
Ansari et al. BMC Medical Imaging           (2022) 22:97  
https://doi.org/10.1186/s12880-022-00825-2

RESEARCH

Practical utility of liver segmentation 
methods in clinical surgeries and interventions
Mohammed Yusuf Ansari1, Alhusain Abdalla3, Mohammed Yaqoob Ansari2, Mohammed Ishaq Ansari2, 
Byanne Malluhi2, Snigdha Mohanty4, Subhashree Mishra4, Sudhansu Sekhar Singh4, Julien Abinahed1, 
Abdulla Al‑Ansari1, Shidin Balakrishnan1 and Sarada Prasad Dakua1* 

Abstract 

Clinical imaging (e.g., magnetic resonance imaging and computed tomography) is a crucial adjunct for clinicians, 
aiding in the diagnosis of diseases and planning of appropriate interventions. This is especially true in malignant 
conditions such as hepatocellular carcinoma (HCC), where image segmentation (such as accurate delineation of liver 
and tumor) is the preliminary step taken by the clinicians to optimize diagnosis, staging, and treatment planning 
and intervention (e.g., transplantation, surgical resection, radiotherapy, PVE, embolization, etc). Thus, segmentation 
methods could potentially impact the diagnosis and treatment outcomes. This paper comprehensively reviews the 
literature (during the year 2012–2021) for relevant segmentation methods and proposes a broad categorization based 
on their clinical utility (i.e., surgical and radiological interventions) in HCC. The categorization is based on the param‑
eters such as precision, accuracy, and automation.
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Introduction
The World Health Organization (WHO) has reported 
Hepatocellular Carcinoma (HCC) as the leading cause 
of cancer deaths worldwide. In 2020, liver cancer has 
resulted in 830,000 deaths, and HCC has accounted for 
about 80% of primary liver cancers [1]. Surgeons, radiolo-
gists, and oncologists study liver physiology, pathology 
and morphology using multiple tools to evaluate the dis-
ease state. For example, imaging modalities such as CT/
MRI images are utilized for computer-aided diagnoses 
(CAD) to evaluate pathologic liver conditions. Segmen-
tation of CT/MRI liver images greatly augment clinical 
decision support by playing an essential role in existing 
CAD systems. They enable the surgeons to identify the 
lesions that have even similar gray-level intensities as 

the liver, and help them devise case-appropriate treat-
ment pathways. Precision and reliability of segmentation 
methods are important for obtaining clinically relevant 
boundary and volumetric assessments in staging of 
liver tumors (e.g., Response Evaluation Criteria in Solid 
Tumor (RECIST) protocol) [2].

Accurate delineation of liver and tumor helps in appro-
priate planning for HCC treatment [3, 4]. Thus, liver 
and tumor segmentation methods play a critical role in 
treatment approaches such as Radio-frequency Ablation 
(RFA), Percutaneous Ethanol Injection (PEI), Selective 
Radiation Therapy (SIRT), Transcatheter Arterial Chem-
oembolization (TACE), and the use of targeted agents 
[5]. Liver and tumor segmentation are also a prerequisite 
for surgical resection [6]. Segmentation is also crucial in 
post-interventional tracking of ablated/resected tissues of 
the liver; it also ensures appropriate negative tissue mar-
gins, allowing the clinician to evaluate the efficacy and 
success of the procedure. Liver and tumor segmentation 
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thus play an important role in the diagnosis, treatment, 
and follow-up of HCC patients [5].

The categorization of segmentation methods has been 
often subjective; they are generally classified based on 
their methodology or extent of human intervention. 
Methodology based categorizations include model-based 
(e.g., active contours [7], statistical shape models [8], and 
graph cuts [9]), or intensity-based (e.g., region grow-
ing [10]) approaches. Model-based approaches tend to 
attain better segmentation performance than intensity-
based methods due to their accurate statistical and math-
ematical modeling for capturing the region of interest. 
However, model-based approaches may require param-
eter tuning and initialization, resulting in high computa-
tional time. Segmentation methods can also be classified 
as semi-automatic or automatic based on the extent 
of human intervention. The semi-automatic methods 
require the surgeon’s assistance, thereby providing more 
control to the surgeons during the procedure. On the 
other hand, the automatic methods have minimal user 
errors due to a lack of external interventions. However, 
the automatic segmentation methods are biased towards 
the statistical distribution of the training data. Recently, 
deep learning-based (i.e., model-based) methods have 
gained popularity due to advances in accuracy, robust-
ness, and generalization provided by the neural networks 
[11–20].

Differences in liver morphologies and pathologies 
between people result in varying liver volumes and 
shapes in CT/MR imaging, thereby adding complexity 
to the development of accurate liver and tumor segmen-
tation methods. Furthermore, usage of contrast media 
injections increases the complexity of the segmentation 
process, because it alters the grey level values of the liver, 

making its intensity similar to neighboring tissues/organs 
such as the stomach, spleen, and abdominal wall [21]. 
Figure 1 shows the challenge faced by the segmentation 
algorithms due to ambiguous anatomical liver bounda-
ries. Liver lesion segmentation is also challenging due to 
variable contrast levels (i.e., hyper-/hypo-intense tumors) 
and broad-spectrum abnormalities (inconsistent size and 
shape of lesions) [5].

Thus, in order to suggest utility within surgical hepa-
tobiliary interventions, it would be useful to first com-
pare and categorize different segmentation methods with 
respect to their accuracy, extent of automation, and seg-
mentation performance. These metrics are expected to 
vary based on liver pathology and morphology, as well 
the staging and spread of malignancies such as HCC. 
Some efforts have already been made in this regard, for 
instance, Bilic et  al. [5] assess over 24 state-of-the-art 
liver and tumor segmentation methods and conclude that 
a single segmentation algorithm might not always be the 
best fit for segmenting the liver and its tumors.

In this paper, we propose a categorization schema of 
segmentation methods with respect to their utility in 
diagnosing HCC and planning hepatobiliary surgical 
interventions. Specifically, we consider suggesting seg-
mentation methods for the outcomes of an early-stage 
HCC treatment protocol (i.e., BCLC). The diagnosis of 
HCC is a complex procedure that may be impacted by 
existing liver morphology (due to diseases such as liver 
cirrhosis) [22]) as well as tumor pathology (size [23], 
intensity [24], malignant or benign nature [25]). There 
have been extensive publications in the literature, which 
classify and detect tumors [26–28]. In this work, we cat-
egorize the existing liver and tumor segmentation meth-
ods as per their suitability for appropriate therapeutic 

Fig. 1 Examples of challenges in liver segmentation: a ambiguous boundary between liver and stomach, b ambiguous boundary between liver 
and heart, c similar intensity of liver and tumor



Page 3 of 17Ansari et al. BMC Medical Imaging           (2022) 22:97  

pathways. The scope of the paper is to propose a catego-
rization schema that could serve as a knowledge base for 
the treating physician (surgeon/radiologist) for expe-
diting their segmentation tool selection from existing 
choices. The primary focus of our paper is on segmenta-
tion methods of the liver and tumor. In order to accom-
plish this, We have extensively reviewed the literature 
(surgical and nonsurgical interventions for HCC treat-
ment) and categorized them based on some pre-defined 
critical parameters such as accuracy, automation, and 
precision.

This paper is structured as follows; Section 2 provides 
an overview of the liver and tumor segmentation meth-
ods. Section 3 and 4 present the segmentation methods 
for surgical and radiological interventions, respectively. 
Section 5 discusses the technical and clinical challenges 
facing the segmentation algorithms and treatment of 
HCC. Section 6 concludes the paper and provides criti-
cal future directions related to the liver and lesion 
segmentation.

Literature review
Liver segmentation in CT and MRI scans is challenging 
due to variability in liver dimensions and comparable 
gray-level intensity of its neighboring organs (e.g., heart 
and kidney). Furthermore, the blurry anatomical bound-
aries, poor contrast of the medical images, partial volume 
effects resulting from patient movement, spatial averag-
ing, and reconstruction artifacts make the liver segmen-
tation daunting. Figure  2 describes the application of 
segmentation for the other parts of liver.

Generally, the conventional image segmentation 
methods are either model-based (e.g., active contours, 

and snake algorithms) [29–33] or intensity-based (e.g., 
thresholding). Some algorithms utilize primitive image 
features, e.g., pixels intensities in region-growing/thresh-
olding based approaches [30, 34–36]. Fuzzy segmentation 
methods have also been utilized for multi-channel image 
segmentation and extended for single-channel images 
[37, 38]. Zhang et  al. [8], and Nuzillard et  al. [39] have 
shown that model-based statistical approaches achieve 
expected results relative to the conventional segmenta-
tion methods based on image intensities. Mahr et al. [40] 
evaluate several segmentation methods and conclude 
that model-based methods are the potential futures for 
liver segmentation. However, the statistical models are 
limited by constraints and require additional parameter 
tuning and initialization, resulting in high computational 
time. If the models are evaluated without the constraints, 
they have the potential to misclassify or under-segment 
the region of interests.

As discussed earlier, there is also a different categoriza-
tion that is based on the extent of human intervention; 
some of them are automatic [41–48] that do not require 
human intervention for the generation of segmentation 
masks and some are semi-automatic requiring human 
assistance, say for seed selection or segmentation mask 
refinement [49–53]. Linguraru et al. [42] suggest an auto-
matic segmentation approach for liver segmentation 
based on an affine invariant shape formulation. The paper 
makes a point-to-point comparison of various 3D surface 
features in the affine parameter space. Another automatic 
method proposed by Seo et al. [54] follows a multi-stage 
approach by utilizing an optimal threshold value to seg-
ment liver, hepatic vessels, and tumors sequentially. 
Chartrand et  al. [49] introduce a semi-automatic liver 
segmentation technique that generates an approximate 
liver model and deforms it by using a Laplacian mesh 
optimization to obtain accurate liver segmentation. Peng 
et al. [52] utilize semi-automatic level sets that integrate 
the likelihood energy and anatomical boundary infor-
mation to segment the liver. Zhang et  al. [50] propose 
a semi-automatic method based on Couinaud’s theory 
to segment the liver with varying clinical conditions. 
Zhao et al. [55] report a semi-automatic region-growing 
method that avoids over-predictions of the surrounding 
tissues and organs using shape constraints. The primary 
shortcoming of semi-automatic implementations is user 
intervention that interrupts the segmentation process 
and results in subjective outcomes. From this stand-
point, it is essential to note that automated segmenta-
tion methods are preferred in time-constrained clinical 
applications.

Segmentation of vessels, tumors, and bile duct also play 
an important in the diagnosis, treatment, and post-treat-
ment evaluation of HCC [56, 57]. These liver components 

Fig. 2 Applications of segmentation methods for liver diseases
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are relatively minute, thus their segmentation is cer-
tainly challenging. In addition, artifacts, poor contrast, 
and distortions in the standard image at the native scale/
resolution increase the segmentation complexity. Specific 
denoising and image enhancement methods improve the 
images overpowering the high noise levels and artifacts 
(e.g., Wavelet and Ridgelet transform). These methods 
transform the image to a different domain in order to 
segregate the image noise [40, 58]. Shang et al. [48] pro-
pose an active contour-based method that uses a Gauss-
ian mixture model to segment major liver vessels. Then, a 
vascular vector field centerline segments thin vessels with 
lower visibility. Kirbas et al. [59] present a comprehensive 
review to understand the conventional vessel segmenta-
tion algorithms. Wang et al. [60] suggest a model-based 
algorithm to detect and segment bile duct carcinoma. 
Similar model-based approaches have been proposed for 
detecting and segmenting liver malignancies (e.g., HCC) 
[42, 43].

In recent years, machine learning and deep learning 
have vigorously gained popularity in medical image seg-
mentation. Specifically, the U-net architecture, proposed 
for biomedical image segmentation, has been modified 
for the segmentation of organs in CT/MRI images [61]. 
Although the deep learning algorithms provide accept-
able reliability and accurate results, they require large 
datasets and dedicated hardware (i.e., GPU). The chal-
lenges related to limited data and computation cost have 
been mitigated using data augmentation and efficient 
network layers.

Alexey et al. [16] present a hybrid convolutional LSTM 
architecture that merges time distributed convolutions, 
bi-directional C-LSTM blocks, and pooling operations 
to work with partial input volumes. The resultant hybrid 
network is competitive in terms of computational power, 
memory consumption, and inference times for liver seg-
mentation. Kavur et al. [12] perform an empirical study 
to evaluate the accuracy and repeatability of twelve 
semi-automatic and automatic methods. The authors 
have exhaustively evaluated the methods with segmen-
tation metrics (e.g., VOE, average symmetrical surface 
distances, etc.) and compared their results with slice-
by-slice evaluations and a scoring system. The results 
highlight that the automatic deep learning methods 
outperform the conventional semi-automatic methods 
on all segmentation metrics. Isensee [13] propose a neu-
ral network-based segmentation framework (nnU-Net) 
that automatically configures preprocessing, network 
architecture, training, and post-processing for biomedi-
cal image segmentation. The results indicate that the 
framework achieves state-of-the-art accuracy on many 
image segmentation tasks. Furthermore, the nnU-Net 
framework provides more robust baselines for abdominal 

organs and sub-structures (e.g., liver, tumor, and ves-
sels). Following the nnU-Net, researchers have organized 
challenges that improve the practicality and usability of 
the segmentation methods. FLARE 211 encourages the 
development of abdominal organ segmentation archi-
tectures for CT scans that can be deployed in memory-
limited and time-constrained environments. Zhang et al. 
[14] introduce an efficient context-aware architecture 
for meeting the objectives of the FLARE 21 challenge, 
thereby maximizing segmentation accuracy while mini-
mizing inference time and GPU memory consumption. 
Complementary to FLARE 21, the CHAOS [15] chal-
lenge promotes deep learning architectures that general-
ize well for abdominal organs (e.g., liver) across imaging 
modalities (i.e., CT and MRI). Conze et  al. [62] suggest 
a conditional generative adversarial network with a par-
tially pre-trained generator to achieve high segmentation 
accuracy across CT and MRI imaging modalities in the 
CHAOS challenge. Organ-focused challenges such as 
KiTS2 have been organized to overcome the pathologi-
cal and imaging modality constraints associated with an 
organ (e.g., kidney). Chen et  al. achieve high accuracy 
in KiTS 21 by employing a coarse to fine segmentation 
approach inspired by the nnU-Net framework with the 
surface loss function to maximize area overlap and mini-
mize surface discrepancies. Altogether, there has been a 
rapid development of neural network-based solutions for 
abdominal organ segmentation. In this paper, we aim to 
suggest a few of the robust liver and tumor segmentation 
methods to assist in the outcomes (e.g., transplant, resec-
tion, and ablation) of the clinical protocols for HCC (e.g., 
Barcelona staging classification). Table 1 provides a sum-
mary of community-organized challenges and some of 
their publications.

Segmentation for surgical intervention
HCC prognosis is dependant on tumor stage as well as 
residual hepatic dysfunction due to cirrhosis. Extent of 
symptomatic presentation and comorbidities also con-
tribute to prognosis. Various HCC staging systems are 
used to clinically guide HCC treatment, such as Okuda 
system, Tumor, Node, Metastasis (TNM) staging, Can-
cer of the Liver Italian Program (CLIP) score, Barcelona 
staging classification (BCLC), Albumin-Bilirubin (ALBI) 
score, etc. [64–68]. Among these staging systems, BCLC 
system is preferably used by clinicians due to its holistic 
approach, as it accounts for the extent of hepatic lesion, 
vascular invasion, hepatic function status, and spread 
outside the liver [68]. Furthermore, several studies have 

1 https:// flare. grand- chall enge. org/.
2 https:// kits21. kits- chall enge. org/.

https://flare.grand-challenge.org/
https://kits21.kits-challenge.org/
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also reported that the BCLC system outperforms other 
systems in predicting HCC prognosis due to a more 
holistic tumor staging [69, 70]. Thus, using BCLC, clini-
cians are likely to decide the most appropriate therapeu-
tic intervention for patients suffering from HCC. Figure 3 
showcases the staging and treatment recommendations 
according to the BCLC criteria. Studies have shown 
that patients diagnosed with large multifocal tumors or 
advanced stage HCC are less likely to benefit from trans-
plantation, liver resection, and ablation therapy [71–74]. 
Nevertheless, the patients diagnosed with the early or 
initial stage of HCC with no liver diseases can be treated 
by surgical liver resection [75]. Figure 4 summarizes the 
role of segmentation and volumetry in surgical and radi-
ological interventions of the liver.

Transplant
A liver transplant is recommended for treating patients 
with very early stages of HCC and increased portal 
pressure or bilirubin levels 3. However, clinicians need 
to ensure that the transplanted liver is well matched as 

this may impact the functional capabilities of the liver. 
In liver transplant surgeries, accurate segmentation and 
calculation of liver volume are critical, as the success 
of the donor and recipient operations depends heavily 
on the graft size [76]. The accepted standard for liver 
segmentation and volume calculation is manual deline-
ation, which requires a highly experienced surgeon to 
manually trace the boundaries of the liver on CT/MRI 
images. However, manual tracing of organs is time-con-
suming and idiosyncratic. Therefore, reliable and auto-
mated segmentation methods with fast inference times 
can reduce the complexity of the liver transplantation 
procedure. It has been shown that structure-based, 
machine learning, and deep learning methods are suita-
ble for liver delineation and volume estimation because 
of their robustness and ability to achieve high segmen-
tation accuracy [77, 78]. These methods learn to iden-
tify variations of the liver shapes that may be missed 
by conventional segmentation algorithms, allowing for 
robust and consistent boundary delineation and vol-
ume calculation.

Table 1 Recent biomedical segmentation challenges and some of their publications

Challenge Reference Dataset Method Performance (best results)

CHAOS Conze et al. [62] 80 patients (40 CT, 40 MRI scans) Conditional generative adversarial 
network with a partially pre‑trained 
generator

Dice: 97.95 ± 0.27
ASSD: 0.76 ± 0.16  (performance of 
cGv16pUNet1‑1)

FLARE Zhang et al. [14] 511 CT scans and annotations 
for 4 abdominal organs

Context‑aware efficient encoder‑
decoder model with anisotropic pyramid 
pooling

Dice: 96.5 ± 6.1
NSD: 87.8 ± 11.2 (performance of effi‑
cientSegNet)

KiTS Chen et al. [63] 300 CT scans nnU‑Net‑based coarse‑to‑fine segmenta‑
tion framework

Dice: 90.99
NSD: 83.48

Fig. 3 Staging classification and treatment algorithm of very early (0) and early (A) stage HCC based on BCLC criteria
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Liver segmentation
Liver segmentation in 3-D medical scans is a crucial 
prerequisite for the calculation of liver volume and 
liver/tumor ratio (i.e., tumor burden) [84, 85]. Liver 
segmentation methods with high precision and accu-
racy (comparable to manual delineation) are highly 
desirable in clinical workflows. As discussed earlier, 
the deep learning-based approaches have recently pro-
vided robust and accurate liver segmentation methods 
that may assist in liver transplantation. Alirr et al. [81] 
employ a region-based level set function with convolu-
tional networks for liver and tumor segmentation. The 
FCN architecture has been tested on the IRCAD and 
LiTS dataset and resulted in 95.2%, 95.6% Dice coeffi-
cient on the liver, and 76.1 %, 70% Dice coefficient on 
the tumor, respectively. Yasaka et  al. [82] introduce a 
CNN model to differentiate between liver masses dur-
ing dynamic contrast agent–enhanced CT. The model is 
trained using 55,536 image sets (from 460 patients) to 
learn accurate and precise differentiation between liver 
regions. Results indicate that the median accuracy is 
above 0.84 for differential diagnosis of liver masses on 
the test dataset. Vorontsov et al. [83] propose an FCN 
architecture for detecting and segmenting liver lesions 
in CT images for patients with Colorectal Liver Metas-
tases (CLMs). Results show that the network produces 
high Dice coefficients for increasing lesion size. Spe-
cifically, the FCN achieves Dice Similarity Coefficient 
(DSC) of 0.14 (size<10 mm), 0.53 (size 10-20 mm), and 
0.68 (size>20 mm). Altogether, these state-of-the-art 

methods could serve as an effective second opinion for 
interventional radiologists responsible for delineating 
livers in medical scans.

Calculation of liver volume
Liver and lesion volumetry, provide valuable informa-
tion to the surgeons contributing to the success of liver 
transplantation [5, 86]. Over the years, several auto-
mated segmentation methods have been proposed to 
segment the liver in CT and MRI imaging. Recently, Lu 
et al. [78] introduce a 3D convolutional neural network 
(CNN) with graph cut to delineate the liver and predict 
its volume. The model’s evaluation on the MICCAI-
Sliver07 and 3DIRCADb datasets result in a volumet-
ric overlap error (VOE) of 5.9% and 9.36%, respectively. 
Wang et  al. [79] present a computationally light 2D 
U-Net variant for liver segmentation and volumetry. 
The model is trained using 330 abdominal CT examina-
tions in two stages, allowing coarse fine segmentation. 
Results show that the proposed model reaches over 95% 
agreement with the ground truth. In [80], a compari-
son of Vivo hepatic automated volumetry with manual 
volumetry is performed to assess the effectiveness and 
margin of error for automated segmentation methods 
in liver transplantation scenarios. These neural net-
work-based systems could provide viable information 
to the clinicians for deciding donor-patient compatibil-
ity based on liver volume estimation. Table 2 provides a 
summary of liver segmentation and volume estimation 
methods along with the datasets and performance.

Fig. 4 Structural summary of section 3 and 4, highlighting the essential functionalities of segmentation methods for radiological and surgical 
interventions
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Resection
Importance of segmentation in resection
BCLC staging system recommends liver resection for 
patients suffering from early or initial stage HCC with a 
single tumor, normal portal pressure, and bilirubin levels. 
For physicians, tumor information plays a critical role in 
surgical planning and image-guided interventions. Spe-
cifically, the exact volume, morphology, shape, and loca-
tion of tumors must be accurately determined to carry 
out a successful resection procedure. In a conventional 
setting, surgeons manually delineate liver lesions by rely-
ing on their experience and observations, which results 
in biased outcomes that lack efficiency and robustness. 

Therefore, automated liver tumor segmentation methods 
are considered as a crucial second-opinion for interven-
tional radiologists and surgeons. However, performing 
automatic tumor segmentation is quite challenging due to 
the low intensity, poor contrast, and anatomical variation 
of liver and lesions between patients. Specifically, some-
times the tumors vary in shape, size, and location, mak-
ing the algorithm challenging to generalize for a diverse 
patient population. In addition, unclear boundaries of 
some lesions (as in Fig. 5) make it difficult for edge-based 
algorithms to perform effectively. Furthermore, the varia-
tions in anisotropic dimensions of the medical scans (i.e., 
voxel space ranging from 0.45 mm to 6.0 mm) may cause 

Table 2 Summary of methods for liver segmentation and volume estimation

References Method Dataset Performance

Lu et al. [78] 3D‑CNN employed for liver detection and probabilistic 
segmentation, followed by a Graphcut for segmenta‑
tion refinement.

MICCAI‑Sliver07, 3DIRCADB VOE: 5.9, 9.36
RVD: 2.7%, 0.97%
ASD: 0.91, 1.89
RMSD: 1.88, 4.15
MSD: 18.94 mm, 33.14 mm

Wang et al. [79] 2D U‑Net trained in two stages to demonstrate the 
feasibility of transfer learning for CT segmentation

Custom Dataset (330 abdominal 
MRI and CT scans)

Dice: 0.94 ± 0.06 (CT)
Dice: 0.95 ± 0.03 (T1‑weighted MRI)
Dice: 0.92 ± 0.05 (T2*‑weighted MRI)

Nakayama et al. [80] In vivo comparison of automatic and manual volumetry 
for liver volume calculation

Custom Volumetric Dataset Automatic: 982.99  cm3 ± 301.98 
(volume), 4.4 minutes ± 1.9 (time)
Manual: 937.10  cm3 ± 301.31 (vol‑
ume), 32.8 minutes ± 6.9 (time)

Allir et al. [81] FCN used for coarse liver segmentation, followed by 
the use of region‑based level set function for  tumor 
segmentation

LiTs, IRCAD Liver Dice: 95.2%, 95.6%
Liver Tumor Dice: 76.1%, 70%

Yasaka et al. [82] Custom CNN architecture for clinical retrospective study 
on different phases of CT scans

Custom Dataset (55536 Pictures) Median Accuracy: 0.84
Median AUROC: 0.92

Vorontsov et al. [83] FCN with two stages forliver and tumor segmentation Custom Dataset (156 contrast 
material‑enhanced CT scans)

Tumor Dice: 0.14 (size < 10 mm), 
0.53 (size 10–20 mm), 0.68 (size > 
20 mm)

Fig. 5 a Raw CT slice and b Segmented liver
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loss of critical volumetric information. Nevertheless, sev-
eral conventional methods, deformable models, and neu-
ral networks have been proposed to segment liver lesions 
[87–89].

Liver tumor segmentation
One significant challenge for the tumor segmentation 
algorithm is the inconsistency in tumor shapes and loca-
tions between patients. Deep learning models can over-
come this challenge by using training data that contains 
a diverse patient population with tumors of different 
shapes, sizes, and locations. It has been shown in litera-
ture that neural networks’ robustness and generalization 
capability increase with the quantity and diversity of the 
dataset. There have been a few high-accuracy liver tumor 
segmentation models based on deep learning: Zhang 
et  al. [88] propose a level-set technique for CT-based 
liver tumor segmentation that incorporates an edge indi-
cator and an automatically computed initial curve. The 
method employs a 2D-slice-based U-net to localize the 
liver, followed by a 3D patch-based FCN to refine the 
liver segmentation and locate the tumor. The model’s 
evaluation of the MICCAI 2017 Liver Tumor Segmenta-
tion (LiTS) Challenge has resulted in an average DSC of 
96.31%. Xi et  al. [89] present two cascading U-ResNets 
for end-to-end liver and lesion segmentation. Results 
on the LiTS highlight that the model achieves a Dice 
score of 94.9%. Bai et al. [90] utilize a multi-scale candi-
date generation method (MCG) and 3D fractal residual 
network (3D FRN) for liver and tumor segmentation in 
CT volumes. Initially, a U-Net segments the liver region 
in 3-D space. Then, MCG is employed to mark the can-
didate regions for liver tumors. Finally, 3D FRN is used 
to mark the lesion accurately. It is known that post-pro-
cessing removes minor mispredictions, enhances/refines 
segmentation masks, enhancing the generalization capa-
bilities of the deep learning model. Bai et al. [90] use an 
active contour model (ACM) on the tumor predictions 
to refine tumor boundaries. The resultant method 3D 
MCG-FRN + ACM results in a Dice coefficient of 0.67 on 
the 3DIRCADb dataset. Alternatively, Li et  al. [51] pro-
pose an approach combining a level set model with like-
lihood and boundary energies to segment liver tumors. 
The result highlights a Jaccard distance error of 14.4 ± 
5.3% and a relative volume difference of -8.1 ± 2.1% on a 
custom CT dataset with 18 patients. Recently, Dong et al. 
[91] propose a Hybridized Fully Convolutional Neural 
Network (HFCNN) to detect cancer and segment liver 
tumors.

After segmenting the existing tumors in the liver, the 
surgeons and radiologists need to recognize its type 
to determine the extent of cancer spread and malig-
nancy. This classification process can be automated and 

embedded within the segmentation algorithm, efficiently 
providing physicians valuable secondary information. 
Trivizakis et al. [26] train a 3-D CNN using 130 DW-MRI 
scans to classify the tumor type. The network results in 
an 83% classification accuracy as compared to 69.6% of a 
previously implemented 2-D CNN. Chen et al. [27] pre-
sent a probabilistic neural network (PNN) that is trained 
using fractal information gray-level co-occurrence matrix 
to classify liver tumors into hepatoma and hemangioma. 
Balagourouchetty et al. [28] suggest an ensemble FCNet 
classifier trained using GoogLeNet features to classify six 
different classes of liver tumors.

Automation
The heterogeneous shape of tumors, and inconsistent 
background, creates high unpredictability between the 
liver and the lesions, thereby adding complexity to auto-
matic tumor segmentation methods [77]. Most interac-
tive or semi-automatic methods that involve input from a 
physician have shown better results and are used for crit-
ical hepatic operations like hepatic biopsies and hepatic 
therapeutic interventions [96]. Zhang et  al. [97] present 
an interactive seed-selection strategy for liver tumor seg-
mentation using support vector machines in CT scans. 
Lin et al. [92] propose an interactive implementation that 
places emphasis on region partition and boundary infor-
mation. The tumor texture information and clear tumor 
boundary allow the model to segment tumors effectively. 
Moreover, the Lucas–Kanade algorithm selects the seed 
pixel for initiating model training, and user inputs are uti-
lized to incorporate the data variations. The collaborative 
model obtains promising results and an average segmen-
tation accuracy of 80%. On the other hand, fully auto-
mated methods lack performance because of the complex 
and volatile nature of surgeries and complications [98]. 
Nonetheless, complete automation is being consistently 
pursued to achieve performance that is comparable to 
semi-automatic methods. A fully automated deep learn-
ing approach based on Attention Hybrid Connection 
(AHC) Network architecture is implemented by [93], giv-
ing decent results. The network is tested using 20 cases 
from the 3DIRCADb dataset and 117 cases from a clinical 
dataset, achieving a global Dice coefficient of 0.62± 0.07 
in tumor segmentation. Seo et al. [94] proposes a modi-
fied U-Net (mU-Net), which combines object-dependent 
high-level features to improve liver-tumor and liver seg-
mentation from CT scans. The model’s evaluation on 
the (LiTS) dataset results in a Dice similarity coefficient 
(DSC) of 89.72 % for liver tumors. Vivanti et al. [95] pre-
sent an automatic method for liver tumors segmentation 
in post-treatment CT studies that use a CNN to image 
patches. Next, a voxel classifier is employed to gener-
ate the refined tumor segmentation mask. The model’s 
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evaluation on a custom dataset results in an average of 
16.05% VOE and a 2.05 mm average symmetric surface 
distance (ASSD), giving a success rate of 90.5%. Table 3 
provides a summary of liver tumor segmentation meth-
ods along with the datasets and performance.

Segmentation for radiological intervention
Interventional radiology has opened new avenues for 
the treatment of liver cancers. BCLC staging system 
recommends radiological interventions (e.g., ablation) 
for patients not suited for transplant or with livers with 
associated diseases. Radiological treatments can be per-
formed by an endovascular approach or by direct tran-
scapsular access [99]. Endovascular treatments include 
TACE, Stereotactic Body Radiation Therapy (SBRT), 
Transarterial Radioembolization (TARE), and portal vein 
embolization (PVE). Direct transcapsular access treat-
ments involve microwave thermal ablation (MWA), RFA, 
and PEI [100].

TARE and TACE block the hepatic artery to treat 
the liver cancer segment by cutting off its blood sup-
ply. TARE is a selective internal radiation therapy that 
requires an intra-arterial supply of microspheres packed 
with radioactive compounds such as ttrium90, iodine131, 
or rhenium188 [101]. In comparison, TACE is a type 
of chemoembolization that involves chemotherapy. 
CT or MRI imaging is used to predict whether or not 

extra-hepatic arteries augment tumors. All of the feeding 
arteries of a tumor, including any possible extra-hepatic 
arteries, are examined by angiographic images. TACE 
can treat liver tumors larger than 5 cm, but it may take 
2 or 3 treatments [102]. Furthermore, CT scans must be 
taken 2 to 3 months after TACE to ensure treatment suc-
cess [103]. Liver tumor segmentation methods may pro-
vide crucial secondary information to monitor treatment 
progress and success.

PVE increases the volume of the Future Liver Remnant 
(FLR) for extended hepatectomy by embolizing a por-
tal vein region, resulting in hepatic regeneration. PVE is 
performed, when a large FLR is required for a post-oper-
ative liver recovery as determined by liver volumetry. 
Often this is due to the extent of the liver resection or the 
underlying liver disease [104]. Segmentation and volu-
metry of CT scans provide crucial pre-requisite informa-
tion for the success of PVE. SBRT has been used in the 
treatment of primary HCC (with slight metastases) that 
require radiation in less than 25% [105].

RFA and MWA use image guidance intervention, 
where a probe is utilized for heat generation, resulting 
in coagulation necrosis to destroy the cancer cells [99]. 
PEI is performed for tumors less than or equal to 3 cm. 
PEI injects highly concentrated alcohol using a thin nee-
dle, leading to complete ablation of up to 70% of lesions. 
Ultrasound guidance is generally utilized for performing 

Table 3 Summary of available methods for liver tumor segmentation

Reference Method Dataset Performance

Lin et al. [92] Lucas‑Kanade algorithm is used for discrimi‑
native training, followed by inference algo‑
rithm, which employs Lagrangian method 
and image sequence matching

LiTs Accuracy: 0.8561 (SYSU‑CT), 0.6571 (SYSU‑US)

et al. [88] 2D‑Slice Based U‑Net and 3D Patch‑Based 
CNN are employed for segmentation of liver 
and localization of tumor. Level‑set method 
is used for tumor refinement

LiTs Liver Dice: 96.31% ± 0.62%
Liver RMSD: 1.99 mm ± 0.64 mm
Tumor Dice: 72.45% ± 13.42%
Tumor RMSD: 4.99 mm ± 2.18 mm

Xi et al. [89] Two Cascading U‑ResNets for liver and 
tumor segmentation with a experimental 
study for measuring the impact of loss 
functions

LiTs Liver Dice: 94.9%
Liver VOE: 0.0095
Tumor Dice: 75.2%
Tumor VOE: 0.379

Jiang et al. [93] Cascaded Attention Hybrid Connection Net‑
work with a combination of soft and hard 
attention for liver and tumor segmentation

Training set: LiTS Test set: 3DIRCADb 
(20 patients), Clinical Dataset (117 
cases)

0.62 ± 0.07 (DSC)

Seo et al. [94] Modified U‑Net (mU‑Net) architecture with 
the residual path deconvolution over the 
skip‑connections to prevent duplication of 
low‑resolution information

LiTs Liver Dice: 98.51%
Liver VOE: 3.07%
Tumor Dice: 89.72%
Tumor VOE: 21.93%

Vivanti et al. [95] CNN trained with delineation of baseline CT 
scans and evaluated on follow up CT studies

Custom Dataset (67 Tumor in 21 scans) VOE: 16.26%

Bai et al. [90] Multi‑scale candidate generation method 
(MCG), 3D fractal residual network (3D FRN), 
and active contour model (ACM) are used 
in a coarse‑to‑fine manner for liver tumor 
segmentation

Training set: LiTS Test set: 3DIRCADb Tumor Dice: 0.67
Tumor VOE: 0.324
Tumor MSD: 7.113 mm
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ablation, and the treatment requires 4-6 sessions. Real-
time segmentation of the captured images can assist the 
radiologist in carrying out the procedure and improve 
treatment success.

Tumor segmentation and burden estimation
FLR, Total Liver Volume (TLV), and liver burden are all 
important volumetry metrics needed for radiological 
intervention treatment planning [106]. CT or MRI seg-
mentation and volumetry can provide crucial second-
ary information for radiologists to carry out radiological 
interventions. Advancements in radiation therapy pro-
cedures and segmentation technology effectively reduce 
GI toxicity (i.e., toxicity in small intestine and stomach) 
and spinal cord toxicity caused by inadequate/inaccurate 
dosage determination, leading to more liver dysfunction. 
For example, radiation-induced liver disease can result 
from inadequate treatment SBRT planning [107]. Having 
an accurate liver tumor segmentation enables the secure 
computation of chemical and radio dosages. Therefore, 
accuracy and precision are essential considerations for 
segmentation methods for these applications.

Deep-learning approaches that involve cascaded U-Net 
derived architectures are accurate with respect to per-
formance [5]. According to the literature, the top three 
ranked methods according to tumor burden estimation 
(quantified by RMSE) include Li et  al.’s [108] Adaboost 
to identify tumor boundaries, Wu et al.’s [9] supervoxel-
based graph cuts, and Wang et al.’s [109] adaptive mesh 
expansion model (AMEM) for segmentation of liver. 
These methods accurately predict the tumor volume 
with a root mean square error (RMSE) in tumor burden 

of 0.0150, 0.0160, and 0.0160, respectively [5]. In gen-
eral, these methods also achieve good area-overlap with 
the ground truth with Dice scores of 0.9650, 0.9590, and 
0.962, respectively [5]. Yuan et  al. [110] have also pro-
posed a hierarchical CDNN that performs coarse to fine 
liver, tumor segmentation, and tumor burden analysis. 
Despite the state-of-the-art performance, automatically 
segmenting small liver tumors remains a difficult task. 
This limitation suggests that future improvements can 
be made by investigating methods that segment a broad 
spectrum of liver tumors. Table 4 summarizes the meth-
ods, datasets, and performance metrics, for radiation 
therapy of the liver.

Discussion
The diagnosis and treatment planning of hepatic dis-
eases (like HCC) are generally decided by the location 
and spread of liver lesions, proximity to the vascula-
ture, severity of underlying liver dysfunction, availabil-
ity of medical technology, and expertise of the clinician. 
Thus, the choice of segmentation methods for a particu-
lar intervention is determined by the method’s robust-
ness, segmentation accuracy, precision, and the extent 
of automation. For this reason, we have categorized the 
popular segmentation methods based on their utility. The 
categorization allows the clinicians to select appropri-
ate methods for the most effective treatment pathways, 
subsequently aiding clinical decision making in com-
plex diagnostic protocols, and in treatment planning. 
As a result, it is meant to be a supplementary aid aimed 
to improve clinical outcomes. Based on the BCLC stag-
ing classification (Figs.  3, 4), we suggest segmentation 

Table 4 Segmentation methods for radiation therapy (RT)

Reference Method Dataset Performance

Li et al. [108] Voxel‑based Adaboost is used for liver localization. Shape and appearance 
models are employed to segment the liver, followed by free form deformation for 
refinement 

MICCAI Sliver07 Liver Dice: 0.911 ± 0.010 (CT), 
0.922 ± 0.011 (CTce)
Tumor burden RMSE: 0.015

Wu et al. [9] Liver volume is extracted by histogram‑based adaptive thresholding and morpho‑
logical operations, followed by graph cuts

MICCAI Sliver07 VOE: 7.54%
RVD: 4.16%
ASD: 0.95 mm
RMSD: 1.94 mm
MaxD: 18.48 mm
Run time: 12.21 sec
Tumor burden RMSE: 0.016

Wang et al. [109] Adaptive mesh expansion model (AMEM) is used for liver segmentation from CT 
scans. A virtual deformable simplex model (DSM) is introduced to represent the 
mesh

MICCAI Sliver07 Mean overlap error: 6.8%
Mean volume difference: 2.7%
ASSD: 1.3 mm
RMSD: 2.7 mm
Tumor burden RMSE: 0.016

Yuan et al. [110] Hierarchical convolutional‑deconvolutional neural networks (CDNN) for liver and 
tumor segmentation, followed tumor estimation

LiTS Liver Dice: 0.967
Liver RMSD: 2.303
Tu mor Dice: 0.82
Tumor RMSD: 1.678
Tumor burden RMSE: 0.017
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methods for liver transplantation, resection, and radio-
logical intervention. Next, we sub-classify the papers 
based on their aim to address automation, volume esti-
mation, and segmentation. The models presented by Alirr 
et al. [81] and Vorontsov et al. [83] use FCNs to achieve 
high accuracy and precision results for liver segmenta-
tion. Wang et al. [79] propose a two-dimensional U-Net 
CNN to estimate liver volumes in CT scans. Vivanti et al. 
[95] present an automatic method for liver and tumors 
segmentation using deep CNNs.

Over the past few decades, a significant number of 
articles have been published to assist the treatment of 
hepatic diseases (e.g., liver cancer) by proposing differ-
ent methods for liver and tumor segmentation in CT 
and MRI scans. However, medical image segmentation 
of the liver still faces unaddressed challenges in techni-
cal and clinical settings. Figure 6 summarizes the clinical 
and technical challenges for HCC and liver segmenta-
tion algorithms, respectively. Some of the technical chal-
lenges are lack of standard benchmarks, reliance on 
conventional segmentation methods, and usage of first-
generation deep learning architectures. Similarly, clinical 
challenges include shortage of compatible liver donors, 
lengthy diagnosis and treatment planning periods, lim-
ited understanding of tumor shapes and morphology.

Outlook on technical challenges
Comparative studies are critical for discovering state-of-
the-art treatment methods for any disease. Many such 
studies aim to determine the ideal technique for liver seg-
mentation but rely on private, or custom datasets [79, 80, 
82, 83, 95]. The datasets often have built-in biases (e.g., 
subjects diagnosed with a particular disease) and do not 
cover more than a few hundred patients. Furthermore, 
the comparison of these works in literature is challeng-
ing due to their differing performance metrics. This 

variability in research due to custom datasets and varying 
performance metrics add to the challenge of evaluating 
different methods based on their claimed results, rein-
forcing the need to create benchmark datasets.

Benchmark datasets and their evaluation using stand-
ard metrics are crucial for fair quantitative comparison of 
the existing methods. It should be ensured that the data-
sets satisfy both technical and clinical standards. A reli-
able technical benchmark should contain samples from 
many patients (with minimal bias) and several slices per 
scan for each patient. From a clinical standpoint, multiple 
experts should medically validate and annotate datasets 
to account for subjective annotation. These guidelines 
would allow the creation of well-rounded datasets that 
could aid both technical and clinical challenges facing 
liver and tumor segmentation.

Robust and accurate segmentation methods are a 
necessity for clinicians performing liver transplants or 
resections [111]. After reviewing several works, we have 
observed that the conventional methods and first-gen-
eration neural networks (like plain U-nets and FCNs) 
have undesirable sensitivity to segment the liver and its 
tumors, high computation time, and over-segmentation. 
There has been a rapid development of neural network-
based frameworks such as the nnU-Net [13] that auto-
matically configures preprocessing, network architecture, 
training, and post-processing for biomedical image seg-
mentation, providing good out-of-the-box performance. 
However, the recent challenges (Like FLARE 21, KiTS 
21, and CHAOS [15]) for abdominal organ segmenta-
tion of CT and MRI scans have shown that custom CNN 
architectures [14] with dedicated modules designed for 
overcoming the pathological challenges outperform the 
nnU-Net framework. These shortcomings highlight the 
need for sophisticated deep learning models and dedi-
cated network modules with optimizations to help reduce 

Fig. 6 Technical and clinical challenges facing diagnosis and treatment of HCC
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the networks’ parameter count, memory footprint, and 
computation time. To improve the current state-of-the-
art methods, we propose exploring three avenues in 
supervised deep learning. First, we encourage employing 
transfer learning and larger benchmark datasets to tackle 
overfitting in neural networks. Second, using preproc-
essing on the datasets to enhance anatomical bounda-
ries and contrast of the images. The preprocessing in CT 
images is critical due to image noise, poor contrast, and 
organs with overlapping boundaries. Researchers have 
utilized conventional denoising algorithms for enhancing 
CT images. However, new deep learning-based architec-
tures that could simultaneously denoise and segment CT 
images will be an asset for clinicians to diagnose and treat 
HCC. Third, we suggest using standard baselines and 
recent models for comparison (e.g., nnU-Net), providing 
the community with meaningful results.

Evaluation metrics quantify the effectiveness of seg-
mentation methods for different clinical scenarios. 
Volume-based metrics (i.e., DSC, IoU, VOE) and bound-
ary-based metrics (i.e., Hausdorff distance (HD), ASSD, 
etc.) are used to evaluate the segmentation methods. 
Reinke et al. [112] summarize the pitfalls of the existing 
segmentation metrics by providing several ground-truth 
and prediction scenarios where an undesired prediction 
may receive an acceptable metric score. The authors high-
light that DSC has high sensitivity when the target region 
of interest (ROI) has a size comparable to the pixel size. 
A similar sensitivity is observed for HD when the resolu-
tion of the ground truth varies. The authors highlight that 
a higher HD is obtained for low-resolution ROI. These 
findings are crucial for liver tumor segmentation in low-
resolution CT images where the tumor is few pixels wide. 
The authors also show that over-segmentation results in 
higher DSC for a reference ground truth than under seg-
mentation. Thus, a segmentation method trained to max-
imize DSC for a liver tumor may tend to over-segment, 
thereby increasing the chances of resection/ablation of 
healthy tissues during surgeries. Based on the above find-
ings, we suggest to develop a more robust evaluation 
metric that effectively quantifies volume and boundary 
overlap across different ROI sizes/resolutions.

Visualization tool functionalities and user interface 
may also impact the utility of the segmentation meth-
ods in clinical surgeries. Fischer et  al. [113] propose a 
3D presentation state (3DPR) for parameterizing and 
storing 3D images. The authors show that 3DPR mini-
mizes user interactions and provides a storage efficient 
representation for 3D image visualization. One limi-
tation of the approach is that it doesn’t store the seg-
mented 3D image data within the 3DPR object, requiring 
clinicians to deal with the 3D scan and its segmenta-
tion mask separately. Fischer et  al. [114] also propose a 

system that incorporates multiple segmentation methods 
as plugins and renders the output as a single 3D image. 
This approach is clinically meaningful, because segmen-
tation masks of different anatomical structures allow 
radiologists to understand the relationships between the 
neighboring organs and vessel trees. However, the sys-
tem doesn’t provide an option to manipulate and remove 
specific structures from the combined segmentation 
masks. This functionality is crucial, when the segmenta-
tion methods over/under-segments the target anatomical 
ROI. We recommend developing a visualization system 
that can incorporate the output of multiple segmenta-
tion methods, while providing functionalities to edit the 
combined segmentation mask. The ability to amend the 
segmentation masks can allow the radiologist to generate 
complex annotations for medical image analysis.

Outlook on clinical challenges
RFA has shown promising results in treating HCC and 
metastatic diseases such as colorectal cancer (CRC) 
[115]. Though surgical resection is the gold standard, 
RFA plays a crucial role in treating patients with inad-
equate residual liver functionality, multi-lobar lesions, 
extra-hepatic disease, proximity to prominent vascular 
structures and co-morbidities, making the patients ineli-
gible for surgery, [116, 117]. However, RFA is associated 
with vascular and visceral damage, hemorrhagic compli-
cations, infections, biliary tract damage, liver failure, and 
local tumor relapse [118].This limits the usage of RFA in 
practice, primarily due to the high chance of post-inter-
ventional complications. Furthermore, the clinical and 
technical challenges like insufficient ablation of tumors 
due to constraints of ablation needles, cooling of tissue 
by the adjacent blood vessels, large tumor mass, and 
tumors in the surroundings of heat-sensitive organs adds 
further complexity to the RFA procedure [118]. Never-
theless, we think that RFA will soon promote its clinical 
standing in treating advanced-stage liver tumors, primar-
ily because of its potential to be used with multi-model 
imaging modalities.

The tumor location and the affected liver segment 
determine the nature of the radiological intervention and 
the prescribed segmentation method. It is recommended 
to use graph cut and gradient vector flow methods 
instead of active contour segmentation when the tumor 
is near the surface. This is due to the fact that the active 
contours can easily stream into the neighboring organs 
and cause over-segmentation, while gradient vector flow 
methods have demonstrated effective performance even 
for broken edges and subjective contours [21]. Further-
more, the liver segment location is vital in radiological 
interventions, because it can affect the dose limit in treat-
ment planning [105]. For example, if the tumor is located 
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in the caudate lobe, necessary safety precautions should 
be taken for positioning accuracy and quality assurance 
to avoid harming the gastrointestinal track [105]. A high 
degree of accuracy in target delineation and the use of 
image-guided radiotherapy (IGRT) can provide tighter 
margins that will minimize induced toxicity. Therefore, 
it is also recommended to segment the patient’s liver 
according to the Couinaud classification to recognize the 
risks associated with every segment.

Recurrence of HCC after resection is a frequent post-
operative occurrence [119]. The literature shows that 
there is a difference in opinion among clinicians on the 
precise chance for recurrence after transplant or partial 
resection. Some works claim that over 50-80% of patients 
following resection develop recurrences (over the first 
two years) [120, 121], while others claim that only over 
20% of patients are at the risk of developing tumor 
relapse [119]. Nevertheless, studies emphasize manda-
tory postoperative surveillance and regular screening 
[122]. Several key clinical indicators (like the presence 
of microscopic venous invasion, slow growth of small 
and inactive tumors) are signs of HCC recurrence [123]. 
It may be noted that the detection of tumor relapse also 
relies heavily on the postoperative imaging modality and 
segmentation tools. Thus, accurate and precise segmen-
tation tools are required to detect minute lesions for early 
diagnosis of recurrent HCC. Models proposed by Alirr 
et al. [81], Wang et al. [79], and Vorontsov et al. [83] are 
well-suited for this task. Moreover, a combination of pre-
cise segmentation models with other clinical treatment 
methods like nucleic acid analogs and interferon (IFN) 
[124] can potentially become a robust curative option for 
HCC.

Though RFA, liver resection, and transplantation are 
effective remedying measures for treating HCC and most 
other hepatic diseases, they are not always used in isola-
tion. Depending on the patient’s clinical history and path-
ological context, clinicians sometimes may need to use a 
combination of surgical and radiological interventions to 
achieve optimal results. Targeting numerous pathways in 
the HCC cascade with a variety of treatments can help 
in accomplishing personalized care aimed to improve 
overall survival [125]. Clinicians hope that combination 
therapies would have higher treatment efficacy and effi-
ciency. Some promising compound treatment methods 
blend direct cytotoxicity from chemotherapeutic agents 
and ischemia from selective embolization to cause tumor 
necrosis. In addition, embolization results in reducing 
washout and systemic chemotherapy toxicity [126].

In addition to the patient’s clinical history, the diagno-
sis of HCC also relies on multiple technical (such as the 
choice of contrast, imaging modality, etc.) and patho-
logical (liver heterogeneity, liver diseases, tumor size, 

and intensity) factors [22–24]. Due to this, the optimum 
course of treatment depends on many contextual fac-
tors and differs from patient to patient. Currently, well-
established clinical guidelines and protocols attempt to 
account for these contextual factors to assist treatment 
decisions. They oversee the detection of small lesions and 
the classification of benign (regenerative nodule) or pre-
malignant nodules from HCC [25].

Limitations
This work aims to supplement the well-established clini-
cal guidelines by suggesting varying segmentation meth-
ods appropriate for assisting diagnostic and therapeutic 
decision-making. However, we believe that our work still 
needs improvement: firstly, in order to manage the scope 
of our work, we have made the assumption that the seg-
mentation methods are well-established and validated. 
Thus, we do not assess the pros and cons of each of the 
segmentation methods discussed, and focus instead on 
proposing a categorization schema of these segmentation 
methods with respect to their clinical utility. Secondly, in 
order to limit the scope of our work, we have not tried to 
address the existing challenges for the discussed segmen-
tation methods and imaging modalities. It is expected 
that each segmentation method in combination with the 
imaging modality will have unique and patient-specific 
challenges due to heterogeneity in liver morphology and 
pathology. These challenges would need to be tackled 
as part of future work focusing on each segmentation 
method and procedure. Nevertheless, in this work, we 
have strived to establish a knowledge base of segmenta-
tion methods as an adjunct to an existing, well-estab-
lished clinical decision-making process (i.e., outcomes of 
clinical protocols), thereby expediting the segmentation 
tool selection for treatment of HCC.

In future, we aim to assess the pros and cons of differ-
ent segmentation methods for surgical and radiological 
interventions. Based on our assessment, we will design 
segmentation methods to overcome the limitations of 
existing methods and imaging modalities. Furthermore, 
we will explore segmentation methods for liver sub-
segmentation to improve the success rate of radiological 
interventions preventing any harm to the healthy por-
tions of the liver. Finally, we aim to evaluate the effective-
ness of combined surgical and radiological interventions.

Conclusion
This paper reviews state-of-the-art segmentation meth-
ods and categorizes them into three types of clinical 
intervention based on well-established clinical guide-
lines: transplantation, partial resection, and radio-
logical interventions. This categorization is based on 
critical technical requirements or expectations from 
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the algorithm to provide the best possible segmentation 
needed by the surgeon for a specific type of interven-
tion. The broader aim is to contribute to optimal post-
interventional outcome by aiding and supplementing 
the well-established yet complicated clinical diagnostic 
and therapeutic protocols. Considering each applica-
tion (preoperative planning or image-guided interven-
tion) have their own requirements in terms of accuracy 
and automation, we have also summarized the meth-
ods matching to their most appropriate corresponding 
clinical applications and types of intervention. We have 
observed that no single algorithm provides a ’one-size-
fits-all’ solution. Therefore, we believe that our work 
could help the clinicians in choosing the appropriate 
algorithms on a case-by-case basis, ensuring optimized 
healthcare outcomes.
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