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A B S T R A C T

The tumor suppressor TP53 is frequently mutated in hormone receptor-negative, HER2-positive breast cancer 
(BC), contributing to tumor aggressiveness. Traditional ancillary methods like immunohistochemistry (IHC) to 
assess TP53 functionality face pre- and post-analytical challenges. This proof-of-concept study employed a deep 
learning (DL) algorithm to predict TP53 mutational status from H&E-stained whole slide images (WSIs) of BC 
tissue. Using a pre-trained convolutional neural network, the model identified tumor areas and predicted TP53 
mutations with a Dice coefficient score of 0.82. Predictions were validated through IHC and next-generation 
sequencing (NGS), confirming TP53 aberrant expression in 92 % of the tumor area, closely matching IHC 
findings (90 %). The DL model exhibited high accuracy in tissue quantification and TP53 status prediction, 
outperforming traditional methods in terms of precision and efficiency. DL-based approaches offer significant 
promise for enhancing biomarker testing and precision oncology by reducing intra- and inter-observer vari
ability, but further validation is required to optimize their integration into real-world clinical workflows. This 
study underscores the potential of DL algorithms to predict key genetic alterations, such as TP53 mutations, in 
BC. DL-based histopathological analysis represents a valuable tool for improving patient management and 
tailoring treatment approaches based on molecular biomarker status.

1. Introduction

Tumor suppressor TP53 is among the most frequently mutated genes 
in hormone receptor (HR)-negative breast cancer (BC), significantly 
contributing to both tumorigenesis and tumor progression [1–5]. The 
co-occurrence of TP53 mutations and HER2 gene amplifications further 
worsen the prognosis of these patients [6,7]. Notably, most TP53 mu
tations are missense mutations, often linked to gain-of-function activ
ities that enhance the aggressiveness of cancer cells [8]. 
Immunohistochemistry (IHC) is a commonly employed method to assess 
p53 functionality; however, this approach is prone to pre- and 

post-analytical challenges and provides limited insight into the under
lying gene status [9–11]. Recent advancements in deep learning (DL) 
systems, particularly convolutional neural networks (CNNs), offer the 
potential for highly accurate molecular biomarker assessment [12–14]. 
DL-based algorithms have been successfully utilized to predict 
biomarker status from H&E-stained tissue in BC, encompassing markers 
such as homologous recombination deficiency (HRD), programmed 
death ligand-1 (PD-L1), and HR [7,15–19]. These methods have shown 
superior effectiveness compared to traditional machine learning (ML) 
approaches, requiring less human intervention in pattern recognition 
tasks [20,21]. DL techniques not only provide a more efficient and 
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accessible alternative to IHC but also show promise in identifying 
morphological features correlated with biomarker status [22,23].

Considering these technological advancements, we hypothesized 
that DL algorithms could predict the mutational status of key cancer- 
related genes in BC through weakly-supervised analysis of H&E slides. 
In this proof-of-concept study, we aimed to characterize the TP53 
mutational status in HR-/HER2 + BC using a pre-trained H&E-based DL 
framework.

2. Methods and results

2.1. Data preparation and tissue digitalization

This study was approved by Scientific Direction and the Data Pro
cessor of the European Institute of Oncology IRCCS (IEO), Milan, Italy 
(approval number: UID3472). In accordance with Institutional policy, 
all patient data were pseudoanonymized prior to analysis. H&E-stained 
tissue slides from a case of poorly differentiated (G3), early-stage (pT1c, 
pN0), HR-/HER2 + , invasive BC of no special type (NST) was retrieved 

from the archives of the Division of Pathology at IEO, Milan, Italy, 
digitized using a Panoramic 1000 system (3DHISTECH Kft, Budapest, 
Hungary) and converted to ScanScope Virtual Slide (*.svs) format for 
subsequent analysis. Two breast pathologists (N.F. and M.I.) reviewed 
the digitalized images, selected the most representative slide, and an
notated both normal and tumor tissue areas.

2.2. WSI pre-processing, model inference and quantification of tissue 
areas

The WSI underwent pre-processing consisting of three steps: image 
loading, stain-color normalization, and tissue mask generation [24], as 
shown in Fig. 1. The pre-processing phase facilitated stain-color 
normalization and enabled the identification of the total tissue area 
relative to the background. Subsequently, the inference pipeline, which 
applies image-derived attention regions (IDARs) models, was executed. 
This pipeline requires slide-level labels and consists of four main steps: 
tiling and encoding, tile scoring, aggregation, and final decision-making. 
The algorithm successfully utilized the annotated tumor area to execute 

Fig. 1. : Deep-learning pipeline workflow. The workflow begins with the pre-processing of whole slide images (WSI), which are first loaded into the Python 
environment. Once loaded, the images undergo stain-color normalization to standardize variations in staining, followed by the identification of relevant tissue areas 
for analysis. The inference pipeline then processes these images by segmenting them into smaller tiles. These tiles serve as the input for the first model, which is 
responsible for distinguishing between tumor and non-tumor regions. The classification results are visualized using a red-and-white mask, where red represents 
tumor areas and white represents non-tumor tissue. Finally, tiles identified as tumorous are further analyzed by a second model that predicts molecular features, such 
as TP53 mutation status, based on the whole image.
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each of these four steps, culminating in the prediction of TP53 muta
tional status. Using the TIAToolbox python library [25], the slides were 
loaded onto a virtual machine hosted on the GARR Cloud Platform (htt 
ps://cloud.garr.it/). Stain-color normalization was performed using the 
Macenko technique [26] to minimize potential artifacts, while tissue 
segmentation was achieved via Otsu thresholding [27,28], generating a 
tissue mask that was subsequently exported in Portable Network 
Graphics (*.png) format. To identify the tumor areas, a pre-trained 
fine-tuned convolutional neural network based on ResNet18 [29,30]
was employed as a tumor detection model, allowing for the identifica
tion of tumor-specific tiles within the slide. As described by Bilal et al. 
[30], ResNet18 is a deep neural network model with 18 layers, 
frequently employed in image analysis tasks. It is initially pre-trained on 
ImageNet, a large dataset of general images, to learn basic visual fea
tures. In their study, the ResNet18 model underwent additional training 
using a specialized dataset of medical images, which included 35,436 
image tiles from the TCGA-CRC-DX cohort, as well as two publicly 
available datasets from Kather et al. [31] and Shaban et al. [32]. This 
transfer learning approach enabled the ResNet18 model to accurately 
differentiate between tumor and non-tumor regions within colorectal 
cancer samples. The convolutional neural network used, ResNet18, is a 
robust and well-established model, chosen for its strong performance in 
image recognition tasks. Its residual learning framework mitigates the 
vanishing gradient problem, enabling effective training of deeper net
works. We employed a pre-trained version of ResNet18, fine-tuned for 
breast cancer image analysis using transfer learning, thus maximizing 
performance with limited data. To quantify the normal tissue area pre
dicted by the algorithm, the area of a single patch (4096 pixels) was 
calculated by multiplying the pixel area (0.0625 µm²) to obtain the total 
area of each patch (256 µm²). This value was then multiplied by the total 
number of patches into which the slide had been segmented. The same 
calculation was applied to determine the tumor tissue area, using only 
tumor-positive patches. The tumor tiles were aggregated and saved as an 
independent mask, serving as input for the second stage of analysis. In 
this stage, a task-specific prediction model was applied to each tumor 
patch (256 × 256 pixels) to predict the TP53 mutational status. This 
second pre-trained model generated a digital score reflecting the mo
lecular status of each tile and identified the most predictive visual fields 
across the entire WSI. Notably, the model employed in this second stage 
was trained using slide-level labels, thus eliminating the need for 
detailed annotations at the cellular or regional level. Comparative 
assessment between the deep learning (DL) model and a human breast 
pathologist showed a high degree of similarity regarding total tissue 
area (2.6 cm² vs. 2.7 cm², respectively) and its identification. Following 
the application of the ResNet18 model, the image was segmented into 

patches, which served as input for differentiating between tumor and 
non-tumor tiles. The tumor area calculated by both DL and breast pa
thologists exhibited absolute concordance (1.0 cm² for both) (Fig. 2).

2.3. TP53 prediction pipeline

To classify the morphology of the tiles in which the WSI was 
segmented, a weakly supervised DL Iterative Draw and Rank Sampling 
(IDaRS) model pre-trained by Bilal et al., was employed [30]. This 
model was developed using 502 diagnostic slides of primary colorectal 
tumors from 499 patients in The Cancer Genome Atlas colon and rectal 
cancer (TCGA-CRC-DX) cohorts [30]. The IDaRS model utilizes a 
two-stage approach: i) patch-level tumor classification and ii) 
patch-level WSI classification. Initially, the WSI is segmented, and a 
ResNet18 network is used to distinguish tumor from non-tumor tiles. 
Subsequently, the tumor tiles are processed with a ResNet34 network, 
pre-trained on ImageNet for the prediction of slide labels and using 
iterative draw and rank sampling to generate prediction scores for high 
mutation density molecular labels. For deploying these pre-trained 
models, TIAToolbox, an open-source Python library developed by the 
TIA Centre, was utilized [25]. This PyTorch-based computational pa
thology library offers comprehensive tools for WSI processing, stain 
normalization, tile-based classification, and segmentation of both tissue 
and nuclei. Finally, the Dice similarity coefficient scores were calculated 
to evaluate the performance of the algorithm in predicting TP53 aber
rant expression. All analyses were performed on a virtual machine 
equipped with an NVIDIA A30 24 GB GPU and Compute Unified Device 
Architecture (CUDA) version 12.3. Python v. 3.8 was used, with all 
scripts executed via Jupyter, a web-based interactive computing plat
form launched with a remote server connection to a local machine. To 
evaluate the predictive accuracy of the DL algorithm, ResNet34 was 
applied to representative tumor area patches. Through iterative draw 
and rank sampling, the DL analysis generated prediction scores, indi
cating that TP53 was aberrantly overexpressed in 92 % of the tumor 
area, with an overall Dice coefficient of 0.82 (Fig. 3).

2.4. Validation by immunohistochemistry (IHC)

Tumor samples were subjected to IHC for p53 using the DO-7 anti
body clone (1:200 dilution; Agilent DAKO). Two independent blinded 
pathologists evaluated p53 expression based on the following criteria 
[33]: Mutant overexpression: Diffuse strong nuclear positivity in > 80 % 
of tumor cells. Null mutant: Complete absence of p53 expression with a 
positive internal control. Cytoplasmic expression: Significant p53 cyto
plasmic staining in > 80 % of tumor cells. Wild-type p53 expression was 

Fig. 2. : Deep-learning tissue classification. The initial output of the deep-learning pipeline involves classifying tissue tiles as either tumor or non-tumor based on 
their morphological features. A: annotations made by the pathologist on the H&E slide indicate the tumor area manually identified across the image. B: the algo
rithm’s tumor classification is shown, with red highlighting the regions where the model has detected tumor-containing tiles, visually marking the zones identified by 
the deep-learning process.
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defined as variable nuclear staining in 1–80 % of tumor cells. IHC 
analysis revealed aberrant p53 overexpression in 90 % of the tumor 
area, with both pathologists in agreement. This result closely matched 
the deep learning (DL) assessment, which showed p53 overexpression in 
92 % of the tumor area, as illustrated in Fig. 4.

2.5. Validation by next-generation sequencing (NGS)

DNA isolation was performed as described previously [34] and 
subsequently, TP53 mutational status was assessed by next-generation 
sequencing (NGS) using the SOPHiA DDM™ Solid Tumor Solutions 
(SOPHiA GENETICS) [35]. To confirm the predictions obtained by DL, 
IHC and NGS analyses were conducted. TP53 mutational status assess
ment by NGS showed a splice site alteration (i.e. c.376–1 G>A, exon 5), 
known for its likely pathogenic effect, further confirming DL and IHC 
results (Supplementary Figure 1).

3. Discussion

In this study, we predicted the TP53 status in BC from H&E-stained 
WSIs and analyzed its spatial distribution evaluating the impact of intra- 
tumor heterogeneity. TP53 is highly mutated in HR-/HER2 + BC and is 

associated with aggressive clinical behavior [20,36]. In clinical practice, 
p53 expression is assesses by IHC and can be troubled by issues in pre- 
and post-analytical phases [37]. Thus, testing alternative approaches to 
assist and complement traditional diagnostic methods represents a 
current need in biomarker testing. Our analyses confirmed that DL al
gorithms can reliably identify and quantify tumor and non-tumor tissue 
areas [38,39]. Of note, TP53 prediction on H&E-stained WSIs was 
particularly accurate. In particular, the DL-based approach assigned 
TP53 status with a high Dice coefficient score without being particularly 
affected by the increased intra-tumor heterogeneity seen in the selected 
case. We further confirmed this finding both at protein and gene level 
with IHC and NGS, respectively.

Manual assessment of H&E-stained histology slides suffers from low 
throughput and is prone to intra- and inter-observer variability [40]. 
Accurate tissue identification and quantification on WSI are essential 
steps for biomarker testing [41]. Our DL model and BP assessment 
exhibited remarkable concordance in total tissue area quantification 
(2.6 cm² vs. 2.7 cm²) and tumor area calculation (1.0 cm² for both). This 
high level of agreement underscores the reliability of the DL approach in 
accurately distinguishing tumor from non-tumor regions. These findings 
are in line with previous studies [42,43], in which segmentation and 
identification of multi-tissue histology images was achieved with high 
accuracy. The precision in tumor area quantification is critical for sub
sequent biomarker analysis, ensuring that predictions are based on 
relevant tissue sections.

The clinical actionability of gene mutations is becoming increasingly 
important for the management of patients with solid tumors, making the 
prediction of key genetic alterations based on WSI a significant 
advancement for tailored molecular biomarkers testing [44]. Several 
studies have explored the predictive capabilities of DL models in 
oncology. For instance, Wang et al. developed a model to predict the risk 
of germline BRCA (gBRCA) mutations by analyzing whole-slide pa
thology features from breast cancer (BC) H&E-stained images in 
conjunction with patients’ gBRCA mutation status [45]. Furthermore, 
ongoing clinical trials are evaluating the utility of DL models for pre
dictive biomarker analysis. Notably, the TROPION-Lung01 Phase 3 trial 
has investigated a novel computational pathology-based TROP2 
biomarker to predict clinical outcomes for patients receiving datopota
mab deruxtecan in the treatment of non-small cell lung cancer (NSCLC) 
[46]. TP53 is a tumor suppressor gene that plays a key role in many 
cellular pathways controlling cell proliferation, cell survival, and 
genomic integrity [47]. The DL algorithm predicted TP53 aberrant 

Fig. 3. : Deep-learning pipeline prediction of TP53 status and spatial distribution. Graphical output illustrating the spatial distribution of the TP53 mutation as 
predicted by the algorithm, linking molecular features to specific regions within the tumor. A: pathologist’s annotations on the H&E slide, marking the tumor area 
identified within the tissue. B: deep-learning model’s prediction of TP53 status, visually represented in the tumor-containing tiles.

Fig. 4. : Immunohistochemistry of p53 expression. IHC of p53 revealed 
aberrant expression across 90 % of tumor area as it is visible from the strongly 
positive, brown-stained cells in the image.
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overexpression in 92 % of the tumor area, achieving a high Dice coef
ficient of 0.82. The predictive performance of the DL model in assessing 
TP53 status was validated with other diagnostic methods such as IHC 
and NGS. This prediction was corroborated by IHC, through which BPs 
identified aberrant p53 expression in 90 % of the tumor area, demon
strating a high degree of alignment between the DL predictions and 
traditional histopathological assessment. Importantly, these results 
align with previous findings reported by Qu et al. who managed to 
predict TP53 point mutations with high accuracy (0.729) [44]. More
over, in our study, the selected case showed a TP53 splicesite alteration 
(i.e. c.376–1 G>A, exon 5), which is a type of alteration known to create 
diverse transcript variants, even if their effects on downstream genes are 
unclear [48]. Notably, many studies have shown that certain TP53 
mutation types are associated with specific p53 IHC patterns where 
splice site mutations may result in a null pattern [49]. Interestingly, 
Alsner et al. reported that the clinical outcome for breast cancer patients 
is significantly different based on diverse TP53 mutation types [50,51]. 
With the prediction of TP53 mutation, the tested DL model is able to 
offer insights for improving patient clinical management.

While DL models demonstrate high accuracy, it is important to 
acknowledge their limitations, particularly in comparison to traditional 
methods like IHC and NGS. DL models may underperform in scenarios 
with limited or highly variable datasets, highlighting the need for 
comprehensive algorithm training and robust database structuring [52]. 
In clinical practice, molecular tests are guided by well-established pro
tocols and recommendations that ensure quality and consistency. In 
contrast, digital pathology approaches, including DL models, have not 
yet achieved widespread adoption. Consequently, despite their potential 
advantages, DL models should be viewed as complementary tools that 
enhance biomarker testing rather than as complete replacements [41]. 
Testing the IDaRS pre-trained model developed by Bilal et al. [30]
exhibited superior performance in distinguishing TP53 mutational sta
tus, corroborating previous findings that highlight the robustness and 
accuracy of DL in complex pattern recognition tasks [53,54]. The ability 
of DL algorithms to autonomously learn and extract relevant features 
from high-dimensional data with minimal human intervention positions 
them as powerful tools for histopathological analysis [55,56].

Despite the promising results, our study has several intrinsic limi
tations. First, the proof-of-concept nature of this work, which focuses on 
a single case of BC, limits the generalizability of the findings. While our 
study provides valuable insights into the integration of deep learning 
(DL) with molecular pathology in breast cancer, it is based on the 
analysis of a single case and should thus be considered hypothesis- 
generating. A more extensive and robust analysis is needed to validate 
these findings and assess their generalizability. Future research should 
involve larger, more diverse cohorts, encompassing a wide range of 
breast cancer stages and the full spectrum of HER2 expression (score 0- 
null, score 0-ultra low, score 1 +, score 2 +) [57]. Additionally, 
extending the analysis to other heterogeneous cancer types, such as 
gastric cancer, may provide crucial insights into the performance of DL 
models across varied tumor microenvironments and genetic landscapes 
[58]. Such efforts are essential to optimize therapeutic strategies across 
different cancer types. Additionally, given the heterogeneity in mutant 
p53 expression (e.g., mutant overexpression or null mutations), a 
multi-label algorithm should be employed to address this variability and 
enhance the clinical relevance of the predicted molecular features. 
Furthermore, as tumors can acquire additional mutations over time, 
potentially altering the molecular profile and influencing disease pro
gression, it would be beneficial to analyze samples from different time 
points (e.g., at diagnosis and after therapy) to better understand the 
evolution of TP53 mutations over the course of treatment [59]. To 
achieve this, DL models could be adapted for the analysis of longitudinal 
samples, allowing for the assessment of temporal heterogeneity in breast 
cancer. By incorporating time-series data, these models can capture 
dynamic changes in tumor characteristics, potentially providing insights 
into disease progression, treatment response, and evolving molecular 

profiles [60].
Integrating DL models into pathology workflows demands planning 

and substantial infrastructure investment [61]. The time required to 
analyze a WSI largely depends on the algorithm’s complexity and the 
hardware employed. Modern DL models, when optimized, can analyze a 
single slide within minutes to an hour. However, achieving this level of 
performance necessitates high-performance computational resources, 
such as GPUs or dedicated cloud-based infrastructure, which are critical 
for both the training and inference stages of the DL pipeline [62]. From a 
hardware perspective, clinical centers must invest in advanced imaging 
systems, including high-resolution scanners to digitize tissue slides 
rapidly and with high quality [63,64]. Additionally, robust data storage 
solutions are needed to handle the vast amount of image data generated, 
often requiring terabytes of space. Efficient data retrieval and scalable 
storage infrastructure are particularly important when managing large 
datasets or conducting retrospective analyses [65]. For effective inte
gration of our DL model, medical-grade display monitors with high 
resolution and refresh rates are essential to ensure accurate and 
comfortable visualization, both for pathologists and during model vali
dation [66]. The computational setup must include dedicated GPUs to 
accelerate the processing of large, complex datasets and cloud-based 
solutions for scalability, especially in centers with limited local GPU 
resources, though they introduce challenges related to data privacy and 
transfer speeds [67]. Moreover, deploying DL systems in clinical prac
tice requires compliance with regulatory standards and the acquisition 
of necessary certifications (e.g., FDA approval, CE marking). Successful 
implementation also depends on the availability of skilled personnel, 
including data scientists, bioinformaticians, and IT specialists, to sup
port the integration, maintenance, and troubleshooting of the AI pipe
line. Pathologists will need training to interpret AI-assisted results 
effectively and incorporate these findings into clinical decision-making 
[66,68,69]. This underscores the importance of multidisciplinary 
collaboration and continuous education to fully leverage DL models for 
enhanced diagnostic accuracy and efficiency in pathology. By address
ing these practical and logistical challenges, hospitals can strategically 
plan for the adoption of DL technologies, ensuring they are equipped to 
capitalize on AI-driven advancements in a sustainable and scalable 
manner [70]. Furthermore, while deep learning can significantly 
enhance diagnostic accuracy and efficiency, interpretability for pathol
ogists remains a challenge, as these models often function as "black 
boxes” [71]. The complex nature of DL applications often makes it 
difficult for pathologists to interpret the decision-making processes 
behind specific model outputs, potentially diminishing their confidence 
in employing these tools in clinical practice [72]. Therefore, additional 
comparative studies between DL and traditional testing methods are 
needed to emphasize the importance of robust validation frameworks 
and to inform future recommendations focused on interpretability, 
standardization, and clinical integration. Although advances in 
explainability techniques, such as heat maps and gradient-based visu
alizations [73], have made progress in mitigating this challenge, further 
refinement of these methods is required. Moreover, these issues extend 
beyond technical challenges and raise several ethical concerns. Privacy, 
equity, and trust are key ethical considerations in AI-driven digital pa
thology, and they remain central to the responsible implementation of 
these tools in clinical settings [72,74]. Thus, visualization tools and 
explainability techniques can help bridge this gap, making the outputs 
more understandable for clinical use. Despite addressing some issues 
inherent in manual histopathological assessment, DL models can still be 
influenced by variability in tissue processing and slide preparation. 
Differences in staining protocols, scanner settings, and image quality 
could impact the DL performance. Moreover, this study focused solely 
on TP53 status. While TP53 is a crucial biomarker, BC prognosis and 
treatment rely on multiple biomarkers. Lastly, the IDaRS pre-trained 
model by Bilal et al. [30], was trained and validated on a cohort of 
colorectal cancer slides, reaching an AUC of 0.7 for TP53 status pre
diction, thus lacking any further testing on tissue slides coming from 
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other cancer types, such BC. A better understanding on how the algo
rithm performs on BC slides it would be necessary to give robustness to 
the model. Since this study focused on the application of a pre-trained 
DL model, it would be of interest to apply other algorithms or deploy 
a DL model, to increase reliability for biomarker status prediction [52]. 
This proof-of-concept study lays the groundwork for more comprehen
sive evaluations in future research. Future studies should incorporate 
key diagnostic measures, such as confusion matrices and ROC curves on 
large and heterogeneous datasets. These tools will provide deeper in
sights into the model’s strengths and limitations, revealing areas of 
potential misclassification and offering a clearer picture of its diagnostic 
accuracy.

4. Conclusions

This study demonstrated that DL algorithms can accurately predict 
TP53 status in BC from H&E-stained WSIs, even in the presence of intra- 
tumor heterogeneity. The DL model showed high concordance with 
traditional methods like IHC and NGS. While promising, the study’s 
single-case focus limits generalizability, highlighting the need for larger 
cohort studies. Future research should include other biomarkers and 
cancer types to enhance DL’s applicability in clinical practice. DL models 
can improve diagnostic precision and efficiency but require further 
validation for broader adoption.
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