value ranges from 6 to 96. However, when channel count is 96, the network model
is enormous, which violates the principle of fast and accurate detection. Therefore, the
maximum channel count is 64 instead of 96.
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It can be seen from Figure 9 that classification accuracy is the highest when hidden
layer depth is 4 and channel count is 24, reaching up to 97.49%. Classification accuracy
from that point in all directions decreases, but at different speeds in different directions.
The two directions with the fastest speed are the directions in which hidden layer depth
and channel count increase or decrease simultaneously. Therefore, network models that are
too complex or too simple cannot achieve excellent classification accuracy. However, no
matter which parameter combination is selected, classification accuracy of the proposed
algorithm is higher than that of the comparison algorithms.
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4. Discussion

As Table 4 shows, accuracy, training speed, and detection speed of TCN-AAP-SVM
are superior compared with the comparison algorithms in this work. The promotion
of speed is owing to improved TCN structure and the addition of the AAP layer. The
promotion of classification accuracy is on account of the trend extraction and sliding
window method, which fully consider the time dimension information of sensor data. In
addition, the excellent non-linear classification ability of the SVM classifier also makes a
great contribution to the improvement of classification accuracy. As displayed in Table 5,
the probability of smoldering samples predicted by the BP neural network is far less
than other comparison algorithms, because the BP neural network cannot process current
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data and historical data simultaneously through the sliding window method. Besides,
smoldering burns quite slowly, resulting in insignificant changes in sensor data during
the initial stage of the fire. Therefore, the BP neural network without considering the
time dimension information of sensor data has difficulty distinguishing the no-fire and
smoldering samples.

The SVM classifier selected in this work leads to the highest classification accuracy as
displayed in Table 6, which confirms that the SVM classifier has significant classification
performance in small fire sample perception. Although detection speed of the SVM classifier
is not the fastest, it is not important compared with the significant improvement of the
calculation speed of the proposed algorithm by improved TCN structure. Besides, as is
shown in Table 7, the classified results of the model without the AAP layer become worse.
A large amount of data will increase the difficulty for the SVM classifier to find the optimal
soft interval classification surface. The function of the AAP layer is to reduce 3D features
to 2D and reduce the size of features as much as possible on the premise of retaining the
acquired features, in order that SVM classifier can achieve better classification effect.

In a certain range, no matter what the window size is, classification accuracy will
be greatly reduced if the step size is less than 10 as exhibited in Figure 8. This is mainly
because even if the time dimension information is taken into account, too small a step
size will still reduce the differences among samples of different categories, resulting in
classification difficulties.

As demonstrated in Figure 9, when the hidden layer depth and channel count of the
network model decrease simultaneously, classification accuracy decreases rapidly. This
is mainly caused by the problem of insufficient feature extraction ability of an overly
simple network model. Besides, when the hidden layer depth and channel count increase
simultaneously, accuracy decreases rapidly as well. This shows that blindly increasing the
complexity of the network model cannot effectively improve the classification performance.

5. Conclusions and Future Work

Indoor fires cause huge casualties and economic losses worldwide. Aiming at the
shortcomings of existing fire classification algorithms, TCN-AAP-SVM was proposed in
this work. The analysis in this work leads to the following conclusions. Firstly, the time
dimension information of sensor data is taken fully into account by the methods of trend
extraction and sliding window in this work. Therefore, the proposed algorithm has the best
excellent classification performance among comparison algorithms, especially the ability to
distinguish between no-fire samples and smoldering samples. Secondly, the increase in
detection speed is owed mainly to improved TCN structure. Huge improvement in feature
extraction speed can make the classifier selection only pay attention to the classification
ability and ignore the impact of speed to optimize the fire perception system. Finally, the
appropriate selection of adjustable parameters is vital to the improvement of classification
accuracy. The classification accuracy is excellent under most parameter selections, which
proves the stability of the proposed algorithm.

In multi-sensor fire perception, the selection of sensor combination is seldom paid
attention to. However, the selection of sensor combination with low redundancy and
high relevance can further improve the classification accuracy of fire perception system.
Therefore, further research on the selection of sensor combination in fire perception issue
is warranted.
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