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Abstract: Although extreme ultraviolet lithography (EUVL) has potential to enable 5-nm half-pitch
resolution in semiconductor manufacturing, it faces a number of persistent challenges. Line-edge
roughness (LER) is one of critical issues that significantly affect critical dimension (CD) and device
performance because LER does not scale along with feature size. For LER creation and impacts, better
understanding of EUVL process mechanism and LER impacts on fin-field-effect-transistors (FinFETs)
performance is important for the development of new resist materials and transistor structure. In
this paper, for causes of LER, a modeling of EUVL processes with 5-nm pattern performance was
introduced using Monte Carlo method by describing the stochastic fluctuation of exposure due to
photon-shot noise and resist blur. LER impacts on FinFET performance were investigated using a
compact device method. Electric potential and drain current with fin-width roughness (FWR) based
on LER and line-width roughness (LWR) were fluctuated regularly and quantized as performance
degradation of FinFETs.

Keywords: lithography; lithography simulation; extreme ultraviolet; EUV; line-edge roughness; LER;
stochastic simulation; fin-field-effect-transistor; FinFET

1. Introduction

According to a scaling-down process, extreme ultraviolet lithography (EUVL) with
13.5-nm wavelength provides a solution to avoid the complex multi-patterning integra-
tion and cost [1]. Fin-field-effect-transistor (FinFET) is one of mainstream devices for the
post-planar complementary metal-oxide semiconductor (CMOS) because of its efficient
suppression of short-channel effect and leakage current [2,3]. However, for 5-nm pattern
formation, EUVL has faced many technical challenges towards this paradigm shift to its
wavelength platform [4,5]. There are well-known fundamental trade-off relationships
among resolution (R), line-edge roughness (LER), and sensitivity (S) that hamper their
simultaneous enhancement in chemically amplified resists (CARs) [6]. Hence, LER is one of
current challenges limiting EUV applications. LER affects feature size and device malfunc-
tions so significantly that LER reduction with nanometer accuracy is required [7–9]. LER
and line-width roughness (LWR) are caused by EUV stochastic events such as shot noise
of incident photons, chemical concentration shot noise, and molecule reaction-diffusion
in resists [10]. Since numbers of photons in EUVL are 14 times smaller than those of
ArF lithography, stochastic EUV photons can result in photon shot noise, which makes
poor performance in EUV resist [11,12]. In addition, EUV photons contribute to fluctua-
tion of acid generation and reaction with quenchers due to random location of PAG and
quencher [13,14]. Therefore, during EUVL processes, stochastic EUV photons initiate ran-
dom physical and chemical events in terms of multi-photon effect in frequency distribution
and cascade and cluster of correlated reactions in special distribution [15]. Phenomena
of these stochastic events are LER, LWR, and stochastic defects such as pinching and
bridges [16]. Compared to previous LER modeling of ArF resists, precise EUVL process
modeling of LER has been a hot issue [17–20]. The fin and gate critical dimension (CD)
LERs of FinFET devices can seriously degrade performance and yield [21,22]. In this sense,
it is required to understand LER creation mechanism in EUVL and FinFET performance
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degradation due to LER [23,24]. Although many studies have determined LER effects of
EUVL and FinFETs [25,26], this paper deals with LER effects of EUVL simulation parame-
ters for 5-nm pattern formation and FinFET performance with 5-nm gate length, totally
describing LER effects from EUVL processes to FinFET devices. For LER creation in EUVL
and LER impacts on FinFET performance, a LER modeling in EUVL processes and an
analytical method for FinFET degradation due to LER are described, respectively.

2. Simulation Method
2.1. LER Modeling in EUVL Processes

Figure 1 shows schematic representation of exposure process. In exposure process in
Figure 1, EUV photons are absorbed at random positions of an EUV resist due to exposure
parameters such as local light intensity related to imaging system and resist absorption.
Incident EUV light collides with an atom of an EUV resist and the atom emits photoelectrons
in arbitrary directions through ionization process [13,15]. Each photoelectron moves and
stops until its energy becomes lower than a certain threshold energy. Through collisions
between a photoelectron and an atom in resist materials, a photoelectron’s direction is
changed according to elastic scattering and inelastic scattering. Monte Carlo method can
be used to compute a possible set of scattering events for a photoelectron as it travels
inside a resist [27–29]. By repeating this process many times, a statistically valid and
detailed picture of interaction processes can be constructed. For elastic scattering between
a photoelectron (or a secondary electron (SE)) and an atom, momentum and kinetic energy
of a photoelectron (or a SE) are conserved. The scattering cross-section (σT) of the tabulated
Mott data for a low energy is

σT =
3.0× 10−18Z−1.7

E + 0.005Z1.7E0.5 + 0.0007Z2/E0.5 , (1)

where E and Z are incident energy and atomic number, respectively. For inelastic scatter-
ing between a photoelectron and an atom’s electron, this scattering not only changes a
photoelectron’s direction, but changes a photoelectron’s energy. For outer shell excitation,
Moller cross-section with energy limit is

σT =
πe4

E2

{
1
εc
− 1

1− εc
− ln

(
εc

1− εc

)}
, (2)

where εc is a coefficient of transferred minimum energy. For inner shell ionization with
binding energy, Vriens cross-section is

σT =
πe4

E2(1 + 2Ui)

{
5

3Ui
− 1− 2

3
Ui + Φ

ln Ui
1 + Ui

}
, Φ = cos

[
−
(

Ry

1 + Ui

)1/2
ln Ui

]
, (3)

where Ry and Ui are Rydberg energy and binding energy normalized by the primary
energy, respectively. A portion of the absorbed energy is transmitted to the atom’s electron,
and the atom becomes excited or ionized. Incident photoelectrons (or SEs) produce SEs
by outer shell electron excitation. Moller cross-section is used for this excitation with free
electrons [30]. CSDA (continuously slowing down approximation) model is used as an
energy loss model in Bethe equation:[

dE
ds

]
cont

=

[
dE
ds

]
Bethe
−
[

dE
ds

]
dis

,
[

dE
ds

]
Bethe

=
2πe4

E
Z ln

(
1.166E
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)
, (4)

[
dE
ds

]
dis

= πe4 N
E

[
∑ Zi

1+2Ui

{
2
3 − 3 ln 2 + 1

3 (1 + Ui)(1− 2Ui) + 3 ln(1 + Ui)− ln Ui

}
+

Z f

{
2− 3 ln 2− 1

1−εc
− 2 ln(1− εc)− ln εc

}]
, J′ = J

1+kJ/E ,
(5)

where s, J, and k are path length along the trajectory, the mean ionization potential of
materials, and a value depended on materials, respectively. After spin coating, photo-acid
generators (PAGs) is distributed at random positions uniformly inside a chemical amplified
resist (CAR). PAGs capture some of SEs and generate photoacids within SE blur range [31].
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Therefore, acid generation (AG) rate is corresponding to capture rate, which is depended
on probability of SE existence at a PAG site. As a good approximation to this result, a
point-spread function (PAG) of AG probability with electrons is suggested as

PAG(ionization) =
φpolymer

∫ ∞
0 RAGCAGwd(Det)∫ ∞
0 wt=0r2dr

, (6)

where the initial distribution function of thermalized electrons is 4πwt=0r2dr = (1/r0)exp(−r/r0)dr,
w is probability density of electrons, r0 represents the mean initial separation distance
between a thermalized electron and its parent radical cation, and φpolymer is deprotonation
efficiency of polymer radical cations [32,33]. For electron migration after thermalization,
equation of low-energy (thermalized) electrons to AGs is

∂w
∂Det

=
∂2w
∂r2 +

(
2
r
+

SN+e
4πε0εkBTr2

)
∂w
∂r
− 4πRAGCAGw , (7)

where De, ke, T, RAG, CAG, e, ε0, ε, and N+ represent diffusion constant of electrons,
Boltzmann constant, absolute temperature, effective reaction radius, concentration of AGs,
elementary electric charge, dielectric constant in vacuum, relative dielectric constant of a
resist film, and average number of positive charges, respectively.
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Figure 1. Exposure simulation of Monte Carlo method: molecular processes in a resist-substrate
system during EUV exposure. hv, Ie, E, Eth, PAG, and SE are EUV energy, ionization energy of
polymers, energy, threshold energy, photo-acid generator, and secondary electron, respectively.

For post-exposure bake (PEB) process, acid distribution (Cacid) in CAR resists catalyzes
a thermally-induced reaction with quenches:

∂Cacid
∂t

= Dacid∇2Cacid − kqCacidCq − klossCacid , (8)

∂Cq

∂t
= Dq∇2Cq − kqCacidCq , (9)

∂Cp

∂t
= −kpCacidCq , (10)

where Dacid(= k0acid exp(−Eaacid/RT)), Dq(= k0q exp(−Eaq/RT)), kq(= k0q exp(−Eaq/
RT)), kloss(= k0loss exp(−Ealoss/RT)), kp

(
= k0p exp

(
−Eap/RT

))
, Cq, Cp, Eaacid, Eaq, Eap,

R, t, and T are diffusion constant of acid, diffusion constant of base quenchers, rate
constants of neutralization, rate constant of acid loss, rate constant of deprotection, con-
centration of base quenchers, concentration of protected unit, activation energy of acids,
activation energy of quenches, activation energy of deprotection, ideal gas constant, time,
and temperature, respectively [13,33]. For PEB process, equations (8–10) of acid and base
quencher diffusion, deprotection reaction, and neutralization can reproduce experimental
results [34,35]. When fLER is proportionality constant and m is normalized protected unit
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concentration, LER (≈ fLER/(dm/dx)) is proportional to protected unit fluctuation [36,37].
For LER reduction, enhancement of chemical gradient (dm/dx) at boundaries between
lines and spaces can be increased through absorption coefficient increase of resist poly-
mer, quantum efficiency of acid generation, effective reaction radius for deprotection, and
increase of PAG concentration.

A stochastic model proves useful for prediction of LER without quencher and photon
shot noise:

LER ∝
1

1− e−π2σ2
D/2L2

√√√√1−
(
KamptPEB

)
〈m∗〉 ln〈m∗〉

(√
2a

σD

)2
〈n0−block〉
〈n0−PAG〉

, (11)

where Kamp is amplification rate constant, tPEB is PEB time, 〈m∗〉 is means value of blocked
polymer concentration after PEB, σD/a is a ratio of acid diffusion length to capture range
of deblocking reaction, 〈n0−PAG〉 is mean initial number of PAGs in control volume at
exposure start, and 〈n0−blocked〉 is mean initial number of blocked polymer groups in
volume before PEB [38].

2.2. LER and LWR Modeling of FinFET

During lithography processes, LER and LWR are factors of EUV stochastic events such
as shot noise of incident photons. TCAD has been used to apply LER and LWR to device
performance and I-V characteristics [39–43]. Figure 2 describes a FinFET structure. For
electric potentials, governing equations of short-channel FinFET in a subthreshold region
(low-gate voltage) are

∂2 ϕ0(x, y)
∂x2 +

∂2 ϕ0(x, y)
∂y2 =

qNa

εsi
,

∂2 ϕ1(x, y)
∂x2 +

∂2 ϕ1(x, y)
∂y2 = 0 , (12)

where ϕ0(or ϕ1), Na, q, and εsi are zeroth (or first) order of electric potential, doping
concentration, electric charge, and silicon permittivity, respectively [44,45]. Using boundary
conditions, electric potential (ϕ0) without LER can be approximated as a parabolic form:

ϕ0 = C0(y) + C1x + C2x2 , (13)

C0(y) = VSL +
(Vbi −VSL) sin h

(
L−y

λ

)
sin h

(
L
λ

) +
(Vbi + Vds −VSL) sin h

( y
λ

)
sin h

(
L
λ

) , (14)

C1 = 0 , C2 =
Vg −Vf b − C0

tiεsitsi
εi

+
t2
si
4

, (15)

where λ
(
=
√

1/2
(
tiεsitsi/εi + t2

si/4
))

, Vbi
(
= Eg/(2q) + kT/q ln(Na/ni)

)
, VSL(= Vg −Vf b

−(qNa/εsi)λ
2), Vf b, Eg, ni, L, ti, tsi, εi, Vds, k, and T are a parameter, built-in potential at

source end, center potential for a long-channel transistor, flat-band voltage, silicon bandgap
energy, intrinsic carrier concentration, channel length, oxide thickness, fin width, oxide
permittivity, drain-source voltage, Boltzmann constant, and temperature, respectively.
Electric potential (ϕ1) with LER can be approximated as a parabolic form:

ϕ1 = ∑∞
k

[
ak sin h

(
πk
L

(
x− tsi

2

))
+ bk sin h

(
πk
L

(
x +

tsi
2

))]
sin
(
πk
L

y
)

, (16)

ak = −
2
L

∫ L

0
t2C2tsi sin

(
πk
L

y
)

/ sin h
(
πktsi

L

)
dy , (17)

bk = −
2
L

∫ L

0
t1C2tsi sin

(
πk
L

y
)

/ sin h
(
πktsi

L

)
dy , (18)

where t1 and t2 are functions of fin-width roughness (FWR). Drain current (Ids) can be
described as
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Idsdy = µqWQinvdV = µqW
[

n2
i

Na
e−

q
kT V ∫ tsi/2+t1

−tsi/2+t2
e

q
kT (ϕ−V)dx

]
dV ,

≈ µqW n2
i

Na
e−

q
kT V ∫ tsi/2

−tsi/2 e
q

kT ϕ0(1 + ∆)dxdV ,
(19)

where ∆ = (q/(kT))ϕ1 +(1/2)(qϕ1/(kT))2 + · · · , µ is low-field and temperature-dependent
mobility, Qinv is inversion charge density, W is total effective fin-width, and V is quansi-
Fermi potential [46,47]. Drain currents Ids0 (and ∆Ids) without (and with) LER are, respectively,

Ids0 =
qµW kT

q
n2

i
Na

[
1− exp

(
− Vds

kT/q

)]
∫ L

0 dy/
∫ tsi/2
−tsi/2 e

q
kT ϕ0 dx

, ∆Ids =
qµW kT

q
n2

i
Na

[
1− exp

(
− Vds

kT/q

)]
∫ L

0 dy/
∫ tsi/2
−tsi/2 ∆e

q
kT ϕ0 dx

. (20)
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Figure 2. Schematic description of a 3D FinFET device.

These theoretical equations were verified with experimental results and simulation
results of commercial TCADs in [46,47].

3. Results and Discussion

Figure 3 shows Monte Carlo simulations of a photoelectron and secondary electron
trajectories by using a hybrid model with Equations (1)–(5) through elastic and inelastic
scatterings in Figure 1. Simulation conditions were wavelength (λ = 13.5-nm), incidence
angle (θ = 6 deg.), numerical aperture (NA = 0.33), a dipole illumination, resist thickness
(20-nm), incident dose of 15 mJ/cm2 (10.2 photons/nm2), a PHS (C8H8O)-CAR, and
threshold energy (Eth = 21 eV).
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Figure 4a shows AG probability at EUV absorption points in Equation (6). Monte
Carlo method tracked electron trajectories generated by 11 EUV photons. Figure 4b shows
numerical simulation of electron migration in Equation (7) by using the forward time and
centered space (FTCS):

wn+1
i,j − wn

i,j

∆Det
=

(
wn

i+1,j − 2wn
i,j + wn

i−1,j

∆r2

)
+

(
2

i∆r + ri
+

SN+e2

4πε0kBT(i∆r + ri)
2

)(
wn

i+1,j − wn
i,j

∆r

)
− 4πRAGCAGwn

j . (21)
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Figure 4. Simulation results: (a) probability of acid generation for CAR by Monte Carlo method; (b) migration of electron
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For larger simulation time, probability density of electrons moved to the left more
in Figure 4a. Simulation conditions were average number of positive charges (N+ = 4.2),
shielding effect (S = 0.67), effective reaction radius (RAG = 2.4-nm), AGs concentration (CAG
= 10 wt%), relative dielectric constant of resist film (ε = 4), mean initial separation distance
(r0 = 4-nm), kBT = 4.11 × 10−21 J, and diffusion constant of electrons (De = 1.0 nm2 s−1).
Therefore, LER formation was caused by initial acid distribution due to fluctuation of acid
concentration at image boundary.

Figure 5 shows numerical simulation of a negative CAR without quenchers in Equa-
tions (8) and (10) by using FTCS:

Cacid
n+1
i,j − Cacid

n
i,j

∆t
= −klossCacid

n
j + Dacid

(
Cacid

n
i+1,j − 2Cacid

n
i,j + Cacid

n
i−1,j

∆x2 +
Cacid

n
i,j+1 − 2Cacid

n
i,j + Cacid

n
i,j−1

∆y2

)
, (22)

[
Cp
]
=
[
Cp
]

t=0e−kpCacid . (23)

For PEB process, concentration of cross-linked polymer was diffused more due to a
larger diffusion length in Figure 5. Simulation conditions were rate constant of deprotection
(kp = 2.5) and rate constant of acid loss (kloss = 2.3× 105).

Figure 6a shows LER (≈ fLER/(dm/dx)) behaviors due to exposure dose. As expo-
sure dose increased, LER dropped down and then became saturated because exposure fluc-
tuation decreased fast. LER conditions were proportionality constant ( fLER = 0.3), diffusion
constant of acid (Dacid = 1 nm2 s−1), and diffusion constant of quencher (Dq = 1 nm2 s−1).
Figure 6b shows trend of LER versus acid diffusion with different values of deprotection
capture range, a = 1.0 and 1.5-nm for 5-nm feature. In each case, there was a diffusion length
that minimized LER. Below the optimum diffusion length, increasing diffusion improved
LER because LER was limited by statistical variance of blocked polymer concentration.
However, above the optimum diffusion length, it further increase degraded gradient and
worsened the LER, because LER was limited by gradient.
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Figure 6. LER simulation results: (a) LER dependency of exposure dose; (b) prediction of LER trends for 5-nm patterns using
two values of the deblocking reaction capture range, a = 1.0-nm and 1.5-nm in 2-Dimension and 3-Dimension calculations.

For fluctuation of electric potentials due to FWR four-types in Figure 7a using
Equations (16)–(18), although fluctuation ranges were different, graphs of electric poten-
tials ϕ1(0, y) at fat-fin type, thin-fin type, big-source type, and big-drain type were right
shift, left shift, down shift, and upper shift, respectively. Figure 7b shows electric potentials
ϕ1(x, L/2) of x-distance at 5-nm gate length for a FinFET with FWRs. Sequence of lager
fluctuations of electric potential ϕ1(x, L/2) with x-distance along fin width was big-drain
type < fat-fin type = thin-fin type < big-source type.

For gate length L = 5-nm, Figure 8 shows absolute drain currents |∆Ids| with FWRs
due to gate voltages (Vg) using Equation (20). Fluctuations of absolute drain currents
(|∆Ids|) with fat-fin, thin-fin, and big-drain FWRs shifted righter, respectively. However,
values of absolute drain currents (|∆Ids|) increased in terms of larger gate length. Larger
currents in Figure 8 can be considered as limit of simple FinFET performance with gate
lengths L = 5-nm. Simulation conditions were drain-source voltage (Vds = 0.05 V), intrin-
sic carrier concentration (ni = 1.5 × 1010 cm−3), doping concentration (Na = 1017 cm−3),
channel length (L = 5-nm), oxide thickness (ti = 0.72-nm), fin width (tsi = 5-nm), oxide
permittivity (εi = 3.9ε0), permittivity (ε0 = 8.854 × 10−12 C2N−1m−2), Boltzmann con-
stant and temperature (kT = 0.026 eV), electric charge (q = 1.6 × 10−19 C), gate voltages
(Vg = 0.2 V), total effective fin-width (W = 10-nm), low-field and temperature-dependent
mobility (µ = 100 cm2V−1s−1), and amplitude of function FWRs (A = 1.0 × 10−9 m).



Micromachines 2021, 12, 1493 8 of 11

Micromachines 2021, 12, x 8 of 12 
 

 

 
Figure 6. LER simulation results: (a) LER dependency of exposure dose; (b) prediction of LER trends for 5-nm patterns 
using two values of the deblocking reaction capture range, 𝑎 = 1.0-nm and 1.5-nm in 2-Dimension and 3-Dimension cal-
culations. 

For fluctuation of electric potentials due to FWR four-types in Figure 7a using Equa-
tions (16)–(18), although fluctuation ranges were different, graphs of electric potentials 𝜑 0, 𝑦  at fat-fin type, thin-fin type, big-source type, and big-drain type were right shift, 
left shift, down shift, and upper shift, respectively. Figure 7b shows electric potentials 𝜑 𝑥, 𝐿 2⁄  of x-distance at 5-nm gate length for a FinFET with FWRs. Sequence of lager 
fluctuations of electric potential 𝜑 𝑥, 𝐿 2⁄  with x-distance along fin width was big-drain 
type < fat-fin type = thin-fin type < big-source type. 

 
Figure 7. Analytical results: (a) electric potentials ϕ1(0, y) for a FinFET with FWRs; (b) electric potentials 𝜑 𝑥, 𝐿 2⁄  of x-
distance for a FinFET with FWRs. FWR functions are 𝑡 = 𝐴𝑠𝑖𝑛 2𝜋𝑦 𝐿⁄  and 𝑡 = −𝐴𝑠𝑖𝑛 2𝜋𝑦 𝐿⁄  for fat-fin type, 𝑡 =−𝐴𝑠𝑖𝑛 2𝜋𝑦 𝐿⁄  and 𝑡 = 𝐴𝑠𝑖𝑛 2𝜋𝑦 𝐿⁄  for thin-fin type, 𝑡 = 𝐴𝑐𝑜𝑠 2𝜋𝑦 𝐿⁄  and 𝑡 = −𝐴𝑐𝑜𝑠 2𝜋𝑦 𝐿⁄  for big-source type, 
and 𝑡 = −𝐴𝑐𝑜𝑠 2𝜋𝑦 𝐿⁄  and 𝑡 = 𝐴𝑐𝑜𝑠 2𝜋𝑦 𝐿⁄  for big-drain typ. Y-direction (or x-direction) means direction from up-
per source to bottom drain through gate length (or from left gate to right gate through fin width) in Figure 2. 

For gate length 𝐿 = 5-nm, Figure 8 shows absolute drain currents |∆𝐼 | with FWRs 
due to gate voltages (𝑉 ) using Equation (20). Fluctuations of absolute drain currents 
(|∆𝐼 |) with fat-fin, thin-fin, and big-drain FWRs shifted righter, respectively. However, 
values of absolute drain currents (|∆𝐼 |) increased in terms of larger gate length. Larger 
currents in Figure 8 can be considered as limit of simple FinFET performance with gate 
lengths 𝐿 = 5-nm. Simulation conditions were drain-source voltage (𝑉  = 0.05 V), intrin-
sic carrier concentration (𝑛  = 1.5 × 1010 cm−3), doping concentration (𝑁  = 1017 cm−3), chan-
nel length (𝐿 = 5-nm), oxide thickness (𝑡  = 0.72-nm), fin width (𝑡  = 5-nm), oxide permit-
tivity (𝜀  = 3.9𝜀 ), permittivity (𝜀  = 8.854 × 10−12 C2N−1m−2), Boltzmann constant and tem-
perature (𝑘𝑇 = 0.026 eV), electric charge (𝑞 = 1.6 × 10−19 C), gate voltages (𝑉  = 0.2 V), total 

Figure 7. Analytical results: (a) electric potentials ϕ1(0, y) for a FinFET with FWRs; (b) electric potentials ϕ1(x, L/2)
of x-distance for a FinFET with FWRs. FWR functions are t1 = A sin(2πy/L) and t2 = −A sin(2πy/L) for fat-fin type,
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upper source to bottom drain through gate length (or from left gate to right gate through fin width) in Figure 2.
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A neural network such as Taguchi method is a powerful method for integration of
design of experiments (DOE) with parametric optimization of processes, yielding desired
results by using an orthogonal array experiments that provide much-reduced variance for
experiments. Hence, this method is a simple and efficient method to find best range of
designs for quality, performance, and computational cost by using a statistical measure of
performance called signal-to-noise ratio (S/N). S/N ratio is defined as mean (signal) ratio
to standard deviation (noise). S/N ratios are lower-the-better (LB), higher-the-better (HB),
and nominal-the best (NB). S/N ratio for LER is LB (lower-the-better) criterion:

S/N = −10 log
(

1
n ∑ y2

)
, (24)

where y is observed data and n is number of observations. Parameter level combination
that maximizes appropriate S/N ratio is optimal setting [48,49].

Figure 9a shows sensitivity of EUVL parameters on LER by using Taguchi method in
minitabTM, a commercial tool. According to a neural method, PEB temperature (TPEB) and
PEB time (tPEB) are dominant factors. This means that PEB process is the most dominant
process for LER in EUVL processes. Thus, controlling PEB time is effective in managing
LER in experimental processes. Figure 9b shows sensitivity of FinFET parameters on
electric potentials and current drains with FWR. According to S/N effects, gate voltage
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(Vg) and channel length (L) are more dominant factors for electric potential ϕ1(0, L/2)
and drain current ∆Ids with FWR. Sensitivity of FWR amplitude on electric potentials and
drain currents is similar to sensitivity of oxide thickness. When particle dimension of
semiconductors approached near to or below Bohr exciton radius of bulk semiconductor,
current performance can be affected by quantum confinement effects [50]. Quantum
confinement effects should be considered when modelling of 5-nm FinFET devices.
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4. Conclusions

An EUVL modeling and a compact device method described LER impacts on 5-nm
patterns and FinFET performance with 5-nm gate length, respectively. For EUVL processes,
a Monte-Carlo method and a point-spread function were used for scattering events of
EUV photons and acid distribution of a CAR, respectively. This simulator successfully
performed LER for 5-nm patterns. According to a compact device method, for y-direction
along the gate length, electric potentials of 5-nm gate length with fat-fin, thin-fin, big-source,
and big-drain FWRs were right shift, left shift, down shift, and upper shift, respectively.
For x-direction along fin width due to gate length, sequence of lager fluctuations in electric
potentials was big-drain type < fat-fin type = thin-fin type < big-source type. For drain
currents with FWRs due to gate voltages, absolute drain currents with fat-fin, thin-fin,
and big-drain FWRs shifted righter, respectively. However, larger currents can be caused
by limit of the simple FinFET performance. According to a neural network for LER,
PEB temperature and PEB time are dominant factors. Gate voltage and channel length
are dominant for sensitivity of electric potential and drain current in a FinFET device
with FWRs. Therefore, for reduction of LER and FWR effects, values of those dominant
parameters should be reduced.
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