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ABSTRACT: Specialized sensing mechanisms in bacteria enable the
identification of cognate ligands with remarkable selectivity in highly
xenobiotic-polluted environments where these ligands are utilized as energy
sources. Here, via integrating all-atom computer simulation, biochemical
assay, and isothermal titration calorimetry measurements, we determine the
molecular basis of MopR, a phenol biosensor’s complex selection process of
ligand entry. Our results reveal a set of strategically placed selectivity filters
along the ligand entry pathway of MopR. These filters act as checkpoints,
screening diverse aromatic ligands at the protein surface based on their
chemical features and sizes. Ligands meeting specific criteria are allowed to
enter the sensing site in an orientation-dependent manner. Sequence and
structural analyses demonstrate the conservation of this ligand entry
mechanism across the sensor class, with individual amino acids along the
selectivity filter path playing a critical role in ligand selection. Together, this investigation highlights the importance of interactions
with the ligand entry pathway, in addition to interactions within the binding pocket, in achieving ligand selectivity in biological
sensing. The findings enhance our understanding of ligand selectivity in bacterial phenol biosensors and provide insights for rational
expansion of the biosensor repertoire, particularly for the biotechnologically relevant class of aromatic pollutants.
KEYWORDS: protein−ligand recognition, selectivity, sensitivity, biosensor, transcription factor, unbiased binding simulations

■ INTRODUCTION
Bacterial transcription initiation mainly occurs via two diverse
RNA polymerases, namely, σ70 and σ54. While σ70 polymer-
ase transcribes housekeeping genes and does not require any
external activation to form a transcriptionally competent open
complex, the alternate polymerase σ54 requires regulatory
proteins, typically AAA+ ATPases, that aid in converting the
closed RNA polymerase complex to an active open state.1,2

External stimuli and environmental cues trigger σ54 RNA
polymerases that then govern several cellular processes ranging
from specific transport systems, alternative carbon catabolism
as energy source, production of extracellular structures, and
virulence determinants.3,4 The AAA+ subclass of σ54 activators
proteins, also known as enhancer binding proteins (EBPs),
possess a modular architecture, and it is via their ubiquitous
central AAA+ ATPase domain that they assemble into
competent ATPase motors that in turn activate the σ54
RNA polymerase holoenzyme.5,6 The assembly of the ATPase
domain, however, is regulated by the N-terminal signal sensing
domain of EBPs.7,8 This N-terminal domain is a specialized
domain that controls the whole downstream relay via sensing
of appropriate external stimuli. They also harbor a C-terminal
DNA binding domain that binds to a specific upstream binding
sequence located ∼200 bases upstream of the σ54 polymerase

assembly complex enables them to come in close proximity of
the RNA polymerase assembly.1,9

Although the central AAA+ and the C-terminal DNA
binding domains are mostly conserved, it is the N-terminal
domain that interfaces with the environment and determines
the type of process the σ54 assembly activates.8,10 The N-
terminal domain functions as environmental sensors and hence
is also called a sensor domain. In this regard organisms such
Pseudomonas and Acinetobacter that survive in harsh environ-
mental conditions and compete for nutrients have devised
sophisticated sensors for pollutants such as benzene, toluene,
phenol, xylenols, biphenyls etc.11,12 The sensor domains of
these proteins are designed to sense these pollutants which
then can be catabolized as an alternate energy source.10,13,14 By
exploiting these sensory proteins, several groups have designed
protein or synthetic biology based whole cell biosensors as well
as engineered these sensor proteins to devise readouts for a
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plethora of hydrocarbons.15−17 A striking feature of natural
sensory proteins is that they are very specific for the molecule
they sense. For instance, a phenol sensing domain does not
accept a similar aromatic compound such as benzene or
another phenolic compounds such as dimethylphenols.13,18

Thus, to effectively cover the chemical space such that this
sensor scaffold can be exploited to engineer a wide array of
sensors, the problem of ligand selection is an important one.
Although the nature’s algorithm of protein−ligand com-

plementarity is efficient, it requires the ligand to first reach the
binding pocket, where ligand selection takes place after
binding.19 This in turn influences the residence time of the
ligand, which defines the preference for different ligands.20,21

Therefore, a question that arises is how does the enzyme allow
entry of their cognate ligands, especially when the binding
pocket is deeply buried as in sensor domains of the AAA+
class? Are there multiple selectivity filters that preclude
binding/entry of random ligands and allow for a transient
path that facilitates passage of only the cognate ligands, or does

the protein open up to directly accommodate the ligand into
the pocket? Several powerful algorithms have been proposed to
address this protein−ligand recognition problem where the
geometrical constraints along with protein dynamics are used
to identify the optimal ligand entry path as well as final binding
pose of ligand.22 The problem is simpler in systems such as
Hsp70, maltose binding protein (MBP) and adenylate kinase
(AdK) where explicit pathways are already visible and
additional gating filters could be identified to allow for entry
of the correct ligand.23−25 However, in the majority of the
cases, it is less obvious how a protein opens up and selects the
ligand of choice; hence, a significant thrust in understanding
the ligand selection problem is imperative.26,27

In this work, we have employed MopR from Acinetobacter
calcoaceticus as a model system (Figure 1), a very important
malleable system that is being developed for environmental
pollution based biotechnological applications, to shed light on
the ligand selection problem.15−17 MopR is a natural phenol
sensor and recent X-ray structure of the sensor domain shows

Figure 1. The selective MopR. (A) Homodimeric N-terminal sensor domain (residues 1−229) of phenol sensor MopR corresponding to pdb id
5KBE. The schematic on top represents the three domains of full length MopR. (B) Ligand selection profile of MopR showing size-based and
phenol-based ligand selection.

Figure 2. Binding pathways. (A) RMSD time profile of two representative binding trajectories labeled as Traj1,2. The arrow indicates binding. (B)
Overlay of bound conformations of MD derived pose and crystal structure. Inset represent the overlay of bound state and binding pocket. (C) Two
binding pathways in MopR as observed in unbiased binding simulations wherein the pathway-1 is major pathway. Only one of the protomers of
dimeric MopR is shown for clarity (dimer in Figure S3).
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that it is a dimer with two buried phenol binding sites.13

Previous ITC studies have helped generate a reliable database
to understand its substrate scope.15 However, as described
earlier, how the ligands reach a buried pocket and the
mechanism of rejection or acceptance of substrates remain
unclear. Here, we carry out conformational dynamics,
undertaking identification and quantification of the entire
binding process and binding-competent encounter complexes
and intermediate states. Long unbiased Molecular Dynamics
(MD) simulations that unraveled the path chartered by small
molecule phenol to reach from the bulk to sensor pocket of
MopR in real time were performed. Insights developed from
the mechanistic understanding of the binding process were
further substantiated by experiment. Insights from this study
prompted us to propose a general model for an aromatic
pollutant sensing mechanism that can guide future works in
fine-tuning the selectivity and sensitivity of the aromatic sensor

class, an important arena considering the grave problem of
environmental pollutant sensing. This work also sheds light on
the general mechanism adopted by proteins to allow selective
entry of substrates/ligand to deeply buried active sites.

■ RESULTS

Long Unbiased Simulations Capture the Phenol Binding
to MopR at Real Time

In a bid to elucidate the key determinants of the selective
sensing ability by MopR’s sensor domain, our investigation first
focused on discovering the possible binding pathway(s) of
phenol in the solvent-inaccessible cavity of MopR. To this end,
we spawned a series of all-atom unbiased MD trajectories to
simulate the event of phenol diffusing around dimeric MopR in
solvent. In particular, 12 binding trajectories were initiated
with a set of randomly placed phenol molecules at an

Figure 3. Binding mechanism. (A) Ligand entry into binding pocket via M100-L119 pocket-gate opening. Inset represents the opening, while arrow
indicates ligand entry. Opening at ∼0.55 represents unsuccessful binding attempt by different ligand. (B) Free energetics of pocket-gate opening in
different states of ligand. Width of curve represents the error bar. (C) Ligand entry via M100-V116 channel opening. (D) Ligand encounter of F99
and F132 barrier. (E-G) The ITC binding data for different pocket gate mutants of MopR. All the Kd values are represented in μM. Introduction of
hydrogen bonding (E) and or salt bridge (G) progressively decrease and abrogates binding, respectively.
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experimentally prescribed13 protein/ligand ratio of 1:5. The
simulation box consisting of apo MopR filled with water, ions,
and unbound ligands was unbiasedly sampled without any
prior knowledge of the native binding site. The charmm36m28

force field was used for protein and ligand. Both visual
inspection and the time profile of root-mean-square deviation
(RMSD) of the simulated pose of phenol (Figure 2A) in
reference with the crystallographic bound pose (PDB 5KBE)
helped in tracking the location of the ligand relative to the
native pose. As an encouraging development, we found that, in
11 out of 12 simulations, at least one of the diffusing phenol
molecules successfully identified one of the native binding
pocket of MopR and remained bound for the rest of the
simulation period. In particular, in two instances, the buried
cavity of both the protomers of dimeric MopR got phenol-
bound, thereby totalling 13 binding events (labeled as Traj 1−
13). The duration of simulated binding events ranged between
1.2 to 4 μs. As depicted by RMSD profiles of the ligand (two
representative trajectories in Figure 2A and others in Figures
S1−S2), the eventual simulated phenol-bound pose converged
within angstrom-level precision with the crystallographic pose
(Figure 2B). The results indicate that the simulations have
been able to capture the binding process of the phenol-sensing
event by MopR at atomistically precise spatial and temporal
resolution in real time. Availability of these high-resolution
trajectories allowed us to visualize and hypothesize the most
likely pathways that the ligand had utilized in tracing the native
binding pocket of MopR.
The simulation trajectories revealed that the majority of the

binding events (12 out of 13 binding events) occurred via a
single dominant pathway (Figure 2C, referred here-in as
“Pathway-1”, Movie1) which involved phenol insertion into
buried binding pocket between α4 (4th helix) and β4 (4th
strand). The other remaining binding event (one out of 13)
adopted a different pathway (Figure 2C, referred here-in as
“Pathway-2”, Movie2), which involved ligand entry to the
binding pocket in between α4 and α3−6 helices. The
maximum ligand binding time through pathway-1 was found
to be around 2 times faster (within 1.5 μs) than pathway-2 (3.2
μs); together giving an estimated average on-rate constant
(kon) of 3.5 × 107 M−1 s−1 (Figure S1), at par with reported kon
values for ligand binding in buried pocket for other
systems.26,27 The identification of the aforementioned major
dominant ligand-binding pathway prompted us to delve deeper
into the molecular mechanism underlying the dynamics of
recognition event and its potential ligand-selectivity.
Simulations and Experiments Identify Multiple Residue
Barriers to Buried Cavity Controlling Ligand Binding

En route to the buried binding pocket through major pathway-
1, the ligand encounters two major barriers imposed by
residues of α4, β4 and the binding pocket itself. First, the
ligand approaches the hydrophobic surface between α4 and β4,
in particular at residues M100, V116 and L119, in a specific
orientation such that aromatic moiety of ligand interacts with
hydrophobic protein surface (Figure 3, S3). We surmised that
ligand entry would require an opening in the form of an
“encounter-complex”. The simulation trajectories identified
two possible mechanisms leading to formation of an encounter
complex: one set of trajectories involved a ligand induced
pocket gate opening, while in rest of the trajectories, the ligand
entry was facilitated by spontaneous creation of a transient
channel.

For half of the trajectories, ligand induced the opening of
M100-L119 pocket-gate, which involved the transient outward
movement of M100 side chain away from L119 allowing ligand
entry (Figure 3A). A good correlation between the short-lived
increase in M100-L119 distance profile and concurrent
decrease in ligand-RMSD at around the same time-point in
these trajectories suggested that the presence of ligand is
crucial for such gate opening. For a quantitative character-
ization, the free-energetic requirement for induced pocket-gate
opening was measured along center-of-mass (COM) distance
between side chains of M100 and L119 (Figure 3B). It was
found that pocket-gate opening is separated by a free-energetic
barrier, and the free-energy requirements for closed (0.6) to
open (0.9 nm) transition are 3.77 ± 0.21 and 2.59 ± 0.23 kcal/
mol for “apo” and “encounter-complex” respectively. The
ligand presence lowers the free energy requirement; hence, we
concluded that the ligand helps in inducing the pocket gate
opening. Additionally, once the ligand gets bound in the native
pocket, pocket-gate opening requires more energy and gets
tightly closed fulfilling the necessary characteristic of “high
sensitivity” for MopR as a potential candidate for phenol
biosensor.
In the second half of the trajectories representing major

pathway-1, M100 spontaneously moves away from V116 (not
L119) creating a transient channel between α4 and β4, paving
the way for ligand entry to the binding pocket (Figure 3C). As
shown by the time profile of M100-V116 distance as well as
ligand RMSD, this transient channel opened spontaneously
and independently of ligand entry. We believe the intrinsic
flexibility of M100 due to the presence of a kink in α4 (as it is
constituted of the residues having the lowest helix propensities
like G102, P103) contributes to this transient yet spontaneous
gate opening.29,30

After surpassing the initial barrier set by M100, V116, and
L119, the path of the ligand toward the binding pocket beyond
the encounter complex was additionally constrained by a
second barrier established by F99 and F132 (Figure 3D).
These residues can also interact via π-stacking with the ligand,
which might aid in stabilizing the ligand en route to the
binding pocket (Figure S3). The two residue barriers are very
close to the binding pocket, and even F99 and F132 are part of
the binding pocket itself (Figure 2B). While adjusting through
these residue barriers, the ligand closely resembles the bound
state in terms of distance from the binding pocket but not in
terms of orientation.
To further validate the computational prediction of the

proposed recognition pathway and especially the role of the
encounter complex and the residue barriers in the sensing
mechanism, we rationally designed a set of site-specific
mutants and characterized their phenol sensing ability by
isothermal titration calorimetry (ITC) studies. The simulation
trajectories predicted the first barrier by hydrophobic residues
M100, V116 and L119. We surmised that the presence of polar
residues, instead of these hydrophobic residues, would have
formed hydrogen bonds across pocket gate residues or with
ligand, thereby restricting ligand entry and encounter complex
formation. Accordingly, to verify if the phenol-sensing indeed
would be controlled by these hydrophobic residues, as posited
by simulation, mutations were designed by substituting pocket-
gate and channel residues by polar residues (M100Q_L119N
and M100Q_V116N). The mutants of sensor domain
(residues 1−229) of MopR were expressed in E. coli and
tested for binding to phenol. Mutations did not destabilize the
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overall structure as indicated by circular dichroism (CD)
curves, and mutant simulations did indicate hydrogen bond
formation (Figure S4). Interestingly, double mutants of MopR
in the form of M100Q_V116N (Kd = 4.35 ± 0.07 μM) or
M100Q_L119N (Kd = 2.7 ± 0.5 μM) significantly decreased
the phenol binding affinity (Figure 3E, S5), in comparison with
the wild type MopR (Kd = 0.46 ± 0.06 μM). On the other
hand, a control hydrophobic substitution (M100 V_L119 V)
retained the binding affinity (Kd = 0.45 ± 0.06 μM) of wild-
type (Figure 3F), indicating that an equivalent hydrophobic
gate, similar to M100, V116 and L119 would also facilitate the
phenol entry. In order to ascertain the binding events observed
through ITC, blank titration experiments were performed
wherein the heat of dilution of mutant proteins was negligible
(Figure S6) inferring true ligand recognition.
Further, as an interesting proof of concept, the energy cost

to open the pocket-gate or channel was enhanced by forming
salt bridges between pocket-gate residues (M100 K_V116D
and M100 K_L119D). The overall structure of the mutant
construct remains stable as observed by CD curves, and
mutant simulations did indicate the formation of a salt bridge
(Figure S4). In these mutant constructs, no detectable binding
was observed, confirming the requirement of channel
formation or pocket-gate opening for successful binding in
MopR (Figure 3G). Additionally, the second barrier residues
(F99, F132) form π-stacking interactions with ligand both
during the binding process and in the bound state, if mutated

to nonaromatic leucine residues also significantly decrease the
binding affinity of MopR (Figure S5). Together, the computa-
tional and experimental observations indicate that the ligand
approached the buried cavity of MopR via α4 and β4 (i.e.,
pathway-1). In process, the ligand traverse two residue barriers,
which are either close to the binding pocket (first barrier) or
are part of the binding pocket (second barrier). Also, the CD
curves of mutant constructs and mutant simulations indicate
that the structure remains conserved; nevertheless, a subtle
change in the binding pocket cannot be neglected owing to the
proximity of mutated residues. All ITC were replicated thrice,
and for all mutant constructs, the N value maintained at 1 as
with wildtype indicating unaltered stochiometry.
Upon examining the sole trajectory that displays the less

common binding pathway (pathway-2), it was observed that
the ligand’s route through this pathway initially involves ligand
entry between α4 and α3, which causes a significant
repositioning of the M105 side chain. Finally, the ligand
crosses between α4 and α4 to reach the binding pocket (Figure
S7). In any receptor that has an buried binding pocket, an
unbound ligand must traverse through a certain width of the
protein’s core to access the binding pocket. In the case of
MopR, pathway-1 represents the shortest route (measured as
the distance between the protein surface and the binding
pocket) that the ligand must take to reach the binding pocket
(Figure S7). Therefore, we believe that pathway-1 is the most

Figure 4. The intermediates. (A) Four-state MSM of binding mechanism in MopR. (B) Free energy plot showing minimas corresponding to 4
metastable states of MSM. The width of the curve represents the error bar. (C) Zoomed residue level view of intermediate-2. (inset) The two states
of H106 in I2 and B states. (D) The hydrogen bond time profile of ligand with H106 (I2 and B states) and W134 (only B state).
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favored pathway for ligand binding in MopR, whereas
pathway-2 is either a less significant pathway or an outlier.
Statistical Model Reveals Four-State Ligand-Sensing
Process

A Markov state model (MSM) was developed to quantitatively
characterize the binding process of the ligand-sensing
mechanism in MopR. Toward this end, for statistical sampling,
a large set of adaptively spawned independent short trajectories
were combined with the continuous trajectories, resulting in an
aggregate of 25.2 μs worth of data. Implied time scale (ITS)
analysis of MSM31 predicts that the overall ligand-recognition
process by MopR would be optimally described by four key
states (Figure 4, S8). The model recapitulates two of these
states as “phenol-unbound” (U) and “native phenol-bound”
(B) poses of MopR. More importantly, the ITS identifies two
short-lived binding-competent metastable intermediates,
coined hereafter as “intermediate-1 (I1)” and “intermediate-2
(I2)”. The ensemble of I1 is represented by phenol waiting
outside the first barrier (M100, V116, L119), just before the
formation of the encounter complex. The recovery of I1 as a
non-negligible intermediate indicates that the ligand would
spend finite time waiting outside the first barrier before this
gate opens either spontaneously or after being induced by the
phenol. The other key intermediate I2 appears between the
formations of encounter complex and native-bound pose. In
this macrostate, phenol is located within the hydrophobic core
of MopR and is surrounded by first (M100, V116, L119) and
second (binding pocket residues F99, F132, H106) barrier
residues (Figure 4C).
A quantitative characterization of transition paths between

“unbound” and “native-bound pose” ascertained an inter-
mediate-guided pathway, i.e., Unbound → I1 → I2 → Bound
as the dominant recognition pathway (91.72 ± 1.83%
probability). The dominant pathway, as predicted by MSM,
is akin to the aforementioned “pathway-1” involving two
barriers. The MSM also predicted a nonzero probability (6.25

± 1.77%) for recognition to take place without intermediate-2.
This is supported by the fact that out of 12 binding events
through pathway-1, 3 of them occurred without any detectable
intermediate-2 state (Figure S8).
The key intermediate (I2), present between the first and

second barriers with only subtly different from the bound state,
forms π-stacking with second barrier residues (F99, F132) and
weak hydrogen bond with another binding pocket residue
H106 (Figure 4C). The I2 has a committor probability of 0.94
± 0.02 (Figure S8), indicating that once in the I2 state, the
ligand has a probability of 0.94 to attain successful binding.
H106 which forms hydrogen bonds with the ligand in the
bound state and also in the I2 (Figure 2B, 4C) state discerns
important aspects of ligand sensing in MopR. H106 exists in
two different states in I2 and B states, which allow it to form a
hydrogen bond with ligand initially in the I2 state and
potentially drive the ligand to bound state, where ligand can
form hydrogen bond with W134 also (Figure 4C,D, S8). This
shifting of H106 marks the beginning of downstream signaling
as explained in our previous work.32 Additionally, involvement
of H106 in the I2 state also re-explains our previous
observation regarding the pronounced effect of H106 as
compared to W134. In particular, H106 (H106A Kd = 7.86 ±
0.01 μM) and W134 (W134A Kd = 2.87 ± 0.01 μM) form a
hydrogen bond with bound phenol but have a different
contribution to binding affinity.13 H106 forms a hydrogen
bond with ligand both in I2 and the bound state, while W134
forms a hydrogen bond with ligand only in the bound state,
which explains the pronounced effect of H106 and importance
of the I2 state. Therefore, we believe this histidine residue is
the final selectivity filter 3 that pulls the ligand into the binding
pocket and allows it to enter the final bound pose.
Mechanism of Rejection of Nonligands Such As
Substituted Bulky Phenols and Benzene by MopR

In addition to exhibiting high sensitivity toward an analyte, a
biosensor also needs to be selective. MopR is known to be

Figure 5. Size based selection. (A) Representative phenolic ligands depicting size based ligand screening. (B) The putative size selective channel
responsible for filtering the ligands based on size. (C) Channel size and ligand sizes with respect to M100−V116 distance. Dashed line indicates
ligand sizes, corresponding to (bottom to top) phenol, o-cresol, m-cresol and 3,4-dmp. (D) Channel size during phenol binding optimal for phenol
entry.
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highly sensitive toward its cognate ligand phenol. However,
more importantly the sensor domain of this protein is
strategically selective such that it exclusively senses phenol
with the highest binding affinity (Kd = 0.46 ± 0.06 μM), while
larger phenolic derivatives and nonphenolic smaller-sized
ligand benzene show significantly decreased affinity (Figure
1, S9).
The phenol-recognition mechanism by MopR, as elucidated

in this investigation, provides a very compelling interpretation
of its ligand-selectivity. The aforementioned binding mecha-
nism as well as complementary site-directed mutations had
indicated that the pocket-gate created by M100, V116 and
L119 residues in α4 and β4 in MopR can serve as crucial
selectivity filter on the way to ligand-entry in the native pocket
of MopR. The subtle increase in the M100−V116 distance
(either via ligand induction or spontaneous fluctuation) creates
a crucial channel (Figure 5) which paves the way for phenol
entry. Unfortunately, the residue based M100−V116 distance
cannot be correlated with ligand sizes or other metrics.
Therefore, we estimated the average diameter of phenolic
ligands (ligand size) and average diameter of M100−V116
transient channel (channel size) (Figure S9 for estimation
method), which can be directly compared to understand size
based ligand selectivity. The calculated ligand and channel
sizes perfectly correlate with size based binding affinity
decrease and M100-V116 distance, respectively (Figures 5C,
S9). A comparison of various ligand sizes with that of the
transient channel suggests that phenol shall require channel
opening of ∼6.67 Å or 1.2 nm of M100−V116 distance
(Figure 5C). This represents the maximal opening observed in
simulations, indicating that the size of the channel would be
sufficient only to allow phenol entry (Figure 5C, D). Any
bulkier phenol derivative would find it difficult to pass through
this size selective channel opening, thereby decreasing the
binding affinity. The results indicate that the size based ligand
screening occurs at first barrier corresponding to intermediate-
1 state.

The above analysis of size-based ligand selection is under the
assumption that larger phenolic ligands would attempt binding
to MopR using the same major pathway as phenol, albeit at a
significantly decreased success rate compared to that of phenol.
To rule out the possibility that larger phenolic ligands can
exercise a different sensing mechanism than phenol, similar
binding simulations of 3,4-dimethylphenol (3,4-dmp) with
MopR were performed. It was found that 3,4-dmp binds at a
significantly decreased success rate (one successful event out of
three independent simulations) through same pathway as that
of phenol (Figure S9), thereby suggesting that the recognition
mechanism would be conserved in which ligand-size would
impart selectivity.
In addition to being size selective, MopR is also known to be

a poor sensor of nonphenolic ligands such as benzene even if
smaller than phenol in size. Significantly decreased affinity of
benzene is interesting as (i) benzene is smaller than phenol
and (ii) orientation dependent ligand entry shall not be
required for benzene. Given this logic, this would indicate that
ligand entry and formation of encounter complex must be
more facile for benzene given that benzene attempts binding
through the same mechanism. This apparently contradicts the
aforementioned argument based on size-selectivity-filter. To
understand phenol-based benzene selection, relative transition
affinities of benzene with respect to phenol were calculated
using FEP/REST33 for three transitions i.e., unbound →
intermediate-2, unbound → bound and intermediate-2 →
bound (Figure 6). We find that in agreement with the previous
size-selectivity based argument, unbound → intermediate-2
transition is indeed relatively more favorable for benzene
(−0.19 ± 0.08 kcal/mol) than phenol. However, further
transition from intermediate-2 bound state was found to be
less favorable for benzene i.e., 1.31 ± 0.23 kcal/mol (Figure 6),
combinedly deeming overall benzene binding relatively
unfavorable than phenol. In other words, our free energy
analysis predicts that benzene shall be able to form an
encounter complex and attain intermediate-2 state but would
return from intermediate-2 state, resulting in more unsuccess-

Figure 6. Phenol based selection. (A) Phenol vs benzene in the intermeidate-2 state. (B) Relative binding affinity of benzene with respect to phenol
for transition i to f, using alchemical thermodynamics (Figure S10 for derivation). (C) FEP/REST relative transition affinities of benzene with
respect to phenol for different transitions. (D) The number of unsuccessful binding attempts per microsecond (unbinding after reaching
intermediate-2 state [RMSD 0.5−0.9 nm]) for phenol and benzene.
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ful binding attempts, potentially due to a lack of hydrogen
bonding partner with H106 at the intermediate-2 state.
To rule out the possibility that benzene might have an

alternate sensing mechanism, binding simulations with
benzene were performed. Since benzene shows little or
negligible binding and to compare the benzene simulations
with phenol simulations, benzene binding simulations were
performed at a significantly high concentration, i.e., 0.019 M
equal to phenol concentration in binding simulations. It was
found that benzene also attempted binding through the same
pathway-1 (Figure S10). However, comparing benzene and
phenol binding simulations reveals that benzene would reach
out the intermediate I2 state but deflect back to solvent (i.e.,
unsuccessful binding attempt) significantly more often than
phenol (Figure 6C, S10). This was in complete agreement with
FEP/REST prediction, that phenol-based ligand selection
occurred at intermediate-2 state and benzene undergoes a large
number of unsuccessful binding attempts. This indicates H106
controls phenol-based ligand selection, which is in agreement
that H106 is also present in other phenolic pollutant sensor
DmpR (H100) and HbpR (H108), while not in benzene
sensor XylR (Figure 7).10,14,34

■ DISCUSSION
Bacterial transcription is a tightly regulated process, especially
the one controlled under the σ54 RNA polymerases as the
genes under this promoter are turned on only under specific
external stimuli.1 Nature has therefore devised sophisticated
sensing mechanisms to interface with the external environment
to avoid misregulation or unwarranted cross-talk. In this
regard, we delve into the mechanism of sensing of MopR, a
phenol sensor. Our studies reveal that recognition of the ligand
is a complex process, unlike the conventional lock-and-key
hypothesis;35 here recognition is not limited to the substrate
binding pocket. Rather, we believe that for buried pockets it
starts when the ligand encounters the outer periphery of the
protein or binding pocket. In an effort to maintain stringent
selection, phenol has to encounter three layers of selection to
finally reach the buried phenol binding pocket. Here, it is
noteworthy to point out that during the simulation, the MopR
sensor domain never opens via a dramatic conformational
change; rather, subtle interactions with the pocket-gate help in
getting the ligand into the pathway. The first filter, pocket-gate

lies near the surface of the protein (between α4 and β4) and
ensures the correct size ligand which is a monoaromatic group,
in the case of MopR, enters the protein matrix (selectivity filter
1). This filter is exposed to a milieu of molecules and therefore
is a critical selection juncture. Analysis of other proteins that
harbor similar sensor domains such as DmpR, XylR, HbpR etc.
show that a pocket-gate filter is a common feature and has
mostly aliphatic hydrophobic amino acids such as methionine,
leucine valine etc.10,36 (Figure 7) XylR34 is a benzene sensor
that mostly closely resembles the pocket gate organization of
MopR, and this is one of the reasons that in the simulations,
benzene is able to pass the first selection point. Comparison of
this region of MopR with that of DmpR shows that the pocket
evolution is subtly tuned into the protein sequence. In DmpR,
a proline has been replaced in β4 instead of a valine, which
then introduces a kink in this region, facilitating the bulkier
ligand 2,3-dimethyl phenol to enter. Interestingly, in HbpR,
which is a hydroxy biphenyl sensor, the pocket filter has a
similar hydrophobic configuration but a wider pocket to
accommodate the biphenyl-ring recognition. Thus, a fine
interplay and placement of apt residues at the selectivity filter 1
stage control the size and nature of the ligand that enters a
particular sensor module.
The second filter in the MopR phenol sensor helps direct

the ligand toward the binding pocket and primes it for
selection to the next filter. A comparison of the four available
sensor modules depicts that helix α4 almost always harbors a
phenylalanine with the corresponding amino acid at the β4 end
adjusting according to the size of the entering ligand. ITC
studies in conjunction with the comparison as depicted in
Figure 7 support this hypothesis and reassert that it is the β4
residue (F132 in MopR) that evolves as per the ligand
requirement. However, the most crucial filter is the rejection of
isostructural hydrocarbons such as between phenol and
benzene for the phenol sensor which is orchestrated via a
key histidine residue (final selection filter 3). Simulations show
that in MopR, absence of interaction of benzene with H106
destabilizes the encounter complex leading to it is rejection. All
aromatic phenol group sensing proteins harbor the histidine
residue; however, for proteins that accept only hydrocarbon
moiety such as XylR (benzene sensor), this histidine is missing
(Figure 7). Moreover, previous reports through protein
engineering studies show that where this histidine is replaced

Figure 7. Comparison of the ligand binding path in aromatic sensing proteins: (A) A set of three selection filters is conserved in all aromatic sensor
units. The pocket sensing residues, selectivity filter 1 are depicted in forest green; selectivity filter 2 in light pink; and selectivity filter 3 H106, W134
in limon green. Schematic representation of ligand transport pathway is highlighted as blue dotted arrow. While coordinates of (A) and (B) for
MopR and DmpR are extracted from crystal structures bound with ligand, PDB Id 5KBE and 6IY8 respectively. (C) and (D) depicts, XylR and
HbpR which are benzene and hydroxyl biphenyl sensors, respectively. Their coordinates are extracted from model generated via Alphafold,37 and
the ligand is docked in the probable binding pocket using Autodock.38 All carbon atoms of the ligand are colored in yellow, with the oxygen atom
shown in red.
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by alanine, phenol sensing is completely abolished.13 Whereas,
in MopR it has been shown that replacement of histidine to
tyrosine H106Y helps creates an effective benzene sensor and
leads to complete rejection of phenol.17 This highlights the
importance of this filter that is selected for phenols. Moreover,
HbpR which identifies hydroxy biphenyls also has this histidine
sensor residue conserved, thereby reasserting it is central role
in aromatic sensing (Figure 7).
Enzymes with buried pockets have various ways to allow

ligands inside, either via opening/closing of a specific tunnel,
or via an allosteric switch that opens up a transient path or via
formation of temporary pockets that then facilitate opening of
the main binding site or via breathing motion that allow side
chain fluctuations making way for the ligand.22,26,27,39 The
MopR simulations have revealed that the system allows the
sensor molecule to enter in a seemingly passive fashion, with
fluctuations in the protein being the primary way in which the
ligand approaches the protein. Once the entry process is en
route, it then subjects the ligand to a stringent selection. One
would argue the need for this stringency in selection. In fact, it
appears that the concentration of the small molecule/pollutant
acts as a descriptor of the external stress. The processes
initiated by recognition of the small sensor molecule by the
sensor module are quite energy intensive on the cell.
Therefore, a judicious decision-making strategy at this early
juncture is paramount. For instance, in MopR, the sensor unit
which is linked to the ATPase unit gets turned-on upon
binding of phenol and subsequently triggers σ54 RNA
polymerase that then transcribes a substantial set of phenol
degrading genes and shifts the whole energy requirement of
the cell from glucose to phenol, an energy intensive process.
Since no chemical reaction is taking place, it is the sensor
module that needs to maintain the stringency, as there are no
further barriers once the ligand reaches the sensing pocket.
Therefore, the whole sensing process was layered under
selection filters to avoid accidental triggering of the pathway.
In conclusion, here the described understanding of the

binding pathway helps in not only understanding the basic
mechanism behind ligand selection but opens new avenues for
intelligent biosensor design for this important class of aromatic
pollutant sensors.40−43 Since the multistep selection process
takes place before the ligand actually reaches the binding
pocket, an important aspect to consider while designing
biosensors rests on tweaking parameters that govern the
propensity of entry of a particular ligand.44,45 New ligand-
biosensor combinations can be created by altering the residues
that line the entry path such that only the molecule of choice is
allowed to reach the binding pocket. The multilayered
selection process can be extended to benchmark the
determinants necessary to achieve optimal protein−ligand
design.

■ METHODS

Computational Methods and Model
Unbiased Binding Simulations. The crystallographic structure

of wildtype MopR dimer in phenol bound form (PDB code: 5KBE)
was used as starting point for all our simulations.13 The missing
residues were modeled using charmm-gui.46 The protonation states of
titrable amino acids corresponded to neutral pH except for C155,
C181 and C189, which were modeled as negatively charged due to
coordination to the Zn2+ ion. Each protomer of MopR contained one
zinc ion tetrahedrally coordinated to C155, E178, C181 and C189.
Cysteine side chain pKa was assumed to shift in the presence of close

zinc leading to deprotonation47 and trial simulations showed stable
zinc conformation with deprotonated cysteines (Figure S11). For
binding simulations, the phenol-free apo form of the MopR dimer was
placed at the center of an octahedron box with a 10 Å minimum
distance between the protein surface and box and an empty space
filled with water and ions. The system was solvated with around
18500 water molecules and sodium and chloride ions were added to
keep the sodium chloride concentration at 200 mM and overall
neutral charge. Ten phenol molecules, corresponding to an
experimentally employed 1:5 protein−ligand ratio,13 were placed at
random positions in the simulation box such that no phenol molecule
was in contact with MopR dimer. The system thus prepared led to
phenol concentration of 19 mM which is much less than the phenol
water solubility limit of 0.88 M. Six such systems with randomly
placed phenol molecules were generated, and two all atom MD
simulations were started from each of the systems. The total system
overall included around 63000 atoms. The protein, phenol and ions
were parametrized with Charmm36m force field28 and charmm-
TIP3P water model48 was used. All MD simulations were performed
with Gromacs 20xx packages benefiting from usage of graphics
processing Units. The simulations were performed at an average
temperature of 298 K as per experimentally employed conditions and
1 bar pressure. The temperature was maintained using a Nose−
Hoover thermostat49,50 with a relaxation time of 1.0 ps and pressure
was maintained using Parrinello−Rahman barostat51 with a coupling
constant of 5.0 ps. The long-range electrostatic interactions within 1.2
nm cutoff were calculated with the use of Particle Mesh Ewald
summation52 and Lennard-Jones interactions within 1.2 nm cutoff
were calculated using Verlet cutoff scheme.53 All the hydrogen bonds
were constrained using LINCS algorithm54 and water hydrogen bonds
were fixed using SETTLE algorithm.55 All equilibration and
production runs were performed at 1 and 2 fs time steps, respectively.
Twelve replicates of unbiased all atom MD simulation trajectories
were spawned, each preceding 500 ps restrained NVT equilibration
and differing in initial protein-phenol configuration and initial
velocities as per protocol of our previous works.26,27 The binding
simulations ranged between 1 to 4 μs with a total simulation length of
20 μs. The simulations were stopped only after any of the phenol
molecule(s) had remained bound for sufficiently long duration (>200
ns) to any one or both the protomer(s) of MopR dimer. The binding
process at any instant was checked by two metrics; (i) center of
geometry distance between phenol and binding pocket or inner shell
as defined in this work and (ii) the RMSD of any phenol molecule at
an instant in simulated conformation relative to the crystal structure
(PDB id: 5KBE) of phenol-bound MopR. The Ligand RMSD values
below the cutoff of 3 Å were used to confirm the binding event. Apart
from the binding simulations, apo and bound forms of MopR dimer
were individually sampled (apo and bound simulations) using 1 μs
long simulations, following the same procedure as above. Further,
binding simulations with 3,4-dimethylphenol and benzene were
performed, following the same procedure as for phenol. 3,4-
dimethylphenol and benzene were parametrized using charmm36
force field parameters. Additionally, simulations of mutant MopR
were also performed for M100 K_L119D, M100 K_V116D,
M100Q_L119N and M100Q_V116N mutations. The in-silico
mutations were performed using charmm-gui.46 For each mutant, 3
independent simulations each of 200 ns timelength were performed.
MSM Analysis. For binding pathway analysis, a Markov state

model (MSM)56,57 was built using PyEMMA python library.58 For
building a comprehensive MSM, in addition to the aforementioned
unguided aggregated binding trajectories (both pathway-1 and
pathway-1), extensible adaptive sampling was performed yielding a
total of 25.2 μs worth of data. For adaptive sampling, to improve the
simulation statistics, a large set of (122 total) short independent MD
simulations (each 100 ns long) were initiated from various binding
competent states as characterized in long binding simulations. For this
purpose, starting structures were extracted from binding simulations
representing bound to unbound spectrum of ligand states (ligand
RMSD = 0.1−1.8 nm). Both the aforementioned metrics (protein−
ligand distance and RMSD) which were used to detect phenol-
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binding in long unguided trajectories, were also employed to
construct the MSM. The 2-dimensional input data was linearly
transformed into slow linear subspace by time-lagged independent
component analysis (TICA)59 to 1 TIC component using a
correlation lag time of 5 ns, covering more than 95% of kinetic
variance. The one-dimensional TICA output was further discretized
to 300 microstates using k-means clustering algorithm.60 The
resulting micro states were used to construct the final MSM at a
lag time of 250 ps. The MSM were further coarse grained to 4
metastable macrostates based on ITC plots, using the PCCA
algorithm.61 Finally, the transition path theory was applied to analyze
the transition pathways and path fluxes among the macro states.62

The MSM protocol was repeated for 120 replicates with one to three
random trajectory data sets removed for each iteration. The errors
were calculated as the standard deviation in 120 iterations.
Free Energies of Pocket Gate Opening. The umbrella

sampling approach63 was employed to map free energy for M100-
L119 pocket gate opening that was found to be crucial for ligand
binding. The visual inspection of the MD trajectory indicated that the
pocket gate opening was mostly triggered by side chain movement.
Accordingly, the center of mass (com) distance between side chains
of M100 and L199 was used as a collective variable (CV) for
projecting the free energy profile using umbrella sampling. The value
of the CV ranged between 0.6 and 1.1 nm representing “pocket-gate
closed” to “pocket-gate open” and was discretized into 11 windows
with an uniform interval of 0.05 nm. The starting configurations for
each umbrella were picked from unbiased MD trajectories. We
derived free energy profile for three pocket-gate opening in three
independent scenarios: a) For “apo conformation”, pocket-gate
opening was measured in absence of phenol and frames were picked
from apo simulations; b) for “encounter complex”, pocket gate
opening was measured with phenol entering the binding pocket and
frames were picked from binding simulations; c) for “with bound
ligand”, pocket-gate opening was measured with phenol in the binding
pocket and frames were picked from bound simulations. Each
umbrella window was equilibrated for 500 ps and sampled for 100 ns,
ensuring sufficient sampling of the entire CV space by restraining each
umbrella to the desired value of CV using suitable harmonic potential.
Finally, the weighted histogram analysis method64 was used to
reweight the umbrellas to get potential of mean force as a function of
CV. The error was estimated over 1000 independent bootstrapped
replicas.
Estimation of Relative Binding Affinities. The binding

affinities of benzene relative to phenol were computed using the
free energy perturbation (FEP) approach33 in combination with
replica exchange with solute tempering (REST)65 using a similar
approach as in our previous works.66 In particular, the relative binding
affinities were computed for binding either from unbound to
intermediate-2, unbound to bound, or intermediate-2 to bound
state of the ligand. For this purpose, three different system states were
simulated, with the hybrid ligand undergoing phenol to benzene
transition (i) in bulk solvent representing the unbound state; (ii) in
pathway_1 intermediate-2 pose representing the intermediate-2 state,
and (iii) in binding pocket representing the bound state. The relative
binding affinities of benzene with respect to phenol for transition from
state “i’ to ‘f” was calculated using the alchemical thermodynamic
cycle67 as

G G Gi f
B P

f
P B

i
P B/ =

where: Gf
P B represents free energy change of phenol to benzene

transition in state ‘f’ and Gi f
B P/ represents the relative binding

affinity of B with respect to P while transitioning from state “i’ to ‘f”.
In FEP simulations, the initial configurations for intermediate-2 and

the bound state were obtained from the unbiased binding simulations.
The phenol to benzene transition was carried out in 24 discrete steps
of coupling parameters λ ranging from λ = 0 (where hybrid ligand
represents the phenol) to λ = 1 (where hybrid ligand represents the
benzene). The hybrid ligand configuration and topology parameters

were created using pmx scripts,68 giving hybrid ligand with 3 possible
dummy atoms and a much lower similarity score 0.2143, owing to
close resemblance between phenol and benzene. To employ the
REST with FEP, a hot region was defined for each state of system, (i)
For unbound state, phenol was used as hot region, (ii) for
intermediate-2 state, along with ligand H106, F99 and F132
represents the hot region, and (iii) for bound state, along with ligand
H106, W134 and F99 represents hot region. The only residues
involved in important protein−ligand interactions in intermediate-2
and bound state were considered for the hot region, because a large
hot region increases uncertainty in energy calculations. A total of 24 λ
windows were simulated for FEP/REST. For FEP/REST, the
temperature of the hot region was raised using appropriately scaled
Hamiltonian based of specific λ value, with the effective temperature
profiles at 298, 337.7, 383.4, 434, 492.7, 559.2, 634.7, 720, 816.5,
926.8, 1051, 1192, 1192, 1051, 926.8, 816.5, 720, 634.7, 559.2, 492.7,
434, 383.4, 337.7, 298 K, ensuring same physiological (298 K)
temperature for λ = 0 and λ = 1. Each λ window was equilibrated for 3
ns and sampled for 6 ns. For FEP/REST, replica exchange was
attempted after every 2000 steps. The final binding free energies were
calculated by Bennett Acceptance Ratio method.69

Experimental Method and Materials
Molecular Cloning and Protein Expression. In order to

validate the computational results, various mutations were incorpo-
rated into the MopRAB (residue 1 to 229) construct of full length
MopR protein of Acinetobacter calcoaceticus NCIB8250 that was
cloned into a modified pET28a expression vector as in our previous
work.13 All of the point mutations were performed by employing a
standard site-directed mutagenesis protocol using the Phusion DNA
polymerase from New England Biolabs. The reaction mixture
compositions were as follows: 1X phusion buffer, 0.2 mM dNTPs,
0.5 μM of forward and reverse primer, 10 ng template plasmid and 0.3
U Phusion DNA polymerase. The program optimized for the site
directed mutagenesis was as follows: Initial denaturation at 95 °C for
2 min followed by 18 cycles of denaturation (98 °C for 30 s),
annealing ((Tm −5) °C for 30 s), extension (72 °C for 5 min) and
then a final extension 72 °C for 5 min. The product was confirmed on
an 0.8% agarose gel and was digested with Dpn1 for 2 h at 37 °C. The
Dpn1 digested product was then transformed into E. coli DH5α cells,
and the obtained single colony was processed for plasmid isolation.
All the mutations in the obtained clones were confirmed by DNA
sequencing. These cloned constructs were transformed into
Escherichia coli Rosetta (DE3) cells and grown at 37 °C until
OD600 reached 0.6−0.8 followed by induction with 1 mM IPTG
(isopropyl-β-D- thiogalactopyranoside) at 16 °C for 16 h. The
bacterial cells grown were harvested by centrifugation at 4000 rpm for
20 min. All the mutants were expressed as N-terminal His tag fusion
proteins.
Protein Purification. The harvested cells were resuspended in

lysis buffer (50 mM HEPES buffer, pH 7.5; 2 mM imidazole; 200 mM
NaCl), lysed by sonication, and centrifuged to separate the debris
from the cell extract. The separated cell extract was then mixed with
Ni-NTA resin that was pre-equilibrated with the lysis buffer and was
subjected to gentle stirring for 1.5 h. The resin was transferred to a
column and was subjected to washing with wash buffer (50 mM
HEPES buffer, pH 7.5; 30 mM Imidazole; 200 mM NaCl), and
subsequently, protein was eluted with elution buffer containing 50
mM HEPES buffer, pH 7.5; 200 mM NaCl. The eluted fractions were
further concentrated and exchanged to buffer containing 25 mM
HEPES, pH 7.5, 80 mM NaCl, and 0.5 mM DTT using an Econo-
Pac 10DG (Bio-Rad, CA, USA) column. The protein fractions
obtained were then pooled together, concentrated, flash-frozen in
liquid N2, and stored at −80 °C until they were used.
Phenol Binding Experiment Using ITC. The ITC experiments

were performed using MicroCal iTC200 (GE Healthcare) to calculate
the binding affinity of phenol toward various MopRAB mutants.70 All
the protein and ligand (phenol) samples were prepared in buffer (A)
containing 25 mM HEPES (pH-7.5) and 80 mM NaCl. The sample
cell containing 10−40 μM MopRAB mutants was titrated against 100−
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400 μM of phenol. The concentrations of protein and ligand used in
different ITC experiments varied as per requirement, in order to attain
optimal saturation for a particular titration curve. The volume of the
titrant (phenol) added at each injection into the sample cell was 2 μL
for 5 s. A range of 16−20 injections was performed for each
experiment with an interval of 120 s between each successive
injection. The temperature was maintained at 25 °C. The stirring rate
was kept constant at 750 rpm throughout the ITC experiments. In all
of the ITC experiments, the ligand was titrated against buffer A and
subtracted from the raw data prior to model fitting, in order to nullify
the heat of dilution. The data obtained were fitted and analyzed using
one set of sites model with Origin 7 software. All of the titration
experiments were replicated thrice in order to validate the results. The
protein concentrations for the various MopRAB mutants used in ITC
were quantified using an UV−vis spectrophotometer by measuring
their absorbance at 280 nm.
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