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The International Agency for Research on Cancer classified the di-2-ethylhexyl phthalate (DEHP) as “possibly
carcinogenic to humans”. In vitro studies reported that phthalate exposure resulted in induction of several
nuclear transcription factors that are activators of telomerase reverse transcriptase (TERT) and telomerase
activity of the human telomerase complex. The objective of this study was to determine whether there is an
association between urinary phthalate metabolites [mono-ethyl phthalate (MEP), mono-butyl phthalate
(MBP), mono-(2-ethyl)-hexyl phthalate (MEHP), and mono-benzyl phthalate (MBzP) and leukocyte telomere
length (LTL) in the adult population of the National Health and Nutrition Examination Survey (NHANES)
1999–2002 (n = 2472). After adjustment for potential confounders, participants in the 3rd and 4th quartiles
of urinary MEHP had statistically significantly longer LTL (5.34%, 95% CI: 1.31, 9.53; and 7.14%, 95% CI: 2.94,
11.63; respectively) compared to the lowest quartile, with evidence of a dose–response relationship
(p-trend = 0.01). The association remained when the analyses were stratified by age groups (20–39 years,
40–59 years, and 60 years and older), and sex. Furthermore, MBP and MBzP were associated with higher LTL
in older participants. The age independent association between longer LTL and MEHP (a metabolite of DEHP)
might suggest a possible role of MEHP as tumor promoter.

Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Phthalates are a group of aromatic chemicals containing a phenyl ring
with two attached and extended acetate groups. Phthalate esters are plas-
ticizers used worldwide to add flexibility, longevity, and durability to a
multitude of medical, industrial, and consumer products (ATSDR, 2001,
2002; Zota et al., 2014). Low molecular weight phthalates, such as di-n-
butyl phthalate (DnBP) and diethyl phthalate (DEP), are largely used in
personal care products as aerosol delivery agents, solvents for dyes in
nail polishes, enteric coatings for time-release medicines, and in food
and food packaging (ATSDR, 2001; Zota et al., 2014). High molecular
weight phthalates, such as di-2-ethylhexyl phthalate (DEHP) and
butylbenzyl phthalate (BBzP), are the primary plasticizers in polyvinyl
chloride (PVC) applications (e.g., building materials and toys); further-
more, they are also used in adhesives and food packaging (ATSDR,
2002; Zota et al., 2014). Because phthalates are not covalently bound to
these products, they readily leach out and are thus pervasive in the envi-
ronment. Humans are widely and ubiquitously exposed to them through
ingestion, inhalation, and dermal exposures (ATSDR, 2001, 2002).
ndPrevention, Agency for Toxic
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Phthalates have been associated with effects on the development of re-
productive system of male laboratory animals and their toxicity depends
on the chemical structure and timing of exposure: for example, perinatal
exposure during to phthalates including BBzP, DEHP, but not other,
among them DEP, resulted in the altered sexual differentiation of male
rats (Gray et al., 2000). Phthalates are considered endocrine disruptors
with anti-androgenic and estrogenic effects on reproductive health and
development (National Research Council, 2008). Among the different
phthalate compounds, DEHP is associated with liver cancer in rodent
models by acting through the peroxisomeproliferating pathways. Recent-
ly the International Agency for Research on Cancer (IARC) classifiedDEHP
as “possibly carcinogenic to humans” (Group 2B) (IARC, 2013).

Several studies reported that exposure to phthalates resulted in
induction of c-myc expression both in mouse and human cell line (Yao
et al., 2011, 2012; Zhang et al., 2014; Hsieh et al., 2012). Yao et al.
(2011) reported the activation of c-myc in male mice after exposure
to mono-(2-ethyl)-hexyl phthalate (MEHP). Activation of c-myc has
been reported in primary Sertoli cells from adult male mice exposed to
MEHP (Zhang et al., 2014). Moreover, MEHP exposure enhanced tumor
progression/metastasis in human testicular embryonal carcinoma cells
through c-myc induction (Yao et al., 2012). DnBP and BBzP induced pro-
liferation and invasiveness of estrogen receptor-negative breast cancer
cells through the activation of c-myc (Hsieh et al., 2012).
ense (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Activation of the proto-oncogene c-myc is associated with cellular
growth and proliferation programs (Dang, 2013) and is therefore an im-
portant feature of cancer initiation and maintenance (Gabay et al.,
2014). Furthermore, c-myc induces the expression of telomerase
reverse transcriptase (TERT) and telomerase activity, thus delaying telo-
mere attrition (Daniel et al., 2012; Greenberg et al., 1999). Telomeres
are repeating hexanucleotide sequences (TTAGGG) that protect chro-
mosomes against chromosomal end–end fusion and non-reciprocal
translocations. During normal DNA replication, the enzyme TERT adds
the TTAAGG sequence to the chromosomal ends to compensate for
the progressive loss of telomeric sequence during every replication to
promote chromosomal stability (Aubert and Lansdorp, 2008). The
telomeres shorten with each cell division until they reach a markedly
short length, inducing replicative senescence, or irreversible cell growth
arrest and apoptosis (Finkel et al., 2007).

Several studies indicate that, independently of chronological age,
shorter telomere length (TL) is associated with cardiovascular disease
(Haycock et al., 2014), diabetes (Zee et al., 2010), and mortality
(Weischer et al., 2012). Longer TL should allow for longer cellular
survival, increasing the chance of accumulation of genetic mutations,
such as those that promote cancer (Noy, 2009). In contrast, excessive
telomere loss may lead to genomic instability and promote carcinogen-
esis (Blasco, 2005).

Until now, the epidemiological evidence for associations between
circulating leukocyte telomere length (LTL) and cancer has been
inconsistent and this may be attributed to technical methodology
(Cunningham et al., 2013) and the effects that specific cancer types
may have on LTL (Gu and Wu, 2013). Shorter telomeres are associated
with increased risk for several cancers, including bladder, breast, ovarian,
kidney, head and neck, esophagus, stomach, and lung cancer
(Wentzensen et al., 2011). However, the meta-analysis stratified by
study design reported that the increased cancer risk associated with
shorter telomeres was mainly driven by case–control studies
(Wentzensen et al., 2011). This finding suggests the possible effects of
reverse causation in case–control studies where therapeutic procedures
or cancer itself may affect TL. In prospective studies, longer telomeres
have been associated with an increased risk of several cancers such as
lung cancer (Lan et al., 2013; Seow et al., 2014), melanoma (Han et al.,
2009), non-Hodgkin lymphoma (Lan et al., 2009), pancreatic cancer
(Lynch et al., 2013), and prostate cancer (Julin et al., 2015). Interestingly,
in a 12 years follow-up of 792 normative aging study participants, it
was observed a decelerating age-adjusted LTL attrition in cancer cases
as they approached diagnosis with significant longer LTL within 4 years
pre-diagnosis (Hou et al., 2015). This observation suggests that LTL
elongation appears early during cancer development (Hou et al., 2015).

Leukocyte telomere length has been measured in a representative
sample of US adults (20 years of age and older) who participated in the
National Health and Nutrition Examination Survey (NHANES) from
1999 to 2002. In this study, we examined the potential association of var-
ious metabolite compounds of phthalates with LTL. Because of the role of
phthalates to induce c-myc and promote cellular growth, we
hypothesized that phthalate exposure will be associated with longer LTL.

2. Methods

2.1. Study Population

NHANES is a cross-sectional, nationally representative survey of the
non-institutionalized civilian population of the United States conducted
by the National Center for Health Statistics, Centers for Disease Control
and Prevention (NCHS, CDC) (Johnson et al., 2013). For our study we
merged the publicly available files for NHANES cycles 1999–2000 and
2001–2002 using the NCHS recommendations (Johnson et al., 2013).
The survey employs a multistage stratified probability sample based
on selected counties, blocks, households, and persons within house-
holds. NCHS-trained professionals conducted interviews in participants'
homes and extensive physical examinations including blood and urine
collection were conducted at mobile exam centers (MECs). All
procedures were approved by the NCHS Research Ethics Review Board
(Protocol #98-12, http://www.cdc.gov/nchs/nhanes/irba98.htm), and
all participants provided written informed consent.

2.2. Leukocyte Telomere Length (LTL) Measurements

Whole blood DNAs were purified using the Puregene kit protocol
(Gentra Systems, Inc., Minneapolis, Minnesota) by NCHS. The telomere
length assaywas performed in the laboratory of Dr. Elizabeth Blackburn
at the University of California, San Francisco, using the quantitative
polymerase chain reaction method. Briefly, the method measures the
ratio of telomere length (T) relative to standard (S) single-copy gene
reference DNA, known as the T/S ratio (Cawthon, 2002; Lin et al.,
2010). Primers used for amplification of the human telomere (T), tel1b
and tel2b, and for amplification of the standard reference gene
(S) human β globin, hbg1 and hbg2, and PCR conditions are described
in Lin et al. (2010). Samples were assayed 3 times on 3 different days
on duplicate wells, resulting in 6 data points. Control DNA values were
used to normalize between-run variability. Runs withmore than 4 con-
trol DNA values falling outside 2.5 standard deviations from the mean
for all assay runs were excluded from further analysis (b6% of runs).
Outliers identified for each sample were excluded from the calculations
(b2% of samples). Quality control review was conducted by the CDC
before linking the LTL data to the NHANES public-use data files. The
formula 3274 + 2413 ∗ (T/S) was used to convert T/S ratio to base
pairs (bps). The conversion from T/S ratio to bp is calculated based
on comparison of telomeric restriction fragment (TRF) length from
Southern blot analysis and T/S ratios using DNA samples from the
human diploid fibroblast cell line IMR90 at different population dou-
blings (http://wwwn.cdc.gov/Nchs/Nhanes/2001-2002/TELO_B.htm).

2.3. Urinary Biomarkers

Spot urine samples were collected from study participants and
stored at −20 °C for a maximum of one year until analysis was
performed by the Division of Laboratory Sciences, National Center for
Environmental Health, CDC. In NHANES 1999–2002 seven phthalate
metabolites in the urine samples were analyzed: 1)mono-ethyl phthal-
ate (MEP), a metabolite of DEP; 2) mono-(2-ethyl)-hexyl phthalate
(MEHP), a metabolite of DEHP; 3) mono-benzyl phthalate (MBzP), a
metabolite of BBzP; 4) mono-cyclohexyl phthalate (MCHP), a metabo-
lite of dicyclohexyl phthalate (DCHP); 5) mono-isononyl phthalate
(MiNP), a metabolite of di-isononyl phthalate (DiNP); 6) mono-n-
octyl phthalate (MOP), a metabolite of di-n-octyl phthalate (DnOP);
andmono-butyl phthalate (MBP), which represents the sumof two iso-
mers, mono-isobutyl phthalate and mono-n-butyl phthalate. To avoid
bias in estimation among those below the limit of detection (LOD),
only the phthalate metabolites that were detected in at least 75%
of the samples, such as MEP (≥LOD = 99%), MBP (≥LOD = 99%),
MBzP (≥LOD= 96%) and MEHP (≥LOD= 78%), were used in our anal-
yses. These compounds were measured by solid phase extraction
coupled on-line to high performance liquid chromatography and tan-
dem mass spectrometry. Details of detection and measurement of the
urinary compounds are described in the NHANES laboratory method
(http://www.cdc.gov/nchs/data/nhanes/nhanes_99_00/PHPYPA_met_
phthalates.pdf, and http://www.cdc.gov/nchs/data/nhanes/nhanes_01_
02/PHPYPA_b_met_phthalates.pdf). The reported results for all assays
meet the NCEH/DLS quality control and quality assurance performance
criteria for accuracy and precision. Urinary concentrations of the
phthalates below the level of detectionwere assigned the limit of detec-
tion divided by the square root of two, as recommended by NHANES
(Johnson et al., 2013). To account for variation in dilution in spot urinary
samples, urinary creatinine was entered into the analyses as an inde-
pendent variable as suggested by previous studies (Ikeda et al., 2003;
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Table 1
Sample size andweighted characteristics of the NHANES 1999–2002 participants 20 years
and older.

ALL

n. Weighted
distribution

2472
Mono-ethyl phthalate (MEP), (ng/mL), GM (SE) 2467 123.77 (6.14)
Mono-butyl phthalate (MBP), (ng/mL), GM (SE) 2472 20.85 (0.82)
Mono-benzyl phthalate (MBzP), (ng/mL), GM (SE) 2472 8.86 (0.36)
Mono-(2-ethyl)-hexyl phthalate (MEHP), (ng/mL), GM (SE) 2472 3.59 (0.17)
Age (years), GM (SE) 2472 42.83 (0.41)
BMI (kg/m2), GM (SE) 2472 27.53 (0.16)
Serum cotinine (ng/mL), GM (SE) 2472 3.59 (0.54)
C-reactive protein(mg/dL), GM (SE) 2472 0.20 (0.01)
Leukocyte telomere length (T/S ratio), GM (SE) 2472 1.02 (0.02)

Gender
Men 1192 48.07 (1.29)
Women 1280 51.93 (1.29)

Body weight
Underweight/normal weight (BMI b 25), % (SE) 767 34.10 (1.29)_
Overweight (BMI = 25–b30), % (SE) 879 33.00 (1.24)
Obese,(BMI ≥ 30), % (SE) 826 32.89 (1.29)

Smoking status
Current Smoker, % (SE) 528 23.72 (1.68)
Former Smoker, % (SE) 643 24.83 (1.15)
Never Smoked, % (SE) 1301 51.45 (1.99)

Alcohol consumption
No alcohol, % (SE) 877 30.54 (2.30)
1–5 drinks per day, % (SE) 1411 62.15 (2.40)
N5 drinks per day, % (SE) 184 7.31 (0.69)

Education Level
Less than high school % (SE) 810 20.67 (1.51)
Completed high school % (SE) 562 25.63 (1.51)
More than high school % (SE) 1100 53.71 (1.90)

Race/Ethnicity
White (non-Hispanic), % (SE) 1273 73.21 (1.85)
Non-Hispanic black. % (SE) 406 9.10 (7.09)
Mexican–American, % (SE) 592 7.20 (0.90)
Other % (SE) 201 10.49 (1.86)

Self-reported diabetes
No, % (SE) 2264 93.63 (0.49)
Yes, % (SE) 208 6.37 (0.49)

Hypertension
No, % (SE) 1620 71.86 (1.03)
Yes, % (SE) 796 28.14 (1.03)

Self-reported CDV diseases
No, % (SE) 2245 92.65 (0.60)
Yes, % (SE) 227 7.35 (0.60)
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Barr et al., 2005). Urinary creatinine was determined using a Jaffe rate
reaction measured with a CX3 analyzer and was entered into the
model as a log-natural transformed variable.

2.4. Statistical Analysis

LTL was not normally distributed, thus it was natural log-
transformed. Analyses were performed using the weights from the
urinary phthalate subsamples as recommended by NCHS. SAS-Callable
SUDAAN 10 (Research Triangle Institute, Research Triangle Park, NC)
was used to account for the NHANES complex sample design. All tests
were two sided, and p ≤ 0.05 was the level of significance. Urinary
phthalate metabolites were analyzed via quartiles. Quartile cutoffs of
the phthalate compounds were based on the weighted distributions of
MEP, MBP, MBzP and MEHP in the study population. We ran three
models: model 1 was adjusted for urinary creatinine; model 2 was
further adjusted for demographic and socio behavioral variables, such
as age (continuous), age squared, sex, race/ethnicity (non-Hispanic
white, non-Hispanic black, Mexican American, and other), education
(less than high-school, high school graduate, some college, and
above), alcohol consumption, self-reported smoking status (current,
former, or never smoker), serum cotinine (natural log-transformed);
model 3 was further adjusted for confounding factors such as body
weight status (underweight/normal, overweight and obese), self-
reported diabetes, hypertension, self-reported cardiovascular disease
(defined as an answer of yes to any of coronary artery disease, angina
pectoris, heart attack, stroke, or congestive heart failure on the medical
questionnaire) and c-reactive protein, a biomarker for inflammation,
since inflammation is associated with telomere length (Rode et al.,
2014), as well as phthalate (Ferguson et al., 2011). Further, we
performed analyses by age-group stratification (age 20–39 years, age
40–59 years, and age 60 and older). We, also, performed analyses strat-
ified for gender and smoking status. To avoid information bias due to
self-reported cigarette smoking, we used both self-reported cigarette
use and serum cotinine cutoff to define smoking status (Pirkle et al.,
2006): smokers included self-reported current smokers and those
with serum cotinine levels N10 ng/mL, and non-smokers included
self-reported former and never smokers and those with serum cotinine
levels ≤10 ng/mL.

A sensitivity analysis was conducted using additional adjustment for
serum gamma glutamyl-transferase (GGT) a biomarker of oxidative
stress which has been associated with phthalate exposure (Ferguson
et al., 2011). Oxidative stress has been also associated with telomere
length (von Zglinicki, 2002). In our analyses we did not exclude
participants with self-reported diagnosis of cancer. However, analyses
including, also, as independent variable the self-report diagnosis of
cancer (obtained from the medical questionnaire), did not change the
estimated phthalate parameters. Since our dependent variable LTL
was log-transformed, the results were re-transformed by exponentia-
tion of the β coefficients and presented as percent differences estimated
by comparing each of the upper three quartiles to the lowest quartile
using the formula 100 ∗ (eβ − 1); statistical tests for linear trends
were conducted by modeling quartiles as an ordinal variable using
integer values. All models were also run with urinary phthalate metab-
olites entered as natural log-transformed continuous variables. More-
over, to further characterize the shape of the relationship between
MEHP and LTL we used urinary MEHP as restricted cubic spline. We
used a modified SAS macro written by Desquilbet and Mariotti (2010)
to account for NHANES weight and sample design and the knots used
for restricted cubic spline were placed at the 5th, 35th, 65th and 95th
percentile as recommended by Harrell (2010).

3. Results

The weighted distributions of study population (n = 2472) charac-
teristics of the total sample are shown in Table 1. Briefly, the geometric
mean of LTL was 1.02. Women represented approximately 52% of the
sample; the geometric mean age of the participants was approximately
43 years old. Obesity prevalence was almost 33%. The prevalence of
former smokers and people who had never smokedwas approximately
25% and 51%, respectively, and almost 31% of the participants had never
consumed alcohol. The geometric mean (GM) of urinary MEP, MBP,
MBzP and MEHP was 123.77 ng/mL, 20.85 ng/mL, 8.86 ng/mL and
3.59 ng/mL, respectively, in the study population.

Table 2 shows the results of the multivariable linear regression. Brief-
ly, in crude analyses (adjusting only for urinary creatinine) individuals in
the 3rd and 4th quartiles of urinary MEHP had statistically significantly
longer LTL compared to the lowest referent quartile (Table 2, Model
1) with evidence of a dose–response relationship (p-value for trend
b0.001). Further adjustments for demographics (among them age) and
socio-behavioral variables (Table 2, Model 2) and for body weight status



Table 2
Percent differences (95% CI) in leukocyte telomere length (T/S ratio) by phthalate exposure, National Health and Nutrition Examination Survey, 1999–2002.

Model 1 Model 2 Model 3

Mono-ethyl phthalate (MEP) 2467 2467 2449
Q1: ≤42.11 ng/mL Referent Referent Referent
Q2: 42.12–116.10 ng/mL 3.67 (−1.98, 9.53) 2.53 (−1.49, 6.72) 2.43 (−1.39, 6.29)
Q3: 116.11–318.45 ng/mL 4.19 (−1.49, 10.30) 2.02 (−2.96, 7.14) 2.02 (−2.76, 7.04)
Q4: N318.45 ng/mL 1.51 (−4.69, 8.11) 1.51 (−4.02, 7.36) 1.82 (−3.63, 7.57)
p trend 0.20 0.58 0.63
Mono-butyl phthalate (MBP) 2472 2472 2454
Q1: ≤10.40 ng/mL Referent Referent Referent
Q2: 10.41–22.24 ng/mL −2.27 (−6.85, 2.63) −0.20 (−4.40, 4.19) −0.30 (−4.40, 3.98)
Q3: 22.25–42.83 ng/mL −2.47 (−6.57, 1.92) −0.70 (−4.40, 3.15) −1.00 (−4.40, 2.53)
Q4: N42.83 ng/mL −1.00 (−5.82, 4.08) 0.20 (−4.11, 4.81) −0.10 (−4.30, 4.19)
p trend 0.46 0.93 0.93
Mono-benzyl phthalate (MBzP) 2472 2472 2454
Q1: ≤4.10 ng/mL Referent Referent Referent
Q2: 4.11–9.58 ng/mL 2.02 (−3.34, 7.68) 1.82 (−2.66, 6.61) 2.53 (−2.27, 7.68)
Q3: 9.58–20.51 ng/mL 0.00 (−5.45, 5.87) −0.10 (−5.26, 5.23) −0.05 (−5.07, 5.34)
Q4: N20.51 ng/mL 2.63 (−2.57, 8.11) 1.41 (−3.34, 6.40) 1.41 (−3.34, 6.29)
p trend 0.21 0.28 0.25
Mono-(2-ethyl)-hexyl phthalate (MEHP) 2472 2472 2454
Q1: ≤1.20 ng/mL Referent Referent Referent
Q2: 1.21–3.44 ng/mL 2.84 (−1.29, 7.14) 2.74 (−0.50, 6.18) 2.74 (−0.50, 6.18)
Q3: 3.44–8.04 ng/mL 7.79 (4.08, 11.74) 5.44 (1.51, 9.64) 5.34 (1.31, 9.53)
Q4: N8.04 ng/mL 10.85 (6.72, 15.03) 7.47 (3.46, 11.63) 7.14 (2.94, 11.63)
p trend b0.001 0.01 0.01

Model 1 = adjusted for urine creatinine; Model 2 = as Model 1 plus adjusted for sex, age (years, continuous), age squared, education (less than high school, high school graduate, some
college and above), race/ethnicity (non-Hispanic white, non-Hispanic black, Mexican American, other), alcohol consumption, self-reported smoking status (current, former, or never
smoker), serum cotinine (log natural log-transformed). Model 3 = Model 2 plus adjusted for body weight status (underweight/normal, overweight, obese), c-reactive protein (natural
log-transformed), hypertension, self-reported diabetes, and self-reported CDV diseases.
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and c-reactive protein (Table 2, Model 3) showed decreased parameter
estimates for MEHP compared to Model 1, likely driven by the role of
aging in telomere attrition and the other covariates such as body weight,
but the statistical significant association of MEHP with longer LTL
remained. There were no statistically significant associations of the
phthalate metabolites MEP, MBP and MBzP with LTL (Table 2).

In complementary analyses, using urinary phthalate metabolites as
natural log-transformed continuous variable of the association of
increased urinary MEHP level with longer LTL was confirmed (Table 3).
With each one-unit of natural log-transformed MEHP unit, there was a
1.71% increase in LTL (Table 3, Model 3). Furthermore, analyses using
restricted cubic spline confirmed the dose-relationship between MEHP
and LTL (Supplement Fig. 1).

Analyses stratified by age group indicated that the statistically signifi-
cant association of LTL with MEHP was found in young adults (20–
39 years), middle aged (40–59 years) and older adults groups. In the
young adult group there was statistically higher LTL percentage change
in the 2nd, 3rd and 4th MEHP quartiles compared to the lowest MEHP
quartile, with a dose–response trend (Table 4). Both participants in the
4th MEHP quartile were statistically significant associated with higher
LTL compared to the referent lowest MEHP quartile, but the dose–re-
sponse trend was found only in the young adults (Table 4). Moreover,
there were positive statistically significant association of the 4th MBP
quartile and MBzP quartile compared to their respective lowest referent
quartile in the older age group (Table 4). Analyses stratified by sex or by
tobacco smoking use, confirmed the association of MEHP with longer
Table 3
Percent difference (95% CI) in leukocyte telomere length (T/S ratio) by phthalate metabolite ex

Model 1

LN-mono-ethyl phthalate (MEP) −0.90 (−2.86, 1.11)
LN mono-n-butyl phthalate (MBP) −1.19 (−3.05, 0.70)
LN mono-benzyl phthalate (MBzP). 0.70 (−0.50, 1.92)
LN mono-(2-ethyl)-hexyl phthalate (MEHP) 2.94 (1.82, 4.08)

Model 1 = adjusted for urine creatinine; Model 2 = as Model 1 plus adjusted for sex, age (yea
college and above), race/ethnicity (non-Hispanic white, non-Hispanic black, Mexican Americ
smoker), serum cotinine (natural log transformed). Model 3 = Model 2 plus adjusted for bo
log-transformed), hypertension, self-reported diabetes, and self-reported CDV diseases.
LTL in both sexes and in smokers and non-smokers. (Supplemental
Table 1). Sensitivity analyses including GGT yielded results similar to
those from the primary analyses (data not shown).

4. Discussion

Several phthalates have been associated with cell proliferation and
cancer. In this study we confirmed the hypothesis that phthalate may
be positively associated with LTL. The association of MEHP and LTL
remained significant after inclusion of several confounder variables. Sen-
sitivity analyses with the inclusion of the information of GGT (data not
shown) provided further evidence of the non-spuriousness of the associ-
ation. The statistical significant positive association, independently form
age, remained also when the analyses were stratified among age groups
(20–39 years old, 40–59 years and 60 years and older), by sex and
smoking. Moreover, a positive association was found in the older age
group between MBP and MBzP with longer LTL. Based on the result of
the multivariate analyses of this cohort, participants in the third
and fourth quartile of MEHP had, on average, longer telomere length
(129 and 172 base pair, respectively) compared to those in the lowest
quartile, whereas telomere erosion by age leads on average to a loss of
16 bps per year.

Telomeric DNA is lost with each cell division until replicative senes-
cence is reached (Harley et al., 1990; Chiu and Harley, 1997). In the
presence of telomerase, telomere length is maintained allowing the
cells to escape replicative senescence (Liu et al., 2004). Human TERT
posure, National Health and Nutrition Examination Survey, 1999–2002 by gender and age.

Model 2 Model 3

−0.30 (−1.98, 1.31) 0.50 (−0.60, 1.71)
−0.60 (−2.18, 1.11) −0.10 (−4.30, 4.19)

0.30 (−0.90, 1.51) 0.30 (−1.00, 1.61)
1.82 (0.70, 2.94) 1.71 (0.60, 2.94)

rs, continuous), age squared, education (less than high school, high school graduate, some
an, other), alcohol consumption, self-reported smoking status (current, former, or never
dy weight status (underweight/normal, overweight, obese), c-reactive protein (natural



Table 4
Percent differences (95%CI) in leukocyte telomere length (T/S ratio) by phthalate exposure, National Health and Nutrition Examination Survey, 1999–2002 by age.

Age 20–39 years Age 40–59 years Age ≥ 60 years

Mono-ethyl phthalate (MEP) n = 890 n = 747 n = 774
Q1: ≤42.11 ng/mL Referent Referent Referent
Q2: 42.12–116.10 ng/mL −2.18 (−7.96, 3.98) 5.34 (−0.90, 12.08) 3.87 (0.90, 6.82)
Q3: 116.11–318.45 ng/mL −2.96 (−8.24, 2.74) 3.98 (−1.98, 10.41) 5.44 (−0.80, 11.96)
Q4: N318.45 ng/mL −3.15 (−10.33, 4.71) 3.77 (−3.44, 11.52) 5.65 (−0.20, 11.85)
p trend 0.76 0.26 0.03
Mono-butyl phthalate (MBP) n = 890 n = 747 n = 779
Q1: ≤10.40 ng/mL Referent Referent Referent
Q2: 10.41–22.24 ng/mL 1.51 (−3.92, 7.14) −3.34 (−9.88, 3.77) 1.41 (−4.21, 7.36)
Q3: 22.25–42.83 ng/mL 2.94 (−8.79, 3.56) −1.29 (−6.95, 4.60) 3.56 (−2.96, 10.52)
Q4: N42.83 ng/mL −3.82 (−10.51, 3.36) −0.40 (−7.78, 7.68) 8.00 (1.51, 14.91)
p trend 0.11 0.71 0.046
Mono-benzyl phthalate (MBzP) n = 890 n = 747 n = 779
Q1: ≤4.10 ng/mL Referent Referent Referent
Q2: 4.11–9.58 ng/mL 6.18 (−9.61, 12.64) 3.15 (−1.98, 8.55) 3.15(−2.76, 9.31)
Q3: 9.58–20.51 ng/mL −0.80 (−9.43, 8.65) −1.78 (−7.78, 4.50) 1.61 (−5.07, 8.76)
Q4: N20.51 ng/mL −0.40 (10.52, 9.64) −0.30 (−6.48, 6.29) 7.36 (0.80, 14.34)
p trend 0.93 0.24 0.07
Mono-(2-ethyl)-hexyl phthalate (MEHP), n = 890 n = 747 n = 779
Q1: ≤1.20 ng/mL Referent Referent Referent
Q2: 1.21–3.44 ng/mL 5.97 (1.71, 10.30) 1.41 (−4.21, 7.36) 0.20 (−3.92, 4.50)
Q3: 3.44–8.04 ng/mL 8.00 (2.02, 14.34) 3.25 (−4.11, 11.07) 3.56 (−2.47, 9.97)
Q4: N8.04 ng/mL 7.68 (2.84, 12.86) 7.36 (0.05, 15.14) 7.68 (0.05, 15.37)
p trend b0.01 0.08 0.16

Adjusted for urine creatinine, sex, age (years, continuous), education (less than high school, high school graduate, some college and above), race/ethnicity (non-Hispanic white, non-
Hispanic black, Mexican American, other), alcohol consumption, self-reported smoking status (current, former, or never smoker), serum cotinine (natural log-transformed), bodyweight
status (underweight/normal, overweight, obese) c-reactive protein (natural log-transformed), hypertension, self-reported diabetes, and self-reported CDV diseases.
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(hTERT) promoter is the most important regulatory element of telome-
rase expression and contains numerous binding sites for a variety of
transcription factors, including both activators and repressors of hTERT
(Liu et al., 2004). There are several potential underlying mechanisms
that may explain the positive association of MEHP and telomere length
through the induction of several transcription factors that act as regula-
tors of hTERT.

Previous research has shown that c-myc acts as a key regulator of
hTERT transcription during carcinogenesis via its binding to the E-box
(Enhancer Box) and subsequent activation of transcription (Kyo et al.,
2008). Therefore, one underlying mechanism for MEHP contribution
to telomere length maintenance may be through induction of c-myc
expression. Yao et al. (2011) using peripubertal (21-day-old) male
wild-type C57BL/6J mice exposed to MEHP reported an activation of
c-myc. Moreover, induction of c-myc was, also, reported when primary
co-cultures of rat Sertoli cells and rat germ cells were exposed to
MEHP (Yao et al., 2011). In a subsequent in vitro study, the same
group reported that MEHP exposure enhanced tumor progression/
metastasis in human testicular embryonal carcinoma cells (NT2/D1)
by induction of c-myc (Yao et al., 2012). Activation of c-myc after
exposure of primary Sertoli cells from adult male mice to MEHP was
also reported by Zhang et al. (2014). Similarly, the underlying mecha-
nism for MBP and MBzP contribution to telomere maintenance in the
older adults may also be through activation of c-myc. Hsieh et al.
(2012) reported that dibutyl phthalate (the compound parent of the
MBP metabolites) and n-butyl benzyl phthalate (the compound parent
of the metabolite MBzP) induce proliferation and invasiveness of estro-
gen receptor-negative breast cancer cells through activation of c-myc
(Hsieh et al., 2012).

Another underlying mechanism for MEHP contribution to telomere
length maintenance may be through the activation of the P13K/Akt
pathways. The P13K/Akt pathway has a central role in cellular immor-
talization by up-regulating hTERT expression and/or by restraining the
inactivation of hTERT expression (Daniel et al., 2012). Low concentra-
tions of DEHP induce a proliferative effect on human MCF-7 breast
cancer cells through activation of the P13K/Akt signaling pathway
(Chen and Chien, 2014). Cell proliferation and activation of the P13K/
Akt pathway, along with increased expression of AKT, were reported
after exposure of human neuroblastoma cells to DEHP (Zhu et al.,
2010; Zheng et al., 2013). Up-regulation of the transcriptional level of
P13K and AKT, as well as production of AKT proteins, was reported
after exposure of human hepatocellular carcinoma cell lines (Hep3B)
to DEHP (Chen et al., 2013). P13kinase/Akt pathway activation during
MEHP exposure has been also reported in partially differentiated
mouse macrophage cell lines (Bolling et al., 2012).

Based on molecular evidence from several animal cancer models,
primarily liver and testis, the International Agency for Research on
Cancer (IARC) classified DEHP as “possibly carcinogenic to humans”
(Group 2B) in 2012 (IARC, 2013). Also, theNational Toxicology Program
(NTP, 2014) list DEHP as “reasonably anticipated to be a human carcin-
ogen.” The other phthalate compound that IARC evaluated for carcino-
genicity is the BBzP and the IARC working group concluded that BBzP
“is not classifiable as to its carcinogenicity to humans (Group 3)”
(http://monographs.iarc.fr/ENG/Monographs/vol73/mono73-9.pdf).

The role of DEHP in cancer development is based upon animal
models, particularly rats. However, the relevance of current animal
models to human is questionable since the peroxisome proliferating
pathways strongly affected by phthalate in rats may not be relevant in
humans (Rusyn and Corton, 2012). Epidemiological studies evaluating
exposure to phthalates and cancer are limited. In an age-matched
case–control study of breast cancer in women (cases= 233, controls =
221), Lopez-Carrillo et al. (2010) reported a positive association of MEP
and an inverse association of MBzPwith breast cancer risk. The authors,
after adjusting for risk factors and other phthalates, also reported
increased odd ratios for breast cancer with urinary concentrations of
four DEHP metabolites: MEHP, MEHHP, MEOHP, and MECPP; however,
the increased risk was only statistically significant for MECPP (Lopez-
Carrillo et al., 2010). In a case–control study of Alaskan native women
(75 cases, 95 controls) urinaryMEHPwas associated with breast cancer
(Holmes et al., 2014).

Because of the ability of DEHP andMEHP to induce the expression of
c-myc and P13K/Akt pathways in human cell lines and the role of these
in telomerase maintenances, our findings may be suggestive of a possi-
ble action of MEHP as tumor promoter. However, these findings need to
be taken with caution since there are several important limitations in
the study. Ferguson et al. (2011) reported a positive association
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between urinary phthalatemetabolites and serum biomarker of inflam-
mation and oxidative stress (CRP and GGT, respectively). MEHP was
associated with an increase in GGT, whereas MBzP and MBP were
associated with increased CRP (Ferguson et al., 2011). Both oxidative
stress and inflammation are associated with shorter LTL (Rode et al.,
2014; Jennings et al., 2000). In our analyses, the use of GGT in our
models did not affect the statistical significance of our findings (data
not shown). The cross-sectional nature of the study limits the inferences
that can be made based on the results. A major limitation is the use of
single-spot urine measures as an estimate of exposure. Phthalates are
rapidly metabolized and excreted and a single exposure measurement
may not reflect long-term exposure; however, Hauser et al. (2004)
found that a single urine sample may moderately predict the average
intra-individual exposure over 3 months exposure with sensitivities
ranging from 0.56 to 0.74. Although the strength of our study is that it
is based on a nationally representative survey, there could also be
other environmental toxicants, since people are exposed to a wide-
range of chemicals, that may have had a confounding effect on the
associations we observed. Recently, an association of persistent organic
pollutants (POPs) with longer LTL using a different subset of NHANES
1999–2004 dataset has been reported (Scinicariello and Buser, 2015;
Mitro et al., 2015). Conversely, a study conducted using NHANES
1999–2004 data reported an association of blood cadmium and urinary
cadmium with short LTL (Zota et al., 2015).

In conclusion, we found an age-independent association between
urinary MEHP and longer LTL after adjusting for several important
potential confounders. The finding may be suggestive of the role of
MEHP as tumor promoter and further studies to evaluate the effect of
MEHP, as well as other phthalate metabolites, on LTL are needed to
fully understand the implications of the findings of this study.
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