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Apoptotic Donor Cells
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Despite significant advances in prevention and treatment of transplant rejection with
immunosuppressive medications, we continue to face challenges of long-term graft
survival, detrimental medication side effects to both the recipient and transplanted
organ together with risks for opportunistic infections. Transplantation tolerance has so
far only been achieved through hematopoietic chimerism, which carries with it a serious
and life-threatening risk of graft versus host disease, along with variability in persistence of
chimerism and uncertainty of sustained tolerance. More recently, numerous in vitro and in
vivo studies have explored the therapeutic potential of silent clearance of apoptotic cells
which have been well known to aid in maintaining peripheral tolerance to self. Apoptotic
cells from a donor not only have the ability of down regulating the immune response, but
also are a way of providing donor antigens to recipient antigen-presenting-cells that can
then promote donor-specific peripheral tolerance. Herein, we review both laboratory and
clinical evidence that support the utility of apoptotic cell-based therapies in prevention and
treatment of graft versus host disease and transplant rejection along with induction of
donor-specific tolerance in solid organ transplantation. We have highlighted the potential
limitations and challenges of this apoptotic donor cell-based therapy together with
ongoing advancements and attempts made to overcome them.
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INTRODUCTION

The use of immunosuppressive medications for transplantation has significantly decreased the
incidence of acute allograft rejection, however they have had limited to no impact on chronic
rejection and overall long-term graft survival (1). On the contrary, this pharmacological
immunosuppression has side effects that include infections, malignancies, metabolic disease
together with drug toxicities to the allograft itself. These detrimental side effects and non-specific
immunosuppression can be potentially eliminated through donor-specific tolerance induction.
Thus far in humans, one strategy that has been employed with encouraging results in solid organ
transplantation is the use of combined kidney and hematopoietic stem cell transfers (CKHCT). This
results in a state known as mixed chimerism, wherein both donor and recipient hematopoietic stem
cells coexist and tolerance is achieved primarily through the central tolerance mechanism of intra-
thymic deletion of donor-reactive T cells. This strategy has been successful in Human Leukocyte
Antigen (2) identical transplants with the use of total lymphoid irradiation and T cell depletion for
conditioning. However, in HLA-mismatched donor-recipient pairs, more aggressive conditioning
org February 2021 | Volume 12 | Article 6268401
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was required together with administration of a higher number of
donor T cells that significantly increased the risk of the life-
threatening complication of graft versus host disease (3–5). In
the realm of non-chimeric approaches, immunoregulatory cell-
based therapies have recently come into clinical trial space as well,
with the most frequently used cells being regulatory T cells (Tregs),
tolerogenic antigen-presenting-cells (APC) such as dendritic cells
(DC) and regulatory macrophages, and lastly, myeloid-derived
suppressor cells (MDSCs) (6–8). These cells have been used in
treatment of graft-versus-host-disease (GVHD), rejection in
hematopoietic stem cell transplant (HSCT) as well as tolerance
induction in solid organ transplantation. However, the major
challenges and hurdles of this approach include cumbersome
manufacturing processes of these cells, selection of optimal
timing and dose, conferring antigen specificity, and lastly, their
in vivo instability.

Many of the aforementioned challenges encountered with the
mixed chimerism approach and immunoregulatory cell therapy
can be overcome with the use of apoptotic cells which can
effectively deliver donor antigen while also creating an
immunosuppressive milieu that promotes donor specific
tolerance. Not only has this potential been utilized for tolerance
induction and treatment of rejection in solid organ transplant, in
HSCT it has also shown efficacy in reverting GVHD (9).
MECHANISMS

Apoptosis is essential to the maintenance of self-tolerance, thus
mutations in apoptosis regulating genes such as Fas and Fas
ligand (FasL) in humans as well as in mouse models have been
implicated in autoimmune diseases (10, 11). Specifically, inability
to effective clear dying cells can result in persistence of cellular
debris which may lead to systemic autoimmunity such as
systemic lupus erythematosus (12–14). Apoptotic cells attract
and recruit macrophages to dying cells through “find-me” signals
and facilitate engulfment through “eat-me” signals in a process
known as efferocytosis (15). Efferocytosis involves four steps:
recruitment, recognition, tethering and signaling and
engulfment. At the onset of apoptosis, recruitment is carried
out through “find‐me” signals produced by apoptotic cells. These
are sensed by phagocytes which are then recruited to the site of
apoptosis. The second step, involves the interaction of binding
ligands (“eat-me” signals) on the surface of apoptotic cells and
their receptors on the surface of macrophages. As a consequence,
the cytoskeletal rearrangement within the phagocyte occurs by a
Rac1‐mediated signaling pathway (16). The final step of
engulfment follows this and internalization of apoptotic
particles and their decomposition takes place within phagocytes.

One such “find me” signal is lysophosphatidylcholine, a lipid
mediator that is produced and released from apoptotic cells and
by interacting with the G2 accumulation receptor, it recruits
macrophages (17). This is a G‐protein‐coupled receptor
expressed in macrophages, dendritic cells, neutrophils, mast
cells, T lymphocytes and B lymphocytes that is involved in
regulating cell cycle, proliferation, and immunity. Its further
Frontiers in Immunology | www.frontiersin.org 2
functions are not known well, however it’s interaction with
lysophosphatidylcholine possibly results in the production of
chemoattractants such as monocyte chemotactic protein‐1
(MCP-1), IL‐8 and chemokine ligand 5 (CCL5) for the
recruitment of monocytes, neutrophils and lymphocytes.
Another “find me” signal is sphingosine‐1‐phosphate that acts
on macrophages to increase erythropoietin (EPO) expression,
subsequently activating the peroxisome proliferator‐activated
receptor‐g (18). This enhances the expression of numerous
phagocyte receptors like MerTK, MFGE8, Gas6, and CD36, all
of which play a role in promoting phagocytosis.

Cells express phosphatidylserine (PtdSer) on their surface
when undergoing apoptosis, which then acts as an “eat‐me”
signal (19, 20). Using Annexin I as a bridging molecule, PtdSer
interacts with the TAM family (21) of receptors to promote
phagocytosis. This TAM family are tyrosine kinases receptors for
Gas6 and protein S which bind PtdSer and antagonize
inflammatory cytokine production by STAT-1-dependent
induction of suppressor of cytokine signaling (SOCS) proteins
1 and 3 (22, 23). Furthermore, apoptotic cell-mediated activation
of Mer inhibits lipopolysaccharide (LPS) driven PI3K/AKT-
dependent NF-kB activation (24). As NF-kB signaling results
in production of numerous inflammatory cytokines, targeting of
MerTK and possibly other TAM receptors therefore has the
potential for inhibiting inflammatory cytokine production.
Interestingly, the precipitation of a severe autoimmune
phenotype in mice deficient in TAM receptor expression
suggests that they may play a role in induction of suppressive
macrophages (25). Therefore as briefly outlined above, unlike
necrosis, not only does apoptosis not elicit an inflammatory
response, it has immunomodulatory effects that are exerted
through leukocytes such as APCs, regulatory cells and soluble
factors as described further and illustrated in Figure 1.

Soluble Factors
Apoptotic cells themselves release soluble mediators in their local
milieu such as IL-10, TGF-b, and annexin A1 which exert
immunosuppressive effects (26–28). In addition to that,
macrophages that interact with apoptotic cells also downregulate
immune response through release of IL-10, TGF-b and PGE2
together with a reduction in inflammatory cytokines such as IL-
1a, IL-1b, IL-6, IL-12p70 and TNF-a (29–31). The downstream
effects of these cytokines include but are not limited to the
prevention of differentiation of T helper type 1 (Th1) and
repression of MHC-II and costimulatory molecule expression on
APCs. This deters further antigen presentation and T
cell activation.

The release of TGFb in vitro has been demonstrated to be
carried out by recipient macrophages ingesting apoptotic cells
but not during any other type of phagocytosis (32). This
production is due mainly due to the ligation of PtdSers
exposed on apoptotic cells to their receptor expressed on
macrophages (32, 33). TGFb induces Tregs (identified by
expression of CD4+CD25+CD45RBlow CD62Lhigh intracellular
CTLA-4high and high forkhead-box transcription factor p3
(Foxp3) mRNA) in both peripheral blood and spleen in
murine bone marrow transplantation model receiving
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apoptotic cell infusions (34). This effect on Tregs was not seen
with TGF-b neutralization. This process is functionally relevant
as well, wherein depletion of these T cells results in an
augmented allogenic response.

IL-10 specifically is an anti-inflammatory cytokine that plays a
role in tolerance induction and suppression of DC maturation (35).
However, conclusive evidence linking apoptotic cell-induced
suppression of adaptive immune responses exerted through IL-10
is lacking. This suggests that the mechanistic expanse of the
immune responses to apoptotic cells likely extends beyond solely
cytokine-mediated effects. Verbovetski et al. also outlined a role of
complements in this process by demonstrating that uptake of iC3b-
opsonized apoptotic cells resulted in upregulation of the expression
of CCR7 on immature DCs, rendering these cells capable of
migrating in response to CCR7 ligands to secondary lymphoid
organs to initiate or maintain T cell peripheral tolerance (36).

Control of APC Functions
Investigations of the effect of apoptotic cells on APCs have
shown that ingestion of apoptotic cells by immature DCs leads
to their resistance to maturation and activation, therefore
inhibition of MHC Class II, CD40 and CD80/86 (37, 38). This
Frontiers in Immunology | www.frontiersin.org 3
in turn can decrease their ability to stimulate T cells despite
intact apoptotic cell-derived antigen presentation. Effector T
helper 17 (Th17) cells are suppressed while Tregs are induced
through ingestion of apoptotic cells by DCs and the subsequent
DC-T cell interaction in the presence of altered co-stimulatory
and coinhibitory signals (39). Antigen coupled apoptotic cells
induce T cell tolerance via IL-10 production and upregulation of
PD-1 expression on APCs (40). PD-L1 on APCs then binds to
CD80 expressed on T cells with a greater affinity than CD28
binding, and negatively regulates T cell activation (41).

One could hypothesize that macrophages contribute
significantly to the tolerogenic response given that they induce
Tregs (42). Supporting that hypothesis, various studies show the
essential nature of macrophages in settings of tumor and
autoimmune disease-related tolerogenic responses to apoptotic
cells (43, 44).

Beyondmacrophages and DCs, another distinct cell population
that has been shown to play a role in apoptotic cell related
immunosuppressive effect are monocytic-like (CD11b+Ly6Chigh)
and granulocytic-like (CD11b+Gr1high) MDSCs (45). In cardiac
allograft model, these cells exert their immunosuppressive effect by
trafficking to the allograft where they inhibit local CD8 T cell
FIGURE 1 | Mechanisms of apoptotic cell induced tolerance. Created with BioRender.com.
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accumulation and potentially induce and recruit Tregs. Both
populations have been shown to suppress T cell proliferation in
vitro through antigen-dependent as well as antigen-independent
methods via a variety of effector mechanisms, including nitric
oxide (46), arginase, and reactive oxygen species (47–50).
Furthermore, they promote Treg induction through production
of IL-10, TGF-b and indoleamine 2, 3-dioxygenase (51, 52). Most
evidence suggests that MDSC subsets require IFN-g, both for their
induction and their effector function (53–56). Consequently,
neutralization of IFN-g completely abolishes the suppressive
capacity of this population (57). For phagocytosis of apoptotic
cells in the spleen, macrophages, T and natural killer (NK) cells are
the potential sources of IFN-g (58).

Another distinct APC population of interest is plasmacytoid
dendritic cells (pDC). They have been not been demonstrated to
be directly affected by apoptotic cells. However, the soluble
factors released by macrophages upon interaction of with
apoptotic cells can induce pDC activation, manifesting as an
increased expression of CD86 and IFN-a (59). These pDCs can
then stimulate Treg generation through TGF-b dependent
mechanisms. In cardiac allograft transplantation, alloantigen-
presenting pDCs home to the lymph nodes in tolerogenic
conditions, where they mediate alloantigen-specific Treg cell
development and prolong graft survival (60). Apoptotic cells
can also drive activated pDCs to adopt a regulatory phenotype,
capable of inducing IL-10-secreting T cells (61).

Regulatory Cells
APCs are pivotal in priming T cell responses, but also in the
induction of Foxp3+ Tregs. This has been demonstrated after
intravenous apoptotic cell infusions, local apoptotic death of
epithelial cells and it occurs in a TGF-b dependent environment
(62). Interestingly, the induced Tregs are likely antigen specific as
was demonstrated in a murine arthritis model (63). The precise
mechanisms that induce naïve T cell differentiation to Tregs

requires further investigation however it’s distinctly clear that
they play a vital role in maintenance of tolerance.

Apoptotic cells also activate splenic B cells to assume a
regulatory phenotype which further induces CD4+ T cells to
secrete IL-10. In a mouse collagen induced arthritis model,
apoptotic cell therapy delayed the clinical onset and protected
mice from severe joint inflammation and bone destruction
through this mechanism where inhibition of IL-10 in vivo
reversed the beneficial effects of apoptotic cells. These
regulatory B cells (Bregs) cells also produce IL-10 themselves
and their passive transfer provides significant protection from
arthritis to the mice (64).
APOPTOTIC CELL THERAPIES IN SOLID
ORGAN AND TISSUE TRANSPLANTATION

As outlined above, apoptotic cells have the potential to be utilized
in the field of transplantation due to their immunomodulatory
potential and being a source of allo-antigens that can be captured
and presented by APCs in an immunoquiescent environment.
Frontiers in Immunology | www.frontiersin.org 4
Intravenous infusion of apoptotic cells is the most commonly
employed method of delivery. The use of donor derived apoptotic
cells efficiently combines the delivery of apoptotic cells and donor
antigens. However, provision of apoptotic signals and donor
antigens can also be dissociated. For example, as outlined in the
various studies described in the later part of this review, major
histocompatibility complex (MHC) match between the apoptotic
cells and the donor does not appear to be essential to induce
tolerance in the recipient, as the delivery of any source of
apoptotic cells (syngeneic, allogeneic, and xenogeneic) can
induced recipient tolerance to the antigens co-delivered with
the apoptotic cells. Therefore, while the source of apoptotic cells
can be variable, the tolerance induced in this manner carries
antigen-specificity that is established by the specific antigens
provided at the time of apoptotic cell infusions (for example:
apoptotic cells of donor origin; apoptotic cells infused with donor
bone marrow cells; apoptotic cells infused to treat rejection or
GVHD when donor cells are already present in the recipient).
Once infused, these cells accumulate initially in the periphery of
the splenic follicles within the marginal zone DCs and
macrophages. Not only are apoptotic cells processed by
recipient APCs to downregulate the indirect pathway T cells
via negative co-stimulatory molecules, they can also directly
interact with the direct pathway T cells and anergize these T
cells by providing signal 1 without signal 2 (Figure 1) (65, 66).

Several in vitromethods can be utilized to induce apoptosis of
cells. These include radiation strategies such as g-radiation (65)
or UV-B irradiation (66–68); and chemical treatments such as
ethylene carbodiimide (ECDI) (69–72) or paraformaldehyde
(73). An important consideration during the process of
inducing apoptosis is to ensure early stage of cell apoptosis by
the process, as late stages of apoptosis can in fact lead to immune
activation due to loss of plasma membrane integrity, and
subsequent release of intracellular contents and engagement of
damage-associated molecular patterns (DAMPs) (74, 75). To
determine the spectrum of stages from apoptosis to necrosis that
the cells are in, one method is to quantify their surface annexin V
and propidium iodine PI (PI) expression, wherein annexin V
positivity marks apoptosis and PI positivity marks necrosis (72).
The other important consideration is the timing of apoptotic cell
infusion, most studies have achieved maximum benefit when
infusions are administered 7 days prior to transplantation. This
is likely to because it gives ample time for the processing of
apoptotic cells by splenic APCs and subsequent induction of the
aforementioned regulatory cell populations.

One of the effective methods that we have extensive
experiences with and utilize to deliver donor apoptotic cells is
through chemical treatment of donor splenocytes with ECDI
(ECDI-SP) (71, 72, 76–78). ECDI is a hygroscopic, water-soluble
chemical peptide cross-linker that acts by activating free carboxyl
groups, catalyzing the formation of covalent peptide bonds
between the active carboxyl group and primary amines (79,
80). The advantages of ECDI-treated cells are that they
demonstrate better viability when maintained at 4°C, but
within hours of in vivo administration they undergo rapid
apoptosis (81). Cell based therapies such as donor specific
transfusion (DST) carry a significantly higher risk of recipient
February 2021 | Volume 12 | Article 626840
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sensitization, especially in those with pre-existing alloimmunity,
while ECDI-SP might possibly confer therapeutic benefit in that
scenario (82). In transplantation, ECDI treated cells have been
used in non-human primates; while in autoimmune diseases,
autoantigen-coupled syngeneic leukocytes have been developed
for a phase I clinical trial for multiple sclerosis and have
demonstrated the safety of this approach in this study (83).

Preclinical data from different groups has shown in murine
models of cardiac transplantation that prolonged vascular
allograft survival can be achieved through intravenous infusion
of apoptotic donor splenocytes prior to transplantation. Sun et al.
utilized UV or g irradiation to induce apoptosis in splenocytes
from donor strain rats, followed by confirming the apoptotic
stage by using annexin V and PI staining (65). Apoptotic donor
splenocytes were subsequently injected at a dose of 5 x 107 per
recipient a week prior to transplantation. This treatment alone
resulted in a significant prolongation of graft survival from a
median survival time of 7 days in untreated controls to 53 days in
the treatment group. Histological analysis also revealed reduced
leukocyte infiltration in the allograft in the treated recipients.
Furthermore, the authors demonstrated that in vivo blockade of
phagocytic activity prevented graft protection by this treatment.
Another group led by Wang et al. independently tested the utility
and mechanism of donor apoptotic cell infusions in a fully
mismatched aortic allograft murine model (67). They
established that donor apoptotic cell infusions downregulated
indirect anti-donor response and improved chronic allograft
vasculopathy (CAV). Through directly targeting DCs with allo-
antigens, the anti-donor indirect T and B cell responses in
allograft recipients were ameliorated. In liver transplantation in
rats, donor apoptotic splenic lymphocytes have been shown to
promote liver graft acceptance and increase peripheral Tregs as
well (84, 85). Furthermore, in liver transplant rejection,
administration of tolerogenic DCs with apoptotic lymphocytes
alleviated the rejection while inducing immune tolerance (86).

Donor apoptotic cell infusions in islet transplantation in mice,
have shown to prolong islet survival through Treg induction and
tolerogenic DCs (87, 88). Beyond murine studies, in non-human
primates using donor apoptotic cell infusions have also shown
promising results in allogeneic islet transplantation. An earlier
study in non-human primates by Lei et al. showed prolonged islet
allograft survival in monkeys infused with ECDI-SP on the day of
transplantation; however, the effect was not sustained and the
duration of graft survival following discontinuation of
immunosuppression was 48 to 133 days, although the infusion
of ECDI-SP was associated with significant CD4+CD25+Foxp3+

generation and expansion (89). Singh et al. used peri-transplant
apoptotic donor leukocyte infusions, 7 days prior to transplant and
1 day after, along with short-term immunotherapy consisting of
antagonistic anti-CD40 antibody, rapamycin, soluble tumor
necrosis factor receptor, and anti-interleukin 6 receptor antibody
for tolerance induction for intra-portal allogeneic islet
transplantation in rhesus macaques (90). All of the five rhesus
macaques showed operational tolerance to their islet allografts and
demonstrated intact islets on histopathology of the liver at
necropsy when the end point was reached. This strategy was
successful in inducing long-term (≥1 year) tolerance of islet
Frontiers in Immunology | www.frontiersin.org 5
allografts in five of five non-sensitized, MHC class I-disparate,
and one MHC class II DRB allele-matched rhesus macaques.
Compared to monkeys that did not receive peri-transplant ECDI-
SP infusions, the administration of ECDI-SP was associated with
suppression of anti-donor CD4+ and CD8+ T effector memory
(TEM) cell expansion within the circulating and liver
mononuclear cells (LMNCs) and mesenteric lymph node (LNs).
Additionally, a higher percentage of circulating natural suppressor
and Treg cells were present in the ECDI-SP-treated cohort.
Notably, another cohort of fully MHC mismatched donor
recipient pair did not show similar induction operational
tolerance, or an increase in regulatory cell types or suppression
of TEM responses. This could suggest that in this non-human
primate study one-DRB-matched ECDI-SP infusion possibly
provided a shared MHC II necessary for Treg activation and/or
expansion. Both studies demonstrate the overall safety of ECDI-
treated leukocyte infusions, therefore providing a strong
foundation for clinical translation of this approach (90).

To date, the only clinical trial utilizing a modified cell infusion
for induction of transplant tolerance in solid organ transplant is a
phase I trial of mitomycin-treated donor mononuclear cell
infusions in ten kidney transplant recipients (91). The primary
outcome of demonstrating safety of the infusions was achieved
with the infusions being well tolerated without side effects.
Importantly, none of the patients developed de novo donor
specific antibodies (DSAs) or experienced any rejection
episodes. The infusions were administered to three different
subgroups of patients, in increment doses and at different time
points with respect to their day of transplantation (group A: 1.5 x
106 per kg body weight (BW) on day −2; group B: 1.5 x 108 per kg
BW on day −2 and group C: 1.5 x 108 per kg BW on day −7).
Interestingly, subsequent testing showed suppression of donor-
stimulated recipient leukocyte proliferation, whereas response to
third party stimulation was intact. The best results were observed
with the higher dose given at the early (day −7) time point. The
presence of a strong CD19+CD24hiCD38hi Breg induction
together with IL-10 production and evidence of an immune
tolerance signature similar to that seen in immune tolerance
network studies (92) suggest that donor apoptotic cell infusions
may promote donor-specific tolerance. This can be compared to
the aforementioned similar IL-10 producing Breg induction seen
mice autoimmune disease model with apoptotic cell infusion
treatment (64, 93).

Interestingly, the authors noted that infections caused a
transient disappearance of donor-specific hypo-responsiveness as
demonstrated by in vitro donor-stimulated recipient lymphocyte
proliferation. This trial thus successfully demonstrated the safety
and possible efficacy of donor apoptotic cells in inducing donor-
specific hypo-responsiveness for solid organ transplantation.
APOPTOTIC CELL THERAPIES IN BONE
MARROW TRANSPLANTATION

MHC disparity between donor and recipient remains a challenge
to HSCT. Presence of T cells of donor origin in the graft faciliates
February 2021 | Volume 12 | Article 626840
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bone marrow engraftment and prevents disease relapse, however
it can increase the risk of GVHD. Similarly, recipient T cells that
are not eliminated during conditioning impairs bone marrow
engraftment and increases the risk of disease relapse and graft
failure. This constitutes a unique challenge with using T cell
depletion strategies in bone marrow transplatantion(BMT) that
result in T cell depletion of donor and recipient origins, therefore
underscores the need for alternatives to global T cell depletion
strategies in BMT.

In the last decade, due to their immunomodulatory effect,
apoptotic cell therapies have entered clinical translation and been
tested as a prophylactic therapy for acute GVHD in HLA-
matched myeloablative allogenic BMT (94) (2). Notably, a
phase I/IIa clinical trial enrolled 13 patients with hematological
malignancies, and infused them with incremental doses of donor
mononuclear apoptotic cells (ApoCell) on day −1 followed by
BMT with a myeloablative conditioning regimen on day 0.
Overall, six of the patients who received the higher dose of
ApoCell showed 0% incidence of grade II to IV GVHD, and the
remaining seven patients showed a lower incidence of GVHD
compared to published data of historical controls not receiving
ApoCell infusions. Notably, ApoCell infusions had no effect on
the time to engraftment, chimerism, or incidence of infections
among the treated subjects. These observations support the
needs for larger trials with even higher doses and possibly
more frequent dosing of ApoCells in BMT as a GVHD
prophylaxis (94).

Bittencourt et al. evaluated the effect of administration of
irradiated apoptotic leukocytes from either donor or non-donor
sources in murine model of mismatched BMT to determine
whether the source of the apoptotic cells had an effect on the
outcome (68). The addition of apoptotic cells resulted in a
significant increase in the number of engrafted mice, along with
a higher percentage of donor type cells in the mice that received
apoptotic splenocytes. Interestingly, this effect was indiscriminate
of whether the injected apoptotic leukocytes were from third
party or syngenic hosts, or even from xenogeneic hosts such as
human blood mononuclear cells, suggesting that the MHC
molecules of the apototic cells do not need to match to either
the donor or the recipient for this approach to be effective. This
study thus demonstrated that apoptotic cells could have a utility
in overcoming MHC barriers in BMT through possibly cross-
tolerizing anti-donor recipient T cells, and therefore may also be
used to reduce the intensity of conditioning regimens (68). Donor
and third party apoptotic cell infusions have shown to lower the
incidence of donor allo‐immunization with only one out of forty-
four mice developed DSA (95). This finding is in agreement with
the reported poor immunogenicity of apoptotic cells compared
with identical viable or non-replicating cells.
ROLE OF APOPTOSIS IN
EXTRACORPOREAL PHOTOPHERESIS

Extracorporeal photopheresis (ECP) refers the process of UV-A
radiation of autologous mononuclear cells obtained via
Frontiers in Immunology | www.frontiersin.org 6
leukapheresis, followed by photosensitization with by 8-
methoxypsoralen (8-MOP) and infusion back to the patient.
ECP was initially used to treat patients with cutaneous T-cell
lymphoma (CTCL), but its indications for use have now
extended to other conditions such as GVHD (96), scleroderma
(97), and solid organ transplantation (98–100). In a standard
ECP treatment, usually only 10% of total blood circulating
mononuclear cells are obtained and exposed to 8-MOP, and
the susceptibility to ECP-induced apoptosis varies from cell type
to cell type (101). The exact mechanisms of the therapeutic effect
of ECP still remains to be elucidated, but in CTCL it has been
described that the ingestion of apoptotic cells by APCs results in
production of anti-tumor cells targeting malignant lymphoid
cells (102). This explains its beneficial effect in CTCL, however its
utility in GVHD is likely to be due to a wider scope of less well-
defined immunomodulatory effects.

Gorgun et al. demonstrated a shift in the cytokine profile
toward a Th2 response in patients who underwent ECP for
GVHD treatment (103). Specifically, they demonstrated an
increase of IL-4, IL-10 and TGF-b and a concurrent decrease
of IL-12, IL-1, interferon-g, and TNF-a. Furthermore, leukocyte
proliferation assays using DCs from patients undergoing ECP
showed decreased proliferation of antigen-stimulated autologous
and allogeneic T cells. Circulating Tregs with ECP therapy
suppressed proliferation of allogenic effector T cells and their
IFN-g secretion (104). The above described T cell responses have
prompted its use together with conventional pharmacotherapy
for the treatment of GVHD as well as acute rejection of cardiac
allografts in humans (101, 105–110).
LIMITATIONS

Prior Sensitization
Transplant recipients with memory cells as a result of previous
sensitizing events can be challenging to transplant as they mount
a rapid and aggressive immune response compared to their non-
sensitized counterparts, thereby increasing the risk for
immediate graft loss (111–113). The presence of donor specific
antibodies (DSAs) can also lead to an accelerated rejection
through complement activation, resulting in endothelial
damage in solid organ transplantation (113). Burns et al.,
demonstrated in a sensitized murine cardiac transplant model
that memory B cells override the tolerogenic effect of donor-
specific transfusions (DST) combined with co-stimulation
blockade by anti-CD154. Furthermore, they also facilitate the
priming of alloreactive T cells and thus, in the presence of DSAs,
result in accelerated graft loss (82, 114). A similar concern may
also exist for apoptotic donor cell infusions in the presence
of DSAs.

On the other hand, when DSAs are at low or negligible levels,
we have demonstrated in a sensitized murine islet transplant
model that infusions of donor ECDI‐SP together with transient
anti-CD154 and rapamycin are effective in early inhibition of
alloreactive T and B memory cells, therefore protect islet allograft
function. Analysis of donor-specific T memory cells in these
February 2021 | Volume 12 | Article 626840
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recipients treated with this combination therapy showed almost
a complete absence in the islet allograft as well as in draining
lymph nodes. Memory B cells also met a similar fate in that in
recipients treated with this combination therapy, their numbers
in draining lymph nodes were also significantly suppressed.
These findings correlated with superior islet allograft survival
in these previously sensitized recipients. Thus, the use of donor
EDCI-SP also shows promises for transplantation of sensitized
recipients (115).

Infection and Tolerance
Opportunistic infections and latent viral activation, such as CMV,
pose a considerable challenge in transplantation overall. In the
context of tolerance, many of the aforementioned authors have
described both in murine models, non-human primates and phase
I clinical trials, that infections can negatively impact tolerance
induction. Such infections have also been demonstrated to be
deleterious to the stability of donor-specific tolerance, thereby
effecting long-term host alloreactivity and graft survival (116).

Of the common pathogens, cytomegalovirus (CMV) is a
highly prevalent virus that causes a symptomatic infection that
has been noted as an independent risk factor for the development
of acute rejection (117). Our lab has demonstrated in a murine
islet transplant model that acute murine-CMV(MCMV)
infection alters MDSC differentiation, promoting maturation of
immature myeloid cells to become inflammatory monocytes
which subsequently prime alloreactive CD8 T cells that prevent
the induction of tolerance (78). In mice where MCMV infection
was introduced days after donor ECDI-SP infusions, it not only
led to the disruption of tolerance otherwise induced by donor
ECDI-SP infusions, but also resulted in accelerated rejection of a
subsequent same-donor islet transplant as a consequence of anti-
donor memory T cell response (118).

Other pathogens that have been studied include the gram-
positive intracellular bacteria Listeria monocytogenes (Lm).
Wang et al. demonstrated that a sublethal dose of Lm in a
tolerized cardiac transplant mouse model resulted in rejection of
the cardiac allograft in nearly 40% of the recipients, while an
additional 30% showed a slowing of the heartbeat and an
enlargement of the allograft with histological evidence of
increasing lymphocytic infiltration (119). Furthermore,
through analysis of the gene signature of tolerized versus
rejecting mice, they noted that only partial restoration of the
tolerized gene signature had occurred at day 30 post Lm
injection. Notably, with resolution of infection, intra-graft Treg

percentage returned to the pre-infection level. This suggests that
partial, but not complete, return of tolerance occurred with
resolution of the infection. In this model, Wang et al. further
noted that the disruptive effect of Lm was prevented by IFNaR
gene deficiency in their cardiac and skin transplantation
recipients. Conversely, administration of IFN-b even without
Lm infection, shortened skin allograft survival. Supporting this
finding, Young et al. showed that Lm infection induced a
transient increase in circulating IL-6 and IFN-b and with
recovery from the infection, these cytokines returned to
baseline (120). These findings suggest a role of type-1
interferon in tolerance disruption in setting of a Lm infection.
Frontiers in Immunology | www.frontiersin.org 7
The data outlined above emphasizes the need for therapies
that maintain tolerance or restore complete tolerance in the
setting of inadvertent microbial infections. The potential targets
whose roles need to be further elucidated in this process include
type-1 interferon, IL-6, and other inflammatory cytokines.

The other facet relating donor-specific tolerance to risk of
opportunistic infections is the potential of tolerance to minimize
allograft inflammation and eliminate chronic immunosuppression,
both of which may contribute to prevention of latent viral (e.g.,
CMV) reactivation, especially from the transplanted allograft.
However, with the tolerance approach via bone marrow
chimerism, aggressive conditioning regimens needed for BMT
may in fact promote CMV reactivation, thus impairing bone
marrow engraftment, and/or promoting subsequent loss of
chimerism and tolerance (121, 122). These concerns again
underscore that the alternative approach using apoptotic cell-
based might be a more attractive option, taking into
consideration of potential opportunistic infections particularly
latent CMV reactivation.
SUMMARY AND FUTURE DIRECTIONS

The profound immunoregulatory effects of donor apoptotic cells
have been harnessed thus far in several murine and non-human
primate experimental models where they have shown promising
efficacy for transplant tolerance induction. Furthermore, recent
early phase I/II clinical trials in both solid organ transplant and
BMT have demonstrated the safety of this approach. As
highlighted above, the major challenges with the use of apoptotic
cell infusion include limitations in sensitized recipients and the loss
of tolerance in setting of opportunistic microbial infections. Other
potential obstacles include controlling for the early stage of
apoptosis and the limited practicality of using donor apoptotic
cells in diseased donor transplantation.

One pragmatic approach that can overcome logistical obstacles
is the use of acellular carriers for solubilized donor antigens. This
would obviate the need for procurement of a large number of
donor cells, a particular logistical challenge in case of deceased
donor transplantation. It can also make storage easier and ensure
consistent quality in the manufacturing process. One such acellular
carrier is polylactide-co-glycoside (PLG)-based nanoparticles. PLG
nanoparticles can be coupled with membrane donor antigens, and
in combination with a low dose rapamycin, have been shown to
inhibit anti-donor response and prolong allograft survival as well
as to prevent GVHD (123, 124). Furthermore, geometric
modifications of PLG particles can modify cellular signaling
networks and program them to alter subsequent immune cell
activation therefore be utilized to create an immunoquiescent
environment. Once such modification involves the presentation
of phosphatidylserine which typically is expressed on the surface of
apoptotic cells and may interact with phagocytic APC receptors.
The subsequent signaling of this interaction likely through TGF-b
production leads to activation of alloreactive T cells while
promoting expansion of Tregs (125). Altogether, these data
highlight the enormous potential of bioengineering the full
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immunomodulatory signaling program of apoptotic cells onto
acellular carriers for the induction of transplant tolerance.

Promisingly, the future holds exciting potential for apoptotic
cell therapy with its recent translation into clinical trials.
However, a great deal remains to be learned of the underlying
mechanisms together with methods to overcome its limitations
when aiming for a more widespread clinical application.
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