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Abstract

Background Therapeutic management of epilepsy remains a challenge, since optimal sys-
temic antiseizure medication (ASM) concentrations do not always correlate with improved
clinical outcome and minimal side effects. We tested the feasibility of noninvasive real-time
breath metabolomics as an extension of traditional therapeutic drug monitoring for patient
stratification by simultaneously monitoring drug-related and drug-modulated metabolites.
Methods This proof-of-principle observational study involved 93 breath measurements of
54 paediatric patients monitored over a period of 2.5 years, along with an adult’s cohort of 37
patients measured in two different hospitals. Exhaled breath metabolome of epileptic patients
was measured in real time using secondary electrospray ionisation-high-resolution mass
spectrometry (SESI-HRMS).

Results We show that systemic ASM concentrations could be predicted by the breath test.
Total and free valproic acid (VPA, an ASM) is predicted with concordance correlation
coefficient (CCC) of 0.63 and 0.66, respectively. We also find (i) high between- and within-
subject heterogeneity in VPA metabolism; (ii) several amino acid metabolic pathways are
significantly enriched (p <0.01) in patients suffering from side effects; (iii) tyrosine meta-
bolism is significantly enriched (p<0.001), with downregulated pathway compounds in
non-responders.

Conclusions These results show that real-time breath analysis of epileptic patients provides
reliable estimations of systemic drug concentrations along with risk estimates for drug
response and side effects.

Plain language summary

The clinical management of condi-
tions such as epilepsy can be chal-
lenging. Each person with epilepsy
responds differently to antiseizure
medication and side effects are
common. One approach to address
this challenge is therapeutic drug
monitoring (TDM), whereby levels of
drugs are measured in the blood to
follow the response to treatment.
However, drug concentrations in the
blood do not always reliably predict
wanted and unwanted effects of a
treatment. Here we show that a
simple breath test can provide reli-
able estimates of circulating con-
centrations of a widely used
antiseizure medication. In addition,
in the
breath signature enables us to iden-

the information contained

tify which patients are likely to ben-
efit from the treatment and which
likely to
unwanted side effects. Our findings

ones are suffer  from
might help clinicians to decide how to
treat people with epilepsy and to

choose appropriate drug doses.
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idea of providing the most effective treatment with

the least side effects for a given patient. In this context, the
purpose of therapeutic drug monitoring (TDM) is individualising
the dose to achieve maximum efficacy and, at the same time,
minimise toxicity, for certain drugs with a narrow therapeutic
window. Standard-of-care TDM is based on the measurements of
plasma/serum drug concentration. TDM has obvious clinical
benefits for patients and healthcare systems. However, it also has
limitations. First, it relies on blood sampling to determine drug
concentrations, which can be cumbersome to perform in infants
and children. Second, drug concentrations can often not correlate
with improved clinical outcome and/or minimal side effects, due
to highly variable, patient-specific drug metabolism!.

Epilepsy is a complex neurological disorder affecting around 50
million people worldwide characterised by recurrent unprovoked
seizures>. However, treatment with one or more antiseizure
medications (ASMs) allows roughly 70% of patients to live seizure
free, but in the long run, 40% of those patients relapse and about
25% develop pharmaco-resistance3. As a result, the overall ther-
apeutic management of epilepsy (especially, in paediatric patients)
remains a challenge. Such individualised responses to medication
with narrow therapeutic ranges calls for a more comprehensive
phenotyping approach, beyond just monitoring systemic drug
concentrations. Breath analysis has made substantial progress over
the last decade by emerging analytical technologies such as sec-
ondary electrospray ionisation-high-resolution mass spectrometry
(SESI-HRMS). Breath-metabolome analysis by SESI-HRMS offers
a number of advantages, including noninvasiveness, short analysis
time, wide metabolic coverage and capabilities to perform actual
compound identification of the detected molecules (as opposed to
other techniques such as chemical sensors). The latter is key to
provide biochemical interpretations, hence gaining insights into
the pathophysiology and drug-disease interplay. Over the last
decade, a number of efforts have lifted this technology to transi-
tion from an interesting analytical platform to a standardised
technique with real potential in clinical settings*-”. Based on prior
work suggesting that this technology is capable of detecting drugs
as well as drug-modulated metabolites in exhaled breath®-11, we
hypothesised that this would be the case in a clinical setting,
whereby it might contribute to improved phenotyping of patients
with chronic epilepsy requiring TDM. Here we show that such
breath-metabolomics approach has potential to reliably predict
blood levels of valproic acid (VPA, an ASM) and to offer an
additional patient screening layer by providing scores for side
effects and response to ASMs with minimal interference into
routine clinical practice and patient invasiveness.

The concept of personalised medicine revolves around the

Methods
Participants. In total, 66 paediatric epileptic patients (mean + SD
age, 10.7 £3.9 years; 37 males and 29 females, Supplementary
Data 1) from the University Children’s Hospital Basel (UKBB),
under treatment with various ASMs requiring TDM per standard
care were enroled in this study. Furthermore, we also used real-
time breath data of 41 adult epileptic patients (mean + SD age,
51.6+17.1 years; 29 males and 12 females, Supplementary
Data 1) from the University Hospital Zurich (USZ) to predict
blood concentrations of total and free VPA. All subjects were
under steady state of their ASMs at the time of measurements.
In the paediatric dataset (from UKBB) out of 123 attempted
breath measurements (from 66 patients), 30 failed (Supplemen-
tary Data 1), whereas in the adult dataset (from USZ), out of 41
attempted measurements (from 41 patients; in USZ, there were
no multiple visits from the same patient during study duration),
four failed (Supplementary Data 1). The reasons being either (i)

patients suffered from severe neurological impairment, prevent-
ing them to understand the instructions of the exhalation
maneuver, or that the side effects would not allow them to
perform the breath test (hence they are unable), (ii) some
technical issue with instrument during patient visit, or (iii) in rare
cases, clinical laboratory could not return blood concentration of
(any) ASMs (Supplementary Fig. 1). This means our final dataset
used in the study contained 93 paediatric measurements (from
54 subjects) and 37 adult measurements (from 37 subjects).

Paediatric measurements/patients were further annotated as
follows: no such annotations were made for the adult dataset as it
was only used to predict blood concentrations of total and
free VPA.

Following the aetiologic classification of epilepsy by
the international league against epilepsy (ILAE)!2, paediatric
patients were divided into three groups. Group 1 consisted of
patients with epilepsies of structural origin, group 2 consisted
of patients suffering from genetic epilepsies, as well as epilepsies
of unknown origin and finally, in order to differentiate them from
genetic epileptic encephalopathies, and group 3 consisting of
developmental and epileptic encephalopathies was created. None
of the enroled paediatric patients were suffering from epilepsies of
metabolic, immune, or infectious origin.

In order to assess the clinical outcome of ASMs, we further
classified each data point for three categories: side effects,
response to medication, and electroencephalography (EEG).
Patients were labelled for each of these categories as classes I, II
or IIT (see Supplementary Table 1 for class definitions). Side-
effects questionnaire PESQ!3 (see Supplementary Table 2) was
used to facilitate the side-effect comparison for epilepsies of
different origins.

For the downstream prediction of clinical outcome, the dataset
was subdivided as follows:

1. Side effects: “no side effects” (class I) vs. “side effects” (class
II and III combined).

2. Response to medication: “responders” (class I) vs. “non-
responders” (class II and III combined).

3. EEG: “normal” (class I) vs. “abnormal” (class II and III
combined).

Instrumentation. The analytical platform employed for real-time
breath analysis consisted of a SESI source (SUPER-SESI, Fossil
Ion Technology, Spain) coupled to a HRMS (Q Exactive Plus,
Thermo Fisher Scientific, Germany; Fig. 1la and Supplementary
Fig. 2). The SESI ion source was fed with 0.1% ammonium for-
mate in water solution, flowing (solution driving pressure 1.3 bar)
through a 20 um ID noncoated TaperTip silica capillary emitter
(New Objective, USA) to generate electrospray. The settings of
the SESI source were as follows: sheath gas flow rate 60, auxiliary
gas flow rate 2, spray voltage 3.5 kV, capillary temperature 275 °C
and S-lens RF level 55.0. Under these conditions, the nano-
electrospray currents were typically in the range of 130-135nA.
SESI temperatures were set at 130 °C for the sampling line and
90 °C for the ion-source core.

All real-time breath mass spectrometry measurements were
performed in full MS mode (scan range m/z 100-400, AGC target
le6 and maximum injection time 500 ms) in both positive-
(microscans 2 and resolution of 140,000 at m/z 200) and
negative- (microscans 2 and resolution of 70,000 at m/z 200) ion
mode. Q Exactive Tune software (version 2.9) was used to directly
control MS for these measurements. The mass spectrometer was
externally calibrated on a weekly basis using a commercially
available calibration solution (Pierce™ Triple Quadrupole,
extended mass range, Thermo Fisher Scientific, Germany) and
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Fig. 1 Overview of the study pipeline. a The procedure begun with a patient performing five-to-six simple exhalations into a SESI-HRMS analytical
platform located in the hospital premises. The breath metabolomics fingerprint was acquired in positive and negative-ion mode (5, 6 exhalations per
mode). Shortly before the breath test, blood was drawn to evaluate blood/serum concentrations of ASMs. b SESI-HRMS is a real-time, noninvasive, and
fast breath-metabolome analysis method. The whole breath test (i.e., positive- and negative-ion mode), lasts typically 10-15 min per patient. Positive-mode
TIC from two patients, one receiving VPA and another one receiving LEV, is shown as an example (TIC of patient 29 is inverted to ease visual inspection).
¢ Comparison of the average mass spectra between the two subjects taking VPA and LEV. The inset shows an example of time-trace at m/z 143.1066 (mass
spectrum and time-trace of patient 29 inverted to ease visual inspection). For each ion, area under the curve during each exhalation was computed (shaded
regions) and normalised by the exhalation time (nAUC). Then, the nAUCs of 5, 6 exhalations were finally averaged to represent mean nAUC of the ion.
d This resulted in a 75 x 3252 (measurements x mass spectral features present in at least 10% of total measurements and correlated with exhalations) data
matrix (z-score is only used here to ease visual representation; actual downstream analysis was done on raw numbers). e Analysis workflow used to predict
VPA serum concentration based on drug-related metabolites. f The workflow used to predict side effects and drug-response scores based on drug-regulated
metabolites. See Methods for more detail about panels e and f. Colour key for heatmaps is shown in-between panels e and f.

internally calibrated by using common background mass spectro-
metric contaminant masses as lock masses (positive mode: m/z
149.02332, 279.15909, 355.06993, 371.10123, and 391.28429;
negative mode: m/z 60.99312, 73.0295, 87.04515, 89.02442,
101.0608, 115.07645, 225.23295 and 283.26425).

Serum concentrations of ASMs were measured at the clinical
chemistry laboratory of University Hospital Basel (USB) as per
their standard operating protocol (Supplementary Table 3).

Procedures. All subjects and/or parents, whichever applicable,
signed informed consent to participate in the study in the

presence of their neurologist. This study was approved by the
Ethics Committee of North-western and Central Switzerland (ID
2017-01537; see supplementary information for complete clinical
protocol) and the Cantonal Ethics Committee Zurich (ID 2019-
00030). The sample-size calculation included in the clinical pro-
tocol is shown in Supplementary Fig. 3. Subjects performed
prolonged exhalations directly into SESI-HRMS system following
blood draw for TDM (median =21.2 min; IQR = 38.6 min).
Figure la shows a representation of a child exhaling into the
device (see Supplementary Fig. 2 for a bigger image). During each
measurement, the subjects provided 5, 6 replicate exhalations,
both in positive- and negative-ion mode (Fig. 1b and Fig. 1¢). The
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total time spent on the breath test was typically in the range of
10-15 min.

For VPA compound-identification purposes, we collected
exhaled breath condensate (EBC) from one patient using an in-
house condensation apparatus (containing dry ice and isopropa-
nol). Collected EBC and pure standard of suspected molecules
(dissolved in water) were analysed by ultra-high-performance
liquid chromatography (UHPLC) system (Vanquish, Thermo
Fisher Scientific, Germany) connected to HRMS. Samples were
separated on a 50 °C heated pentafluorophenyl (PFP) column
(Raptor FluoroPhenyl, 1.8 um, 150 x 2.1 mm, Restek, USA) at a
flow rate of 0.240 ml/min and eluted with a gradient between
solvent A (water with 0.1% FA) and solvent B (methanol with
0.1% FA). The gradient profile was 50% solvent B between 0 and
1 min, 50-54% solvent B between 1 and 5 min, 54-95% solvent B
between 5 and 5.2 min and 95% solvent B between 5.2 and 8 min
followed by column reequilibration to 50% solvent B in a total 10
min run. Mass spectrometer was operated in positive-polarity full
MS mode (scan range m/z 100-400, AGC target le6, maximum
injection time 200 ms and resolution of 140,000 at m/z 200)
triggering MS/MS acquisition (AGC target le6, maximum
injection time 100 ms, resolution of 70,000 at m/z 200, loop
count 5, isolation window 0.4 m/z and normalised collision
energy 30) if it detects signal higher than 5000.

Data analysis. Raw mass spectra data from paediatric training-set
patients were converted into mzXML file format using Proteo-
Wizard’s msConvert (version 3.0.11233) and imported into
MATLAB (version 2019b, MathWorks Inc., USA) for further
analysis. First, each spectrum from all files was aligned using the
RAFFT algorithm implemented in MATLAB!4. Then MATLAB’s
mspeaks and ksdensity functions were used to appropriately pick
and extract the final list of 3252 features. These features were
present in at least 10% of all measurements (to avoid noisy fea-
tures) and were correlated with exhalations (pspearman > = 0.6 and
FDR < =0.01) in each measurement (to avoid non-breath-related
features). Finally, the mean of area under the curve during each
exhalation normalised by exhalation time (nAUC) was computed
for each of these features in all measurements (Fig. 1c). This
resulted in a data matrix of 75 x 3252 (measurements X mass
spectral features; Fig. 1d and Supplementary Data 2). This data
matrix was then used to develop models (i) to predict drug
concentrations (Fig. 1e) and (ii) to predict side effect and drug-
response scores (Fig. 1f).

For VPA-concentration prediction (Fig. le), first, the full
training-set was reduced to 240 features, which were present in
at least 80% of the measurements, whereby the patients were
receiving VPA (i.e., drug-related features). Later features in the
training-set were further reduced to only 11 VPA-related
features (Supplementary Table 4). Afterward, time-traces for
these 11 features were directly extracted from all paediatric and
adult measurements using in-house C# console app based on
RawFileReader (version 5.0.0.38), an open-source.Net assembly
from Thermo Fisher Scientific. These time-traces were then
used to generate nAUC and three different matrices (UKBB
training-set, UKBB test-set and USZ test-set). The ComBat!>
function from sva (version 3.34.0)!¢ was then used to remove
the known batch effect from these matrices (Supplementary
Fig. 4 and Supplementary Data 2). This reduced training-set was
finally used to screen for the best regression model (see
Supplementary Figs. 5 and 6). Finally, we found Gaussian
process regression using exponential kernel (i.e., eGPR) to be
best performing on the training-set and hence it was used on an
independent test-set containing paediatric and adult patients for
final predictions.

In order to gain further insights into the rest of the metabolic
signature captured in breath (Fig. 1f), first, the full training-set
was reduced to 1005 features present in at least 50% of total
measurements and with a CV greater than 30% (i.e, drug-
regulated features). Later, two-sample f-test was performed
followed by false-discovery rate (Supplementary Fig. 7). After-
ward, MetaboAnalystR (version 2.0.4)!7 was used to add more
biological insights into differentially abundant ions, by translating
ions to metabolic pathways. The prediction of side effects vs no
side effects and non-responders vs. responders in the training-set
was conducted using significant metabolites identified by the
enrichment analysis using first-principle-component (PC1) score.
On this score, using only training-set data, a cutoff was assigned
(based on Youden’s index) to separate predicted classes
(Supplementary Fig. 8). Later, we projected UKBB test-set data
on the training-set PC1 score to complete this analysis.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Results

Overview of study pipeline and participants. During the course
of this study, whenever blood-based TDM was performed as per
standard of care, the epileptic patients were asked to provide a
breath sample (Supplementary Fig. 2). Figure 1 shows the over-
view of the study pipeline (see Methods section for more details).
In total, 93 successful measurements from 54 paediatric subjects
(Supplementary Data 1) covering a wide range of clinical pre-
sentations and pharmacotherapies, were performed at the UKBB
(Fig. 2 and Supplementary Figs. 9 and 10). This group of patients
is a representative real-life sample of unselected hospital out-
patients. In addition to paediatric test-set measurements, we also
used real-time breath data of 37 adult epileptic patients (Sup-
plementary Data 1) from the USZUSZ to independently predict
blood concentrations of VPA, a well-known ASM.

Predicting drug concentration using drug-related metabolites.
VPA was the most prescribed drug in our cohort (50 out of 93
measurements involved VPA either as monotherapy or in com-
bination with other drugs, see Supplementary Fig. 10), which
prompted us to subdivide our dataset into a training and test-set
to develop a regression model to predict VPA serum concentra-
tion based on a reduced number of breath signals (Fig. le). The
reduced number of predictors consisted of 11 mass spectral fea-
tures (Fig. 3a, b and Supplementary Table 4), which, upon further
laboratory investigation (i.e., UHPLC-MS/MS of EBC; Fig. 3c-f
and Supplementary Data 3) and also according to the
literature!8-20, were found to be, as expected, stemming from
VPA. The 11 features were assigned to four unique molecules:
VPA itself and three metabolites (see VPA metabolic pathway in
Supplementary Fig. 11a based on!®1921). Namely, (i) 3-hepta-
none, which is a nonenzymatic end product of the f-oxidation
pathway of VPA; (ii) 4-OH-y-lactone, which is an end product of
the w,-oxidation VPA; (iii) a third metabolite with molecular
formula C;H;,0,. Importantly, 4-OH-p-lactone has been
unambiguously identified now, as previous identifications were
based on MS/MS only that could not resolve between this lactone
and a different potential isomer (i.e., 4-ene VPA), which shows
very similar fragmentation pattern (Fig. 3f). In addition, to the
best of our knowledge, C;H;,0, is a novel VPA metabolite not
reported in the literature. Based on chemical reasoning and
comparison with known VPA-degradation pathways, we hypo-
thesise that it could be either 2,3- or 2,5-heptanedione (Supple-
mentary Fig. 1la; hereafter referred as heptanedione). As
expected, even by simple visual inspection of the breath mass
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Fig. 2 Overview of studied paediatric patients. \We screened a heterogeneous group of patients coded in the figure as patient ID-visit number (x denotes
measurement with unsuccessful breath test). The patients suffered from epilepsies of different origins, as indicated in the row epilepsy group. Group 1
consisted of patients with epilepsies of structural origin, group 2 consisted of patients suffering from genetic epilepsies, as well as epilepsies of unknown
origin, and group 3 consisted of developmental and epileptic encephalopathies (DEE). The range of pharmacotherapies is described in ASM rows.

The patients were receiving either a single drug or combinations of up to three drugs. The bottom three rows identify the clinical outcome as described by
side effects (no or yes), drug response (responder or nonresponder) and EEG (normal or abnormal). The hollow vertical bars on the top show the
concentrations (mg/L) of free and total serum VPA (level O was assigned to all the measurements when the subject was not taking VPA, missing bars in
free VPA represent the unavailability of data). Grey horizontal bands indicate the therapeutic range of VPA (i.e., 50-100 mg/L for total and 5-10 mg/L for
free VPA). Thus, for example, patient 20 suffers from DEE. During the first visit (i.e., 20-1), the patient was receiving a combination of LTG, LEV, and VPA.
Total serum VPA concentration was 104 mg/L (i.e., beyond the therapeutic range) and free serum VPA could not be measured. At this point in time, the
patient had no side effects, but was not responding to the medication, and EEG was abnormal. On the second visit, the patient did not perform breath test.
During the third visit (i.e., 20-3), LEV had been removed, total serum VPA concentration was 108 mg/L, and free serum VPA concentration was 12.7 mg/L

(both levels above the therapeutic range). There were still no side effects,
pharmacotherapy.

spectra, one can appreciate that the signal intensity of these 11
mass spectral peaks was overwhelmingly more abundant in the
patients taking VPA than in the patients taking other ASMs
(Supplementary Fig. 12). However, the differences were less
obvious for heptanedione and VPA molecules because non-VPA
patients exhale other endogenous compounds (e.g., octanoic acid)
that are isomers (i.e., the same exact mass) and hence cannot be
resolved by SESI-HRMS?2.

We further trained a regression model based on Gaussian
process regression using exponential kernel (i.e., eGPR, see
Supplementary Figs. 5 and 6 for details about how this model was
selected) to predict the total and free serum VPA concentration,
based on the signal of these 11 ions detected in exhaled breath.
Figure 4 shows the predicted total and free VPA serum
concentrations against the actual serum concentrations for the
paediatric and adult population test-set (also see Supplementary
Data 4). We used Lin’s concordance correlation coefficient (CCC)
to evaluate the agreement between actual and predicted serum
concentrations?3. To build a complete and accurate model, we
included patients receiving other drugs but VPA to capture the
whole range of concentrations from zero because some VPA-
taking patients may actually be well below the therapeutic range.
Supplementary Fig. 13 clearly shows that the model predicts
accurately the zeros (i.e., patients not receiving VPA). Regarding
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EEG was back to normal, but the patient was still not responding to the

the prediction of VPA patients (i.e., real-world scenario, Fig. 4),
the model could predict reasonably well the systemic total VPA
concentrations (CCC of 0.63). For example, in the therapeutic
range of total VPA (ie, 50-100mg/L), the prediction was
reasonably accurate; however, some patients were clearly under-
or overpredicted (especially those outside the therapeutic range).
One explanation for such deviation is that exhaled VPA (and its
metabolites) should mirror the free fraction of VPA (rather than
the total VPA), as protein-bound VPA cannot be detected in
breath and only the free fraction will undergo further metabolism.
Despite the limited data availability (mostly because of the
difficulty to acquire enough blood sample for free VPA
quantification), Fig. 4b shows better free VPA prediction for
the paediatric dataset (CCC =0.84).

Predicting side-effect and drug-response scores using drug-
modulated metabolites. The second branch of our analysis
(Fig. 1f) aimed at identifying endogenous metabolites altered in
the training-set measurements of patients suffering from side
effects (23/75), or not responding to pharmacotherapy, i.e., non-
responders (26/75), or those showing abnormal EEGs (27/75) on
the day of consultation (Supplementary Fig. 14). We observed a
general trend of exhaled breath metabolites to be (i) upregulated
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in children suffering from side effects as compared with no side
effects and (ii) downregulated in non-responders than in
responders (Supplementary Fig. 7). In contrast, abnormal EEG
showed no significant change in the levels of exhaled metabolites
as compared with normal EEG. Subsequent pathway-enrichment

analysis using MetaboAnalystR17, revealed significant enrichment
(p<0.01) of several amino acid metabolic pathways (Fig. 5
and Supplementary Data 5) in patients suffering from side
effects. Whereas, only tyrosine metabolism was found to be sig-
nificantly enriched (p <0.001) in non-responders (Fig. 5 and
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Fig. 5 Association between differentially abundant ions and metabolic pathways. a, b MetaboAnalystR was used to assign metabolic pathways to

differently abundant ions for side effects (a) and drug response (b). The figure shows the scatter plot for altered pathways (shown by open circles) based
on two different algorithms. Size of each pathway circle is proportional to the log,-scaled fold enrichment/depletion of the pathway. The area within the
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We considered pathways with P-values less than 0.05 in both algorithms (top-right quadrant) for further analysis. The number inside the circles in the top-

right quadrant corresponds to pathway rows in the adjacent tables (only top 10 rows are shown).

Supplementary Data 5). Figure 6a zooms in the altered com-
pounds identified by these analyses (see Supplementary Data 6 for
further details about altered compounds). To further complete
our analysis, we explored whether the endogenous altered
metabolites could be used to predict which patients are likely to
respond to pharmacotherapy and to suffer from side effects.
As our UKBB test-set contains a limited number of side-effect
cases and non-responders, we used the whole UKBB dataset for
this prediction (Fig. 6b and ¢ and Supplementary Data 6). Finally,
based on the results presented here, we proposed a clinical
decision-making workflow based on real-time breath analysis
(Fig. 7).

Discussion

In this translational study, by combining real-time, noninvasive
and rapid breath analysis with sophisticated bioinformatics tools,
we showed that systemic VPA concentrations can be accurately
predicted (Fig. 4). Earlier work with exhaled breath measure-
ments of 3-heptanone and 4-OH-y-lactone showed promising
results regarding the use of these molecules as potential breath-
based markers for therapeutic monitoring of VPA19:20.24 How-
ever, none of those studies performed any independent prediction
of blood concentration of VPA. We also confirmed that sepa-
rately protonated 3-heptanone (CCC of 0.06 and —0.16 in total
and free VPA, respectively) and 4-OH-y-lactone (CCC of 0.40
and 0.19 in total and free VPA, respectively) underperform
(Supplementary Fig. 15a-d) compared with our proposed model
with 11 predictors (CCC of 0.63 and 0.66 in total and free VPA,
respectively). Interestingly, we observed that including covariates
such as age, gender and number of ASMs as predictors, does not
necessarily make the VPA prediction any better (Supplementary
Fig. 15e and f). Hence, to reduce the complexity, we used the

model with only exhaled VPA-related ions as predictors. Notably,
the signal-intensity distribution for these drug-related ions was
similar across adult and paediatric populations (Supplementary
Fig. 16). For this reason, we attempted to predict also adults’ VPA
concentrations using the model created with children (Fig. 4).
Not surprisingly, the model performed better predicting the
children’s subpopulation (free VPA CCC = 0.84 for children vs.
0.52 for adults). More accurate predictions are expected when
creating a regression model using an adult population as training
dataset. Overall, these results show the feasibility of estimating
systemic VPA via breath analysis in a clinical context.

It has also been shown that free VPA is physiologically active
and clinically relevant, which stresses the importance of mea-
suring free VPA concentration?>20. In spite of this, current
clinical practice relies most often on total VPA blood levels,
perhaps due to the fact that determination of free VPA requires
relatively large blood volumes, lengthy and laborious mass
spectrometric analyses requiring hours-to-days of laboratory
work (Supplementary Table 3). In our paediatric dataset, 9 out of
42 (21%) requests to determine free serum VPA failed, seven of
them due to lack of enough material (Supplementary Data 1).
Additionally, we observed that keeping total VPA within ther-
apeutic range does not guarantee that ultimately free VPA will
also do so (Supplementary Fig. 17).

Perhaps even more importantly, conventional TDM presents
fundamental shortcomings. The lack of clinical correlation
between the efficacy outcomes or side effects with ASM con-
centrations due to high inter- and intra-individual variation,
decreases the value of TDM. This limitation discourages practi-
tioners to use TDM, except perhaps in specific circumstances
(e.g., pregnancy and known pharmacokinetic interactions). The
limitation that keeping the drugs’ concentrations in the
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actual data points, where each point represents one measurement from UKBB dataset, coloured based on clinically observed side effects (b) and clinically
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predicted classes.

therapeutic range, does not assure an optimal clinical response of
no side effects, was also evidenced in our cohort. For example, in
32% of the paediatric measurements (40 out of 123), the patients
were not responding to the therapy. However, of these 40 mea-
surements, only in 18, at least one drug was outside its
reference range.

Similarly, in 37 paediatric measurements, the patients were
suffering from side effects. However, blood concentration of at
least one drug was outside of its reference range in only 14 of
these cases. Take for example visits 5 and 6 of subject 3 (Fig. 2
and Supplementary Data 1). In both visits, the patient was under

the same therapeutic regime, with similar total VPA and lamo-
trigine (LTG) levels in blood. However, while the child was
responding properly, not suffering from side effects and presented
normal EEG in visit 5, in visit 6, the situation was dramatically
reversed. Such individual-specific response to the medication
further stresses the importance of adopting a more comprehen-
sive and personalised stratification approach.

Here we showed the possibility of predicting free VPA con-
centrations in 15min by a simple noninvasive breath test. But
perhaps more importantly, the prediction is based on VPA and its
downstream metabolites; hence, further insights could be gained
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on how the drug is metabolised at an individual level. For
example, based on 3-heptanone and 4-OH-y-lactone signal-
intensity ratios, we could estimate inter- and intraindividual
variability in the activity of - and w;-oxidation pathways of VPA
metabolism. We found considerable heterogeneity in metabolic
pathway patterns within the sampled population and even within
subjects during the course of this study (Supplementary Fig. 11b).

Moreover, because the breath test captures a large number of
metabolites (well beyond the drug-related metabolites just
described), we explored whether some of these may be associated
with the actual clinical outcome. We observed a significant
enrichment (p <0.001) of the tyrosine metabolism, where path-
way compounds were downregulated in the subset of patients not
responding to medication (Fig. 6a and Supplementary Data 6).
The association between downregulation of tyrosine metabolism
and increased number of seizures (i.e., not responding adequately
to medication) may be rationalised by the fact that neuro-
transmitter dopamine, which is known for its anti-epileptic
action?’, is also downregulated, since it is synthesised from tyr-
osine and phenylalanine?8. In addition, previous studies have
suggested that administration of D-leucine?®, glutamic acid® and
tyrosine3!, can reduce seizure frequency, which also correlates
with detecting lower levels of glutamic acid and tyrosine in the
non-responders of this study. Additionally, multiple earlier stu-
dies have reported on the alteration in the amino-acid con-
centrations in the cerebrospinal fluid and the plasma during
epilepsy3>33. Previously we have also shown that, at least for
some of the amino acids mentioned here, breath levels correlate
with blood concentrations34. Moreover, recently several studies
based on animal models and humans have reported about
the effects of branched-chain amino acids on epilepsy> and the
importance of having amino-acid-balanced diet>°. Taken all these
observations together, it seems worth exploring different inter-
vention routes to rebalance lower amino-acid levels found in non-
responders.

Furthermore, we also found a strong enrichment of urea cycle/
amino acid metabolism, where pathway compounds were mainly
upregulated in measurements with side effects (Fig. 6a and Sup-
plementary Data 6). Previously, different randomised crossover
trials have shown that glycine improves sleep quality?’, which
correlates with our observation of detecting lower levels of glycine

in patients with side effects (such as somnolence). Additionally,
several other amino acids, such as aspartic acid, glutamic acid and
y-aminobutyric acid (GABA) have been shown to be increased in
blood of subjects with aggressive behaviour38, this is also con-
sistent with observing a higher level of these amino acids in
patients with side effects (such as irritability). VPA is known to
increase blood levels of proline3® and GABA0, Since the majority
of our population were taking VPA, higher levels of proline and
GABA observed in side-effects case can also be attributed mostly
to VPA. Overall, we believe that these findings open new routes
for metabolic pathway-guided drug monitoring and management,
by providing risk estimates for side effects as well as drug-therapy
effects (Fig. 6b and c)*!. Pathway analysis may not only be
relevant for the dosage of the ASMs, but also may potentially be
useful for the choice of the ASMs (e.g., to rebalance amino-acid
metabolism).

However, this study has several limitations. First, the inclu-
sion criteria allowed for a quite heterogeneous patient popula-
tion, which may explain the limited false-discovery rates found
in the comparison between responders and non-responders.
Second, chemical identification of endogenous metabolites
associated with non-responders and side effects could only be
postulated based on the database matching of measured accu-
rate masses (within 2 ppm). Chemical identification with the
highest degree of confidence would require further UPLC-MS/
MS analysis using chemical standards, as done in this work for
VPA metabolites. For this reason, although the enrichment
analysis algorithm used here analyses at a collective level the
behaviour of groups of metabolites (assuming random errors at
the individual peak level), the biochemical/metabolic inter-
pretation should be taken cautiously, until unambiguous che-
mical identification is provided. Third, the reported altered
pathways in non-responders and patients suffering from side
effects could not be completely tested in an independent cohort.
Fourth, the prediction of (total and free) VPA concentrations in
the adult dataset was done using regression model trained on
paediatric dataset, due to limited size of the adult dataset. Most
of these limitations can be overcome by ongoing recruitment of
more participants; however, the results shown here provide
sufficient evidence on the feasibility of applying breath meta-
bolomics in such clinical context.
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In conclusion, based on the evidence presented here, we pro-
pose that SESI-HRMS breath testing may serve as a companion
diagnostic approach to potentially minimise drug side effects and
help to choose the seizure-specific treatment. Key advantages that
make it ideal for the hospital in- and outpatient setting include
noninvasiveness and real-time results. It is thus ideally suited for
chronically ill patients and children in real time during an out-
patient’s consultation. This, along with the ability to predict
serum concentration of drugs, allows us to propose a clinical
decision-making workflow based on real-time breath analysis
(Fig. 7). Furthermore, we believe the data presented here will
serve as the foundation that may transform today’s antiseizure
therapy selection approach to a more objective pathway-based
personalised approach. Future randomised controlled drug trials
may profit from SESI-HRMS breath metabolomics analysis at
study entry to better characterise responding/nonresponding
patients. We finally envision that this concept has potential to be
deployed in drug monitoring of other chronic diseases.

Data availability

All the data generated and analysed that support the findings in this study are within the
article and its supplementary information files and are available from the corresponding
author upon reasonable request. Additionally, the RAW and mzXML files of the real-
time breath measurements are available from the MetaboLights (https://www.ebi.ac.uk/
metabolights) repository (accession number MTBLS2400).
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