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Abstract

Online communities are virtual spaces for users to share interests, support others, and to

exchange knowledge and information. Understanding user behavior is valuable to organiza-

tions and has applications from marketing to security, for instance, identifying leaders within

a community or predicting future behavior. In the present research, we seek to understand

the various roles that users adopt in online communities–for instance, who leads the conver-

sation? Who are the supporters? We examine user role changes over time and the path-

ways that users follow. This allows us to explore the differences between users who

progress to leadership positions and users who fail to develop influence. We also reflect on

how user role proportions impact the overall health of the community. Here, we examine two

online ideological communities, RevLeft and Islamic Awakening (N = 1631; N = 849), and

provide a novel approach to identify various types of users. Finally, we study user role trajec-

tories over time and identify community “leaders” from meta-data alone. Study One exam-

ined both communities using K-MEANS cluster analysis of behavioral meta-data, which

revealed seven user roles. We then mapped these roles against Preece and Schneider-

man’s (2009) Reader-to-Leader Framework (RtLF). Both communities aligned with the

RtLF, where most users were “contributors”, many were “collaborators”, and few were “lead-

ers”. Study Two looked at one community over a two-year period and found that, despite a

high churn rate of users, roles were stable over time. We built a model of user role transitions

over the two years. This can be used to predict user role changes in the future, which will

have implications for community managers and security focused contexts (e.g., analyzing

behavioral meta-data from forums and websites known to be associated with illicit activity).

Introduction

Online communities provide users with rich sources of information, the ability to exchange

ideas, expertise, and the opportunity to form social connections [1]. This can be a source for

good, for instance, research has revealed the positive effects of online communities for support

[2–5]. However, this is not always the case. There are malevolent online communities, for

example, (specific areas of) 4chan, also described as the “internet hate machine” [6]. Other

examples include the recent “involuntary celibate”, or “incel” movement, found in subsections

PLOS ONE | https://doi.org/10.1371/journal.pone.0216932 May 22, 2019 1 / 25

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Davidson BI, Jones SL, Joinson AN,

Hinds J (2019) The evolution of online ideological

communities. PLoS ONE 14(5): e0216932. https://

doi.org/10.1371/journal.pone.0216932

Editor: Ryan L Boyd, University of Texas at Austin,

UNITED STATES

Received: October 16, 2018

Accepted: April 11, 2019

Published: May 22, 2019

Copyright: © 2019 Davidson et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All dataset files are

available from the University of Bath database, DOI:

doi.org/10.15125/BATH-00558.

Funding: This work was part-funded by the Centre

for Research and Evidence on Security Threats

(ESRC Award: ES/N009614/1) to ANJ, www.

crestresearch.ac.uk. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

http://orcid.org/0000-0001-9886-9043
http://orcid.org/0000-0003-4111-0591
https://doi.org/10.1371/journal.pone.0216932
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0216932&domain=pdf&date_stamp=2019-05-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0216932&domain=pdf&date_stamp=2019-05-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0216932&domain=pdf&date_stamp=2019-05-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0216932&domain=pdf&date_stamp=2019-05-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0216932&domain=pdf&date_stamp=2019-05-22
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0216932&domain=pdf&date_stamp=2019-05-22
https://doi.org/10.1371/journal.pone.0216932
https://doi.org/10.1371/journal.pone.0216932
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.15125/BATH-00558
http://www.crestresearch.ac.uk
http://www.crestresearch.ac.uk


of 4chan, Reddit, other websites (that may have had links to the Canadian terror attack in 2018

[7,8]), or specific ideologically motivated forums with malicious intent and the aim to radical-

ize members [9].

Users in online communities are largely transient in nature, which tends to cause a high

churn rate within these communities [2,11] and complicates the understanding of user behav-

ior due to a lack of a consistent user-base. However, despite high churn rates, there tends to be

a core set of members that continue to contribute, share, and retain knowledge within a com-

munity [10], which is important for new joiners. While most users will inevitably leave the

community, there is often an influx of new users that serves to refresh and maintain member-

ship levels.

Despite this, relatively little is known about how (some) users evolve into valued members

once they have become engaged within online communities. Previous research has addressed

specific stages in the lifecycle of a community member. For instance, how users join and

become accepted [12–14], or how language is used by those in leadership positions [15]. Vari-

ous researchers have also examined the roles that a user may adopt in a community [15–17],

however this work tends to treat a role as a pattern of behavior that is static (rather than

dynamic), such that once a role is established, it rarely changes. This is perhaps a limiting

assumption, in light of research that has found that behavioral patterns and roles change over

time, both on- and offline [16,19,20]. We adopt various roles throughout our lifetime–chang-

ing subtly and substantially according to the context and those around us at the time [19].

In the present research, we analyze the roles that users adopt within two moderately-sized

online communities; one political discussion forum, RevLeft (denoted as community A) (N

>1000 at each six-month time slice over a period of two years) and one religious discussion

forum, Islamic Awakening, denoted as community B (N = 849). Since data collection, both

online communities have closed. Community A was a far-left forum with many groups and

threads relating to anarchy and various forms of communism [20]. Community B described

itself as a “small effort and a humble contribution [. . .] towards the global revival of Islam” [21].

In the first instance (Study One), these roles are treated as stable across the tenure of the

community members in order to build a classifier. This classifier is then used to categorize

members of one community in unique six-month time slices (Study Two), which allows us to

study any movement between roles across time. We also consider the stability in user numbers

per role, as an indicator of community heath, as suggested in the work of Angeletou et al. [22].

We also analyze user churn in community A. Rate of churn is a long-standing concern for

community managers who attempt to retain users [1,23,24]. We analyze all role transitions

over the two-year period (N = 7,712) in order to understand the distribution of users’ changing

roles, remaining in the same role, or potentially leaving the community.

We ground our work within a framework conceptualizing user engagement and leadership:

the Reader-to-Leader Framework (RtLF) [25], which describes how users transition from

being passive “readers” to potentially active community “leaders”. Hence, the RtLF provides us

with a valuable theoretical lens through which we examine user behavior within online com-

munities, focusing on user role changes over time. By grounding our analyses within this

framework, we discuss how this is important for those moderating and managing online com-

munities. Finally, we consider the role transition pathways that users make over time and pro-

vide a method and theoretical underpinning to understand these various pathways.

Theoretical background

Conceptualizations of user engagement. Engaged, active users are the lifeblood of an

online community. It should be of little surprise that there have been numerous attempts to
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study not only user engagement, but also the ways in which users move from passive consum-

ers to active creators within a community. One relatively well established approach is the

Reader-to-Leader Framework (RtLF) [25] (Fig 1). The RtL framework describes four roles that

users can adopt in online communities:

• Reader–visiting, reading, searching, returning

• Contributor–posting, reviewing, rating

• Collaborator–engaging with other members, collaborating to create content

• Leader–mentoring new joiners, setting policies and monitoring users, promoting

participation

Preece and Schneiderman [25] state that although these categorizations are not exhaustive,

they describe the participation of many users. While the RtLF does not specify quantities of

users at each stage in the framework, they explicitly state that the proportion of users moving

towards a leadership significantly diminishes.

This inequality in participation has been noted before–for instance, Nielsen [26] described

the 90-9-1 rule of online participation, stating that 90% of users online will lurk–where they

“read or observe, but do not contribute” [26], 9% will have small contributions over time, and

the final 1% drive the majority of conversation. Both of these conceptualizations attempt to

describe the wide variance of online user participation. The RtLF has been extensively used

since its initial publication in 2009 and remains influential when examining online user behav-

ior [27,28]. While it does describe how users can progress from being a reader of content, to a

contributor and collaborator sharing their own content, to potentially a leader guiding narra-

tives within the community, it lacks clear criteria for what behaviors constitute each role, and

how transitions actually happen. The framework suggests most users follow a linear progres-

sion through the successive levels, with a decreasing proportion of users moving from one role

to the next (illustrated by the size of arrows in Fig 1). However, it also suggests that users can

move in a non-linear fashion [29]. For example, a portion of users might be able to make the

direct transition to a position of leadership, having previously contributed very little to the

community. Moreover, the RtLF framework does not offer a strong indication of the propor-

tion of users that make such transitions, nor does it shed light on the characteristics of users

that follow particular pathways of participation. The present study addresses these issues by

examining users over time with reference to the RtLF in order to quantify proportions of users

who progress in both linear and non-linear pathways. While it is useful to understand general

patterns in users’ paths through their usage lifecycle, we contend that it is also useful to under-

stand the specific roles and trajectories of certain individuals. We propose that understanding

user roles will aid understanding of subtle differences in groups of users, which will then offer

Fig 1. Reader-to-Leader Framework (RtLF).

https://doi.org/10.1371/journal.pone.0216932.g001
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insight into the dynamic within the community. Such insights could enable us to understand

what makes a user maintain, increase, decrease, withdraw participation, and recognize factors

that differentiate users that follow different paths through the various levels. Forecasting the

future actions of users given their past and present trajectories is likely to be useful for analyz-

ing the health of online communities, and for enabling designers and managers to identify

characters such as “rising stars” or “fading leaders” at an early stage.

Understanding changes in engagement. An extensive body of literature examines the

different roles that people assume within online communities [16,27,28,30]. In particular,

social role theory considers behavior to be the enactment of socially defined categories (e.g.,

teacher, student, manager) [18]. A social role consists of norms, expectations, and behaviors

that a person tends to fulfill. Gleave et al. [15] define social roles as, “a combination of social
psychological, social structural, and behavioral attributes”. Social role theory implies that in

order to change behavior (e.g., increased participation) it would be necessary to change roles.

Therefore, one might hypothesize that role changes act as an indicator of transitions within

the RtLF.

It has been argued that each user possesses a set of beliefs, which may or may not align with

the community or group beliefs online or in offline groups. However, as users integrate and

interact with a community, they will enter a process of adopting, adapting, and potentially dis-

carding prior beliefs of roles. Hence, every community (on- or offline) is unique and varies in

terms of members, behavior, and communications [31,32]. Schmader and Sedikides [33] pro-

posed a conceptual framework, State Authenticity as Fit to the Environment (SAFE), which

provides an additional way to understand engagement. In SAFE, if the individual has a good

self-concept, goal, and social fit to the environment, they are more likely to approach and

engage.

A number of different roles have been identified in studies of online discussion groups (see

Table 1). These roles have primarily been identified through ethnographic study of the content

of interactions [34,35], although some effort has been made to use behavioral metrics to recog-

nize these roles [36,37]. The roles that emerged from these studies have shown various levels of

depth in terms of a) how specific a role is, b) how dynamic a role is, and c) how dynamic the

network is. Furthermore, changes in roles are often dismissed in the analysis.

Both Gleave et al. [15] and Welser et al. [16] visualized these systematic patterns of behavior

as forms of “structural signatures”, which provide insight into the overall role distributions

Table 1. Examples of roles identified in previous research.

Author(s) Roles Identified

Golder & Donath [38] Newbie, Celebrity, Lurker, Flamer, Troll, Ranter

Turner, Smith, Fisher, & Welser [37] Answer person, Questioner, Troll, Spammer, Binary poster, Flame

warrior, Conversationalist

Campbell, Fletcher, and Greenhill [39] Big man, Sorcerer, Trickster

Chan, Hayes & Daly [32] Joining conversationalist, Grunt, Taciturn, Popular participants,

Popular initiator, Supporter, Ignored

Pfeil, Svangstu, Ang, & Zaphiris [40] Moderating supporter, Central supporter, Active member, Passive

member, Technical expert, Visitor

Welser, Lin, Cosley, Dokshin, Smith,

Kossinets, & Gay [16]

Substantive experts, Technical editors, Counter vandalism

contributors, Social networkers

Panteli [28] Emergent leaders, Appointed leaders, Community founder,

Sustaining leaders

Arazy, Lifshitz-Assaf, Nov, Daxenberger,

Balestra, & Coye [27]

Role-Article Samplers, Role Embracing, Article Embracing, Role-

Article Polymathing

https://doi.org/10.1371/journal.pone.0216932.t001
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within a community. Further, the topologies of communities rely on user individuality in

terms of their behavior and levels of participation in order to group them into roles. This then

could be used to provide insight into the health of an online community [22]. Our work aims

to improve the classification of community members by considering various behavioral met-

rics (see Data Metric Development section). Chan et al. [32] used nine features to profile users,

including popularity, reciprocity, length of interaction, initiation, neighbor’s roles, and volume

of communication measures, which is a similar set of features utilized in the present studies.

Arazy et al. [27] examined role-transitions within Wikipedia specifically, where they catego-

rized users into four-types of role changes, which sheds light on the fact that user behavior is

indeed active and dynamic. Similarly, Campbell, Fletcher, and Greenhill [39] explore users

changing roles within communities, however, they focus more specifically on conflict between

roles within communities.

We extend this work by finding social roles in two online communities (Study One: com-

munity A and B) and by examining these roles over time (Study Two: community A). First, we

analyze the user role changes over time to investigate the most common role transitions for

users, for example, how often do users become leaders, and do those leaders often fall from

grace? Then, by analyzing more specific role transitions, we are able to understand the propor-

tions of users who engage in various role transitions. This analysis reveals what transitions are

more common, which could act as a basis to predict how a user may transition in future.

Community health. The relationship between the health of an online community and

user churn has two competing schools of thought. The first, and perhaps more traditional per-

spective, attempts to understand how community managers can increase user engagement and

retain as many users as possible, as high churn rates are deemed as negative [1,23,41]. How-

ever, one might argue that user churn is a natural occurrence of online communities and one

should rely more on whether the community is growing overall in size, as opposed to focusing

on users becoming inactive only. The second approach argues that the high churn rate is actu-

ally a positive trait for an online community. For instance, Soroka and Rafaeli [24] suggest that

if all users (including readers or lurkers) were actively engaging in the community, this could

dilute the knowledge and create unnecessary “noise” (e.g., off-topic discussion or too much

content), which can be destructive. Further, if all users were constantly posting–who is listen-

ing? Hence, a high number of reading users (or “lurkers”) is not necessarily a negative trait in

an online community [22,42]. Further, Angeletou et al. [22] suggest that higher numbers of

elite or popular users are a sign of a healthy community, alongside other indicators such as:

having a stable distribution of user roles over time; having a mixture of roles within a commu-

nity; and lower levels of “ignored” and “low engagement” users. However, Chan, Hayes, and

Daly’s [32] findings demonstrate a variety of different role compositions in various online

communities. Therefore, factors in community health perhaps stretch beyond role composi-

tion. Further, other work has shown that social purity (e.g., sharing the same political view) is

important within social networks [43], which suggests that community health is indeed multi-

faceted and unique to each community.

The present research will investigate various ways to analyze community health by consid-

ering user churn over time, number of roles found, and the stability of them over time.

Our research questions are as follows:

1. What specific roles can be identified using meta-data from online communities?

2. Do user roles change over time? What are the most common pathways and transitions for

users?

3. What can we learn about the health of the community based on user roles?

The evolution of online ideological communities
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The present research contains two studies. Study One utilizes the meta-data from users

within communities A and B, where we used a clustering algorithm (K-MEANS) in order to

detect groups of similar users. After analyzing and naming each cluster, we then map the roles

established to the RtLF [25] in order to conceptualize differing levels of engagement, hierarchy,

and leadership within the communities. Study Two is a time-series analysis of community A

over a two-year period. Here, we are able to understand whether a user changes their behavior

to the extent that their new behavioral pattern exemplifies a different role. Further, we examine

the distribution of clusters over time with reference to the RtLF, which provides a theoretical

grounding of the types of users that participate in communities. We also analyzed every user

role change over the two-year period (N = 7,712) and used this to build a model of role

transitions.

Statement of ethics

The present study was reviewed and approved by the Ethical Implications of Research

Activity (EIRA) process within the University of Bath, School of Management (reference

number: 2393). IRB approval was not required for this work as it only utilized secondary

data analysis.

Data preprocessing

Data collection

Content and meta-data were collected from two publicly accessible communities denoted:

community A (RevLeft) and community B (Islamic Awakening). This data was collected via

“screen scraping”. This is a technique that is similar to automated cut-and-pasting from online

webpages. This was done by a custom PERL/MySQL tool, which collected data securely from

the Internet utilizing a Privoxy/TOR chain. Where needed for forum access, cookies were sup-

plied with HTTP requests made by the tool and were regularly rotated to ensure anonymity.

Data errors were captured by validating the number of fields of each type that had been identi-

fied and extracted by the HTML parser, and regular expressions from each webpage. All vali-

dation errors, each URL scraped, and cookie and IP rotations have been logged and retained

in order to monitor scraping accuracy. No scraping behind logins was conducted and only

publicly available data was collected and stored in a MySQL database, which complies with the

Terms of Service at the time of data collection. User ID’s were encrypted via the MD5 hash

algorithm to ensure user identity and privacy.

When these forums were scraped, community A had approximately 1.49 million posts and

11,778 active members. Community B had approximately 500,000 posts and 3,205 active mem-

bers. Both communities A and B have since been closed.

The two present studies only use six months (Study One–A and B) and two years (Study

Two–A only) worth of these data archives. This was due to the early years of the archive cap-

turing the start of the forums, therefore, we focused only on the most recent data (at the point

of data collection) to analyze as this is when the forums were fully-established. For Study One,

we used the most recent six-months’ worth of data compiled into one data frame. Study Two

used two years’ worth of data, which was split into four six-month time slices, to allow for a

time-series analysis. While having six-month time slices is a broad window within which to

classify users into a single behavior-based role, we selected this time period in order to avoid

capturing minor or temporary fluctuations in behavior, as opposed to sustained changes in

behavior as reflected as changes in roles.
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Data metric development

From all scraped data, we derived several types of behavior metrics (shown in Table 2). As we

intended to group similar users into clusters, we needed to develop metrics in order to com-

pare users against each emerging role, and the community [22]. Typically, when examining

user online meta-data, prior work had emphasized a variety of features that should be

included. For example, Chan, Hayes, and Daly [32] created structural features (providing an

indication of communication between unique users), reciprocity features (how much users

reply to one another), popularity features (number of in-neighbors e.g., those who replied to

that user, or thanks rate), persistence features (e.g., length of conversations and number of

threads or subforums in which users post), and initialization features (how often a user starts a

thread). Angeletou et al. [22] also utilized similar metrics overall, which aligns with the features

employed in our work. Hence, prior work has demonstrated the importance of the metrics

used in order to distinguish between roles that users adopt in online communities.

We also wanted to understand as much as possible about the content posted by users, from

a meta-data perspective, hence we added additional “Content Features”, which consist of aver-

age word count, number of URLs present in posts, and the number of questions asked per

post. We anticipated that this would help to distinguish between various low engagement

users (or contributors referring to the RtLF). For example, Golder and Donath [38] identified

“newbies”, who tend to have little knowledge but would ask many questions. Therefore, users

with a high percentage of questions asked and relatively low numbers of posts might fall into

this category. Similarly, we wanted to capture the number of URLs being provided in posts, as

we anticipate that this could reflect users signposting information, which might be similar to

Welser, Gleave, Fisher, and Smith’s “Answer Person” [44]. We also included “Diversity” fea-

tures, which aim to capture the extent to which a user posts in the same threads or subforums.

We believe this could be insightful, particularly for distinguishing between users who focus

on a limited number of specific threads, and those who engage in a number of conversations

across the broader community.

Table 2. Metrics used in cluster analysis for communities A and B.

Structural

Features

In-Degree Total number of unique network neighbors replying to (or quoting)

a user

Out-Degree Total number of unique network neighbors receiving posts from (or

being quoted by) a user

Content

Features

Word Count Mean average word count for all of a user’s posts

Percentages Percentage of a user’s posts that contain question marks (excluding

within URLs)

Percentage URLs Percentage of a user’s posts that contain URLs

Popularity

Features

Thanks Rate Mean average number of thanks per post. Calculated as: Total

Number of Thanks Received / Total Number of Posts Made

Initiation

Features

Initiation Ratio Calculated as: Number of threads initiated/Number of threads

participated in

Diversity

Features

No. Threads Total number of threads participated in

No. Sub Forums Total number of sub-forums participated in

Persistence

Features

Posts Per Sub Forum Calculated as: Total number of posts/Number of sub forums

participated in

Posts Per Thread Calculated as: Total Number of posts/number of threads

participated in

Reciprocity

Features

Percentage Bi-

directional Neighbors

Calculated as: Number of neighbors that a user has both received

posts from and posted replies to/Total number of unique network

neighbors

https://doi.org/10.1371/journal.pone.0216932.t002
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Study One: Cluster analysis

This study utilizes all user activity during the six-month period prior to data collection. Our

aim is to understand sets of similar users within both forums, based on the important behav-

ioral features of each role. This will reveal which roles tend to lead and influence the commu-

nity, who might support the leaders, and who simply follows. These roles will be mapped

against Preece and Schneiderman’s [25] RtLF based on key features of each role, reputation

scores (“the opinions of all your forum users”, based on “how [their] posts are scored by other
forum participants” [45], which is a native, inbuilt metric), and the number of users within

each role.

Methods & results

Metrics utilized for analysis. We performed a K-MEANS cluster analysis using Weka

3.8.2. We used this method as it is widely used for behavioral analytics, data mining, and data

science more generally [6,27,32,46,47]. It also provides easily understandable and scalable out-

puts [47]. However, we note that K-MEANS clustering algorithms, while widely applicable,

can be sensitive depending on initial seeding [48], therefore additional attention to cluster cen-

ters and the variable input is critical.

Table 2 shows the metrics that were used during the clustering process. We also collected

each user’s “Reputation” score, which was removed from the cluster analysis. Instead, we used

this as an additional metric to map the outputs from the cluster analysis to the RtLF, since we

expect reputation scores to increase as users progress through the RtLF.

Ideal number of clusters

Cluster analyses are considered a form of unsupervised learning due to a lack of a defined set

of classes prior to learning [49]. K-MEANS is a partitional clustering algorithm that divides

the data into smaller sections called “clusters” [50]. When running the K-MEANS algorithm a

pre-defined number of clusters, k, is required. The ideal k value can be found via trial and

error and is highly subjective [51]. We found k via the Elbow Method, see Fig 2. This aims to

visualize and explain the “percentage of variance explained as a function of the number of clus-
ters” [50]. This means that the first few clusters will have large decreases in variance as each

additional cluster continues to add information to the model. This will eventually plateau as

the model does not continue to improve substantially [50]. We highlighted the boundaries of

the potential number of k in Fig 2.

Fig 2 shows the Elbow Plots for communities A and B. Based on the elbow plot, we

proceeded with seven clusters for both communities (using the same k value for each com-

munity as a basis for comparing how the overall composition of roles differs between com-

munities). We note that in Fig 2(A), at k = 8, the elbow began to rise, showing that k = 7 for

this community is optimal. Similarly, in Fig 2(B), the elbow begins to plateau from k = 7,

which indicates this would be an appropriate number of clusters. Hamerly and Elkan [51]

stress the difficulty of identifying k, where they state this tends to rely on prior knowledge.

From our theoretical underpinning of the RtLF, we could only take forward k�3 (reflecting

the contributor, collaborator, leader distinction), however, this would be too coarse for

revealing more subtle roles within each of these levels, which have been identified in previous

work. In the literature referenced in Table 1, the number of roles identified varies from 3 to

8. We wanted to capture the more intricate and subsets of roles within the RtLF, hence, we

proceeded with k = 7 as this seemed most appropriate based on Fig 2, previous literature

[32,37,52], and the RtLF.
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Clusters & visualization

In order to map our clusters to the RtLF, we first need to understand what each cluster means.

From looking at the centroids (or multi-dimensional mean) of each variable within each clus-

ter, we were able to deduce how clusters differ from one another. For community A, Table 3

describes each cluster and Table 4 provides additional information regarding cluster centers.

Similarly, Tables 5 and 6 relate to community B. While we use the same names for the eight

roles found in both communities, there are some subtle differences. For example, the Popular

users in community B had the highest overall thanks rate, whereas the Elite users had the high-

est thanks rate in community A.

Mapping clusters to the reader-to-Leader Framework

Each role will belong to the leader, collaborator, or contributor categories from the RtLF.

Readers were not directly included, as they were originally described as users who are “ventur-
ing in, reading, browsing, searching, returning”, [25], hence they have no engagement and pas-

sive behavior without a digital trace. These users may not have created an account until they

Fig 2. Elbow plot or “Sum of Squared Errors” plot for communities A (A) and B (B). The dotted red lines denote the upper and lower boundaries

for the ideal number of clusters, k.

https://doi.org/10.1371/journal.pone.0216932.g002

Table 3. Cluster descriptions for community A. See Table 4 for more detailed information on cluster centers.

Cluster/Role Name Description

Newbie High initiation rate, highest overall number of questions asked in the community, and

typically long word counts in their posts. Lowest in- and out-degree and number of posts

Popular Supporter High overall metrics, particularly in- and out- degree, bi-directional neighbor degree, and

thanks rate. Users were similar to the Elite users, however, overall lower in each metric

Taciturn Low in all metrics, largely not engaged, as reflected by their low activity (e.g., low number

of posts and connectivity)

Conversationalist High number of posts per thread and initiation rates, with high bi-directional neighbors.

Low in most other metrics, particularly thanks rate

Elite Highest in- and out-degree, thanks rate, number of posts, posts per subforum, and typically

had posts with low word counts

Low Volume

Supporter

Typically, moderate in all metrics, however, often a high number of questions per post and

long posts

Information Provider Longest posts by a substantial measure with the highest number of URL links and a high

initiation rate. Moderate in most other metrics

https://doi.org/10.1371/journal.pone.0216932.t003
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became a contributor, collaborator, or leader, as both forums at the time of data collection

were open to view and browse.

We assessed the similarity of clusters identified for each community. While, there are subtle

variances in each role identified, we found that they are similar enough to map to the RtLF in

the same way. For example, the Popular Supporters in community A and B were subtly differ-

ent. Community A’s Popular Supporters had high thanks rates, whereas this was not as

reflected in community B. However, both community A and B’s Popular Supporters had high

in- and out- degrees, bi-directional neighbors, with high mean posts per thread and subfor-

ums. Both community’s Taciturns were low in all metrics, however, community B’s tended to

be more connected (e.g., higher in- and out-degree scores). Similarly, both community’s Elite

users had much in common (e.g., high in- and out- degrees, bi-directional neighbors, thanks

rates, and number of posts). However, community B’s number of URLs was a much lower

value for Elite users. This highlights subtle differences between forums. This is to be expected,

in light of social role theory and literature that addresses the dynamic between the individual

and group identity, and shows that there is negotiation and changes in user behavior and

adoption of (new) beliefs as individuals integrate into groups and as communities evolve [31].

Further, this aligns with the work of Chan, Hayes, and Daly [32] where they demonstrated the

unique role compositions of different forums.

Table 4. Cluster centers for community A. Red to green coloring indicates the lowest to highest values per metric (row).

Input Variable Overall Newbie Popular Supporters Taciturn Conversat-ionalist Elite Low Volume Supporter Information Provider

In Degree 40.68 6.26 83.43 8.75 9.22 234.83 14.96 11.58

Out Degree 42.41 3.97 87.38 8.76 8.11 255.16 14.46 10.08

Total Posts 78.52 6.40 133.74 10.00 15.96 610.97 18.12 22.32

Mean Word Count 107.76 157.44 91.42 75.39 107.01 98.90 115.44 279.35

Thank Rate 0.71 0.60 1.01 0.57 0.50 1.13 0.59 0.74

% Questions per Post 0.29 0.77 0.28 0.07 0.22 0.30 0.40 0.22

% URLs per Post 0.07 0.03 0.06 0.03 0.03 0.06 0.05 0.66

Mean Posts Per Thread 2.06 1.91 2.53 1.34 4.78 2.65 1.86 1.78

Initiation Ratio 0.21 0.55 0.09 0.16 0.56 0.08 0.17 0.37

Mean Posts Per Subforum 8.56 2.94 16.25 2.51 8.00 37.77 4.31 4.72

% Bi- directional Neighbors 0.21 0.12 0.32 0.09 0.59 0.45 0.18 0.18

https://doi.org/10.1371/journal.pone.0216932.t004

Table 5. Cluster descriptions for community B. See Table 6 for more detailed information on cluster centers.

Cluster/Role Name Description

Elite Highest in- and out-degree, thanks rate, number of posts, and posts per subforum.

Typically, their posts had low word counts.

Newbie Highest overall number of questions asked in the community, and typically long word

counts in their posts. Low in all other metrics.

Low Volume

Supporter

Moderately low in all metrics, however, a high initiation rate.

Popular Supporter High overall metrics, particularly mean posts per subforum, in-, out-, and bi-directional

neighbor degrees. Low initiation ratio and URLs in posts. Similar to Elite, however, overall

lower in each metric.

Conversationalist Highest initiation rate, high word counts, and bi-directional neighbors. Low in- and out-

degrees, and thanks rate.

Taciturn Lowest in all metrics, aside from slightly higher connectivity (in- and out-degree).

Information Provider Longest posts, highest number of URLs per post and initiation rate. Lowest in all other

metrics.

https://doi.org/10.1371/journal.pone.0216932.t005
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Next, we examined the proportion of users in each of the roles for both community A and

community B (Fig 3), for comparison against the RtLF, as well Nielsen’s 90-9-1 rule of social

media and online community engagement [26]. We anticipated seeing larger numbers of users

in roles such as Low Volume Supporter or Taciturn, in comparison to Elite users, which was

accurate for both forums.

Communities A and B were similar in terms of numbers of users in each role. For instance,

in both platforms the highest number of users fell into the roles of Low Volume Popular Sup-

porters, Taciturns, and Newbies. Interestingly, community A had a higher proportion of users

falling into the Conversationalist role than community B, and community B had a higher pro-

portion of Low Volume Supporting users. This further demonstrates the subtle differences in

role composition in online communities [31,32]. Preece and Schneiderman [25] suggest that

reputation is associated with roles, where leaders would have the highest reputation, followed

by collaborators with a moderate reputation, and contributors with lower reputation. Hence,

the collected reputation scores (inbuilt metrics within the community forum software) were

used to further inform this stage. The reputation score for each user is calculated as a function

of their total number of posts and reputational upvotes or downvotes from other community

members (which are weighted by the reputation power that other users wield). However, we

acknowledge that the precise details for how the reputation metric is calculated is unknown,

which is a key limitation. Hence, we place higher importance on the key features of each clus-

ter and the number of users within each cluster, then we consider reputation as an additional

guideline. Reputation was often helpful with our conceptualized metrics, for example, in both

forums the reputation score of Elite users far exceeded that of all other clusters.

We noted that the Information Providers and Popular Supporters in community B had

lower reputation scores than expected. With consideration of their key features (e.g., in- and

out-degree, thanks rates, longer posts), we decided that the Information Providers and Popular

Supporters fulfilled the criteria to be a “collaborator” (“developing relationships, working
together, setting goals” [25]).

Fig 4 shows the proportion of users belonging to clusters mapped to either contributor, col-

laborator, or leader, for communities A and B (Fig 4).

Both forums had high numbers of contributors, moderate number of collaborators, and

few leaders, which aligns with the RtLF. Despite differences in the proportion of users in the

unmapped roles (Fig 3), when mapped to the RtFL, these differences are reduced. Community

A’s distribution of users as contributors, collaborators, and leaders was 69.22%, 23.91%, and

Table 6. Cluster centers for community B. Red to green coloring indicates the lowest to highest values per metric (row).

Cluster Input ALL Elite Newbie Low Volume Supporter Popular Supporter Conversat-ionalist Taciturn Information Provider

In Degree 28.66 149.05 8.24 12.96 45.37 5.38 8.61 1.95

Out Degree 29.44 158.89 8.32 10.97 46.90 3.65 9.16 0.87

Total Posts 72.24 489.44 12.75 22.74 92.15 13.64 11.74 5.23

Mean Word Count 118.04 96.00 150.16 118.02 116.49 163.88 67.08 217.03

Thank Rate 0.62 0.89 0.66 0.61 0.64 0.50 0.63 0.19

% Questions per Post 0.29 0.30 0.67 0.23 0.30 0.28 0.10 0.28

% URLs per Post 0.08 0.03 0.03 0.08 0.04 0.06 0.03 0.77

Mean Posts Per Thread 2.24 2.50 1.85 1.73 3.79 2.27 1.41 1.25

Initiation Ratio 0.28 0.13 0.12 0.44 0.10 0.95 0.04 0.77

Mean Posts Per Subforum 10.06 39.90 3.90 5.87 15.44 6.66 3.46 3.60

% Bi-directional Neighbors 0.26 0.51 0.19 0.19 0.42 0.31 0.12 0.09

https://doi.org/10.1371/journal.pone.0216932.t006
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6.87%, respectively, whereas community B’s users were 64.66% contributors, 26.74% collabo-

rators, and 8.60% leaders.

Discussion

Study One aimed to first identify roles using behavioral meta-data. Second, we analyzed these

roles by framing them in terms of the RtLF [25]. From our scraped meta-data, we found seven

clusters in communities A and B. They ranged from low engagement and passive users, such

as Taciturns, to Information Providers, with high levels of engagement, to Elite users, with the

highest levels of popularity and thanks rates across the community.

This study shows that various types of role and levels of engagement can be detected

within online communities via cluster analysis. These roles can be used to better understand

the social structure within online communities. Preece and Schneiderman [25] state their

framework is not exhaustive, however, it is dynamic and captures the majority of user behav-

ior online. The contribution of this research is a deeper exploration of contributors, collabo-

rators, and leaders, alongside the identification of “sub-roles” that sit within each category

Fig 3. Proportion of users in each cluster for community A and community B.

https://doi.org/10.1371/journal.pone.0216932.g003
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from the RtLF. Further, seeing user types at a higher resolution than the RtLF provides

deeper insight into the subtle dynamics within a community. For instance, there were differ-

ences in frequency of each individual role between communities A and B, however, these

were less noticeable and could be missed if we had only considered three roles: contributors,

collaborators, and leaders. We note there were subtle differences in specific role categories,

which is to be expected across online communities. Our findings align with Chan, Hayes,

and Daly [32], showing that forums are unique communities with different compositions of

roles. A further explanation for these variations could be the size differences of the forums,

as B (N = 849) is approximately half the size of A (N = 1631). However, a key limitation of

this study is that we were limited to meta-data only. It may be possible to shed further light

on the subtle differences between online communities by also analyzing the linguistic con-

tent. Further, we acknowledge methodological limitations, such as the use of K-MEANS clus-

tering algorithm. Due to the dependence between several metrics, we utilized K-MEANS as

no assumptions would be violated, specifically the lack of independence in our variables. The

trade-off is the potential sensitivity of K-MEANS, although we mitigated this by utilizing sev-

eral methods to find a suitable number of clusters, k, and thoroughly checking cluster centers

against theory and literature. We believe this was the most suitable clustering algorithm for

Fig 4. Proportion of users in each category of the reader-to-Leader Framework (RtLF) for A (A) and B (B).

https://doi.org/10.1371/journal.pone.0216932.g004
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this study due to its ability to handle high-dimension datasets and its increasing use in

behavioral analytics [6,27,32,46,47].

Study One shows that we can detect various types of users from behavioral meta-data alone.

We build on this in Study two, where we analyze user behavior from community A over time–

whether these roles tend to be stable for the user, if they tend to change, and whether the num-

ber of users in each role stays consistent. This has several implications for community manag-

ers who moderate online communities, marketers looking to identify potential influencers and

endorsers of brands, and there may also be implications for security contexts.

Study Two: Role transitions & community health

Study Two focused exclusively on community A. First, we classified users into the roles from

Study One for each of the additional three six-month time slices. This allowed us to analyze

the stability of users’ roles and calculate the most common role transitions that users experi-

enced. This aimed to investigate if users shift over time, and more specifically, if (and how)

users became leaders. Here, we are most interested in understanding whether users do indeed

change behavior as they continue their engagement with this community. Further, this analysis

also revealed community A’s high user churn, despite the overall increase in number of users.

In addition to the six-month time slice in study one, we used three additional six-month time

slices for the period up to the 24 months before data collection date (Table 7). The time slice

used in Study One was used as a training set for a Naïve Bayes classifier utilized in Study Two.

Classification of community A’s users over time

During the classification step, we used a Naïve-Bayes algorithm, which is a type of generative

classifier [53]. This works by taking the inputs (here, these were the metrics found in Table 2)

and making predictions of the label (here, this would correspond to the clusters revealed in

Study One), where the user is assigned to the most likely cluster they belong to [53]. We classi-

fied the final three time slices to the roles detected in the Study One, which allowed us to exam-

ine the stability of the roles (mapped and unmapped to the RtLF) over time.

Upon classification, we performed various sensitivity analyses, shown in Tables 8 and 9

below. We note that the sensitivity and accuracy measures show reasonable classification per-

formance. Particularly, as seen in Table 8, the ROC Area for all clusters was, on average, 0.96,

which is regarded as “excellent” [54]. This is further demonstrated by the high true positive

(TP) rate (column 1) and the false positive (FP) rate remaining low (column 2).

Table 9 is the confusion matrix from our classification step, which provides more detail

regarding which clusters were less accurately classified. The highest area of sensitivity in the

classification model often concerned Low Volume Supporters. They were slightly more likely

to be misclassified due to the lack of distinctive features (e.g. they lacked particularly high or

low metrics for certain behaviors), unlike the other roles. There is also potential for greater

sensitivity among the lower contributing roles, as each of their interactions may have more

impact on the overall metrics. However, we wanted to keep the low engagement users in our

Table 7. Each six-month time slice and number of users in community A.

Time Period Number of Users

-24 months to -18 months 1293

-18 months to -12 months 1458

-12 months to -6 months 1495

-6 months to time of data collection 1631

https://doi.org/10.1371/journal.pone.0216932.t007
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analysis (e.g., low volume supporters) in order to reflect the broad spectrum from non-engage-

ment to high engagement users presented in the RtLF. This also allowed us to capture users

who may be more likely to join and leave swiftly, as shown in our analysis of churn within the

community. Hence, if we removed these users, we would lose subtle sub-roles that are an

important section of the community user base. We reiterate that we are unable to capture read-

ers, since they do not leave a digital trace.

Fig 5 shows that the percentage of users in each role is moderately stable and consistent.

We can see this is particularly prominent with the Elite and Information Providers, as well as

contributor roles like Low Volume Supporters and Taciturns. We noticed the increase in Low

Volume Supporters in the most recent time slice. There are relatively subtle fluctuations in

overall RtFL categories. However, in the most recent time slices the numbers of users in each

mapped role (contributors, collaborators, and leaders) were remarkably stable, despite the

amount of churn in members leaving and joining the community. We found 25.32% of users

from the earliest time slice were present at the time of data collection 24 months later. While

substantial numbers of the community left at each time slice, the overall size of the community

grew over the two-year time period, which reveals that large numbers of new users also joined.

User role pathways

Next, we examined user role changes over the two-year period. We analyzed every possible

cluster transition that users could make (N = 64, i.e. switching between the 7 clusters, and also

transitions to an inactive (reader) state). 7,712 user transitions were observed (i.e., compari-

sons of an individual’s role from one time slice to the next), which included users that

remained in the same cluster, changed once, or even multiple times. Users could change up to

three times (across the four time slices). Transitions were identified simply by comparing indi-

vidual user’s cluster allocations across consecutive time slices. Only users who had appeared in

Table 8. Classification accuracy by cluster (%).

TP Rate FP Rate Precision Recall F Measure MCC ROC Area PRC

Newbie 0.87 0.06 0.58 0.87 0.69 0.68 0.95 0.87

Popular Supporter 0.87 0.03 0.88 0.87 0.88 0.85 0.98 0.93

Taciturn 0.88 0.05 0.88 0.88 0.88 0.83 0.98 0.96

Conversationalist 0.60 0.01 0.79 0.60 0.68 0.67 0.97 0.73

Elite 0.99 0.01 0.89 0.99 0.94 0.93 1.00 0.96

Low Volume Supporters 0.62 0.07 0.76 0.62 0.68 0.59 0.92 0.78

Information Provider 0.92 0.01 0.77 0.92 0.84 0.84 0.96 0.87

Weighted Avg. 0.80 0.05 0.81 0.80 0.80 0.76 0.96 0.88

https://doi.org/10.1371/journal.pone.0216932.t008

Table 9. Confusion matrix for classification (%). Actual values as rows; predicted values as columns.

Predicted

Actual Newbie Pop Sup Taciturn Conver. Elite Low. Vol. Sup. Info. Prov.

Newbie 7.79 0 0 0.25 0 0.67 0.25

Popular Supporter 0 17.41 0.12 0.12 0.8 1.35 0.12

Taciturn 0.18 0.61 25.38 0 0 2.51 0.25

Conversationalist 0.55 0.25 0.49 3.25 0 0.61 0.31

Elite 0 0.06 0 0 6.81 0 0

Low Volume Supporter 4.97 1.41 2.82 0.43 0 16.06 0.18

Information Providers 0 0.06 0.06 0.06 0.06 0.06 3.68

https://doi.org/10.1371/journal.pone.0216932.t009
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earlier time slices were included in any subsequent inactive to inactive transitions (i.e., users

who had not yet joined the community are not counted).

Table 10 shows the top ten most common transitions seen within community A across all

time slices. The frequency of each transition pathway was counted, which formed the basis for

calculating the most common pathways.

Four out of the top ten pathways in Table 10 regard users becoming inactive or remaining

inactive. Hence, it was common for users to disappear from the community (or assume a

reader role) from one time slice to the next. Four out of the top ten concerned new joiners or

those becoming active again, where three of these pathways were users becoming contributors,

Fig 5. Percentage of users in each role—Mapped to the RtLF (A) and unmapped to the RtLF (B).

https://doi.org/10.1371/journal.pone.0216932.g005

Table 10. Top Ten most common pathways for users to take based on all possible transitions (N = 7,712).

Pathway (Clusters) Number of Users % of Users

Inactive! Inactive 1082 14.03

Inactive! Taciturn 834 10.81

Taciturn! Inactive 780 10.11

Low Volume Supporter! Inactive 629 8.16

Inactive! Low Volume Supporter 480 6.22

Newbie! Inactive 367 4.76

Inactive! Newbie 335 4.34

Popular Supporter! Popular Supporter 324 4.20

Inactive! Popular Supporter 292 3.79

Low Volume Supporter! Low Volume Supporter 195 2.53

https://doi.org/10.1371/journal.pone.0216932.t010
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and the other pathway reflecting users going straight to a collaborator role. The final pathway

were users who remained contributors or collaborators.

We developed a model from the all user transitions of community A (Fig 6). This model

mimics the RtLF and highlights the diminishing numbers of users progressing to leadership

within the community. From Table 10, if we consider the percentage of all transitions users

made (N = 7,712), only 2.9% of those transitions were of users shifting from a contributor

to a collaborator, and only 0.9% of transitions were collaborators transitioning to leaders.

Few transitions concerned users joining as leaders (0.9%), however, it was slightly more

common to join as collaborators (4.8% of transitions) or simply a contributor (25.3% of

transitions).

Fig 6 provides a high-level overview of how users changed their roles over time. This con-

siders all transitions made in in the dataset. It reveals that users staying in the same RtLF

category is common, for instance, we found 12.3% of transitions were users that were once

contributors and remain contributors, similarly, 4.9% of transitions were users that did not

change from a collaborating role, and 2.4% transitions were users that remained leaders. Fig 6

also demonstrates the high churn of users, where 30.9% of transitions regarded new joiners or

those returning from a period of inactivity, whereas 26.4% of the transitions were users chang-

ing back to readership/inactivity. This also demonstrates that the community within the two-

year time period of data grew overall.

Fig 6. Model showing percentage of all users role transitions mapped to the reader-to-Leader Framework.

https://doi.org/10.1371/journal.pone.0216932.g006
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In addition to Fig 6, we present Fig 7, which shows the top 25 transitions users made. This,

in contrast to Fig 6, is not mapped against the RtLF, which enables us to see the intricate (role

level) pathways users took. It also shows the most common pathway users took to become a

leader (although this appears to be exceptionally rare in community A). It further demon-

strates non-linear pathways of users (e.g., demoting transitions–Popular Supporter to

Taciturn).

From Fig 6, we saw that 25.2% of transitions during the two-year period, transitioned

from readership to a contributor. Fig 7 provides a higher resolution of this and shows that the

majority of transitions from readers into contributor roles were users becoming Taciturns, fol-

lowed by Low Volume Supports, then Newbies, and much less commonly, Conversationalists.

We also found a fairly common cyclical role pathway of users either remaining Taciturns or

Low Volume Supporters or switching between the two. Therefore, users are more likely to

switch between these roles or become inactive rather than progress towards leadership.

If we consider the paths of progression towards leadership, out of all transitions made, it

was exceptionally uncommon for any contributor (Taciturn, Low Volume Supporter, Conver-

sationalist, or Newbie) to become an Information Provider. Instead, it was more common for

a small number of readers to jump straight to this role. Within the top 25 most common transi-
tions, the only contributor role that led to a collaborator role was Low Volume Supporters

transitioning into Popular Supporters. However, it was actually more common for Popular

Fig 7. Model showing the top 25 transitions of users role transitions. Demonstrating the linear and non-linear pathways users took.

https://doi.org/10.1371/journal.pone.0216932.g007
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Supporters to be demoted back to Low Volume Supporters. Out of all transitions made, 0.9%

of transitions progressed from Popular Supporters to the leadership role of the Elite. In terms

of the top 25 most common transitions, the most common path to the Elite is: Reader! Low

Volume Supporter! Popular Supporter! Elite. While, there were other pathways identi-

fied, these were exceptionally rare routes that users followed in comparison.

General discussion

We presented two studies that reveal insightful information about the composition and

dynamics of an online community based on meta-data alone. For instance, uncovering specific

behaviors associated with particular subsets of users within a community, known as roles.

These roles can be framed within the RtLF, which helps to reveal which users are in leadership

positions and which are less engaged. The first study analyzed the meta-data from two ideolog-

ical communities (A and B). We found seven clusters via K-MEANS cluster analysis, which we

analyzed and formulated into different roles within each forum. These roles were mapped

against the RtLF, based on the key features of each role, the number of users in each role, and

the average reputation score of each role. The findings from both studies have potential to be

used to predict user role changes in future.

Further, the method is a key contribution, as it provides a way to reveal and further examine

groups of users over time, providing insight into user dynamics within various online commu-

nities. This information is useful for a variety of contexts, for instance, targeting marketing

campaigns for specific groups of users and across different contexts or identifying potential

new influencers for brands. In addition, this could be of interest to security practitioners as

this work, and our methods, may provide insight into which users may be leading and guiding

narratives, and a way to identify potential users of interest.

User role compositions

When comparing the two forums, we found similar roles, however, there were some specific

differences. For instance, the Popular Supporters in community A and B were subtly different.

Where community A’s Popular Supporters had high thanks rates, this was not as reflected in

community B. However, they were similar in all other metrics (e.g., in- and out-degree, bi-

directional neighbors). As noted in Fig 3, there are differences in the proportion of users in

each role for community A and B, where community B had a higher proportion of Low Vol-

ume Supporters, however, community A had a higher proportion of Conversationalists. These

differences were to be expected, as each online community is its own eco-system consisting of

different roles, proportions of roles, and individuals within it [32]. Further, the system itself

can impact the way in which users behave, thus influencing the expressed behaviors of each

role [55].

Once we had described and developed the roles based on features, frequency, and reputa-

tion scores, we then mapped these roles to the RtLF. Both forums had high numbers of con-

tributors, many collaborators, and few leaders. However, we were unable to capture “readers”,

who are “venturing in, reading, browsing, searching, returning”, [25], as they would not have

generated any behavioral meta-data captured via scraping. We analyzed these roles, both

mapped (to the RtLF) and unmapped, in community A over a two-year time period (Study

Two). This was to firstly provide insight into how stable these roles are over time and what this

implies about the health of an online community. Secondly, we considered how users changed

over time and which role transitions were most common. Further, this allowed us to examine

user churn, which provided further insight into the intricate social dynamic of the community.
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Interestingly, we found there was a large churn of users at each time slice [11,12]. However,

as seen in Table 7, the overall size of community A grew at each time slice. Despite this large

turnover of users over time, and the constant influx of new users or returning users from a

period of inactivity, as seen in Fig 5, the proportion of users falling into each role (mapped or

unmapped to the RtLF) was remarkably stable. This has implications for the overall health of

an online community [22], which will be discussed further in the following sections. Focusing

specifically on the user role compositions, both mapped and unmapped, based on Figs 3 to 5,

we see a calm and stable appearance of user turnover and proportions of users in each role.

However, there is a flurry of role transitions taking place beneath the surface.

The pathway to leadership

We revealed users changing roles across each time slice–rarely moving in a linear fashion

through the RtLF, but more commonly, staying in the same RtLF category, or demoting their

role. We reiterate that Figs 6 and 7 and Table 10 are based on the number of users who made

each transition over all time slices.
We analyzed every transition each user made (N = 7,712) and discovered that the majority

of transitions were users becoming inactive or users who remained inactive (40.4%). This

aligns with literature looking at user participation, motivation, and the retention of users

[2,24,25]. It is often difficult to retain users and motivate them to engage [23], which was seen

within community A, where the churn of users was high. However, we discovered that the sec-

ond most common set of transitions were new users joining the community into contributor

and collaborator positions, which aligns with our findings that despite the high churn of users,

the overall community grew in size over the two-year time period. Other relatively common

pathways include a cycle between Taciturns and Low Volume Supporters, which consists of

users who showed extremely low engagement as Taciturns and somewhat higher levels of

engagement as Low Volume Supporters (Table 4). Typically, users in these roles (as contribu-

tors more generally) either remained in a contributing role (Fig 6) or became inactive, as

shown in Fig 7. These non-linear movements are to be expected with online communities, as

reflected in the RtLF [25] and in Nielsen’s Rule of Internet engagement [26] with the vast

majority of users engaging and contributing little.

Perhaps one of our most important empirical findings relates to the rarity of users becom-

ing leaders within community A. We demonstrate that astonishingly few users did progress

linearly through the RtLF, and following this pathway to the Elite role is against the odds.

However, the exceptional users who were leaders, often stayed leaders. In contrast, contribu-

tors were far more transient in nature, shown by increased numbers transitioning to inactivity

from those roles. However, based on Fig 7, we did discover the most common pathway users

would take to become a leader:

Reader! Low Volume Supporter! Popular Supporter! Leader

Out of all transitions that users made (N = 7,712) in the two-year period, only 1.2% of tran-

sitions were from Low Volume Supporters to Popular Supporters, and 0.9% of all transitions

involved progression to Elite from Popular Supporter roles. There were other pathways users

could take to become leaders, however, they were extremely rare (and were subsequently not

captured in Fig 7). This is perhaps not surprising, as other work has shown that recruitment

and mentoring of new editors in online communities such as Wikipedia remains a challenge

[56]. Hence, we suggest there may be a similar lack of mentorship from Elite users, which con-

tributes to the few users becoming leaders in community A. However, this would need to be

investigated further using content data.
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User roles and community health

Within community A, we found that roles, both mapped and unmapped to the RtLF, remained

consistent over time. It may be that a healthy online community has a level of stability and

consistency of role distributions over time, aligning with Angeletou et al., [22]. If we consider

consistent roles alone as a sign of health within a community, we would argue that community

A is an example of a healthy community (it only closed recently due to financial reasons—sev-

eral years after the data was collected for the present research). Angeletou et al. [22] also noted

that increasing levels of “ignored” users will decrease the overall health of a community. Exam-

ples of “ignored” users in our analysis were Taciturns, due to their low engagement and overall

contribution. We found the numbers of Taciturns remained stable over time, further indicat-

ing a healthy community. We also align with Soroka and Rafaeli [24], where they propose lurk-

ing behavior is unlikely to be harmful, as these users may not have content to contribute. They

argue that enabling readership without contribution is helpful to maintaining a healthy com-

munity, as it can reduce noise and clutter across forums. If we consider that elite users are

there to guide and influence the community, too many users attempting to do this could lead

to detrimental effects on the community.

We must recognize that there are differences for what constitutes “healthy”. For instance,

the specific nature of a community, as types of roles, and the composition of those roles within

the community will naturally vary [32]. This provides a potential avenue for further research.

In the present study, we have focused on ideological communities. We anticipate there could

be differences in non-ideological communities due to the nature of the content shared or the

purpose of use as demonstrated by Chan, Hayes, and Daly [32].

Limitations

First, referring back to Table 2 and the metrics employed, it is important to understand how

these relate to behavior presented by users. While these metrics are ego-centric, some fea-

tures (e.g., structural and reciprocity) also rely on the other community members for feed-

back (e.g., thanks rate). Features like this are critically important for understanding leading

users, as we would anticipate these users to be popular and well-regarded. However, we must

note that each community has its own eco-system of roles, which will naturally have different

behavioral features [32,57], therefore, the optimal metrics to identify particular subsets of

users with particular behavioral patterns might differ from community to community. The

key limitation here is that, despite the metrics developed for this work, meta-data can only

provide a certain level of information. Analyzing the forum content data or performing a

network analysis, for example, would likely reveal further insight about the intricacies of spe-

cific online communities.

Second, we acknowledge that the overall category of “contributor” is wide in our dataset,

where we have included users with an extremely low levels of engagement (e.g., <10 posts).

This can cause difficulty with classification, as noted in Table 9, where Low Volume Supporters

were the most likely to be misclassified. However, as stated previously, these users were kept in

the dataset as we aimed to capture the entire community, especially those closer to the uncap-

tured “readers”. This is an important section of the community to include, as these may be

users that have just joined, or are close to leaving the community. We also note that extremely

low activity users could create highly sensitive metric values, which may have an impact on the

accuracy of the clustering values. However, as seen in Tables 8 and 9, where misclassification

was low, we do not see strong evidence that this was a significant issue.

Finally, the time slices used (six months) are also wide. We selected this window primarily

as we wanted to ensure that changes in behavior reflected significant role changes, rather than
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capturing temporary fluctuations of engagement. We do acknowledge, however, that some

users may have changed multiple times within the six-month time period, which were natu-

rally uncaptured here.

Future work

The present study demonstrates that we can examine user behavior to gain understanding of

how their role within an online community may change over time. This provides the basis for

future research directions. First, one might replicate this across a variety of online communi-

ties. This would offer insight into the differences between different types of online communi-

ties. This could also utilize more than just meta-data alone (e.g., content, linguistic features),

perhaps employing qualitative or ethnographic approaches to reveal other subtleties.

Second, there is work to be done regarding metric development from metadata (and other

data types). Our metrics have been based on literature [32], as well as adding some additional

features. We note that due to low activity users being of interest, there are potentially better

ways to handle measurements on various engagement metrics such that the overall sensitivity

is reduced. The meta-data we used was derived from public postings, but many other forms of

data would be available to forum administrators (e.g. profile updating, post deletion, length

and frequency of access) that would be useful in building models of user behavior.

Third, further work may consider the use of different theories to ground the modeling, for

example, the use of social identity theory to consider in- and out-group differences between

roles or communities. Although, this again, would benefit from utilizing more than just meta-

data alone.

Fourth, we acknowledge the time slices we used in this work (six months), are fairly wide.

Further work could explore different sizes of time slice and what different time slices could

offer in terms of understanding user behavior (e.g., subtle versus substantial changes in behav-

ior, temporary or sustained).

Finally, and perhaps most importantly, our empirical findings have highlighted an area of

future work relating to understanding moderation, mentoring, and other potential mecha-

nisms that could be used to foster and develop new users [56]. This could reveal ways in which

we can create the new leaders of online communities by making rare pathways to leadership

more widely known and accessible for new joiners.

Conclusions

Online communities have the power for good–to support those in need, to create a shared col-

lective consciousness, and to exchange information and ideas. However, this powerful influ-

ence can also be utilized conversely. For example, there has been a recent up rise with the

“involuntary celibate” or “incel” movement [7,8]. We also face a constant battle with radicali-

zation online [58], which remains difficult to understand and intervene. We have presented a

novel method to examine roles within an online community, which has utilized the Reader-to-

Leader Framework [25] in order to help conceptualize types of users in terms of leadership.

This approach has the potential to be highly valuable in contexts where the role evolution of

online forum users needs to be investigated. The demonstrated method can be applied to a

variety of online behavioral meta-data and used by researchers and practitioners interested in

understanding online communities from a data-driven perspective. This research also has

implications for community managers and moderators wishing to assess the health of commu-

nity by understanding role distributions and dynamics, and security analysts wanting to iden-

tify how leadership positions are occupied in malevolent online communities.
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