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Introduction
Alongside the worldwide epidemic of obesity, 
metabolic syndrome and its cardiovascular com-
plications,1,2 non-alcoholic fatty liver disease 
(NAFLD) is also rising globally, and is the pri-
mary hepatic complication of metabolic syn-
drome.3–5 NAFLD is defined as the presence of 
hepatic fat content, mostly triglycerides, greater 
than 5% of hepatic weight, in the absence of other 
causes of liver steatosis or chronic liver disease, 
e.g. viral and/or autoimmune hepatitis, hemo-
chromatosis, alpha-1 antitrypsin deficiency, 
Wilson’s disease, steatogenic drug use or signifi-
cant alcohol consumption.6,7 NAFLD is an 
umbrella pathology encompassing a histological 
spectrum ranging from simple or isolated steato-
sis to non-alcoholic steatohepatitis (NASH), with 

substantial liver-cell damage (evidenced on the 
liver biopsy as ballooning of hepatocytes) and 
inflammatory changes as key histological charac-
teristics. NASH can be accompanied by progres-
sive fibrosis and may ultimately lead to cirrhosis 
in up to 20% of cases. Cirrhosis, which is irrevers-
ible in the majority of cases, can be complicated 
by decompensation or by the development of a 
hepatocellular carcinoma, but the latter has also 
been described in earlier disease stages.2,7,8 Global 
prevalence of NAFLD is estimated ranging 
between 10% and 30%, with its highest preva-
lence in the Middle East and South America and 
lowest in Africa.9 In the United States, NASH has 
been recognized as one of the leading causes of 
cirrhosis, and NASH-related cirrhosis is currently 
the second most common indication for liver 
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transplantation.10 Assuming the current trends in 
the prevalence of diabetes and obesity, it has been 
estimated that the overall liver-graft donation in 
2030 will fall from 78% to 44%.11 As the preva-
lence of fatty liver disease is increasing, it is 
expected that a higher proportion of potential 
donors will have steatosis or steatohepatitis and 
might be declined for liver-transplant purpose.

NAFLD is associated with several metabolic 
comorbidities including obesity in approximately 
50% of NAFLD patients, type 2 diabetes (T2D) in 
more than 20%, and dyslipidemia in almost 70%. 
In patients with more advanced stages of liver dis-
ease such as NASH, prevalence estimates for T2D 
reach up to 43%, obesity prevalence to over 80%, 
and hyperlipidemia in over 70% of subjects.10

Conversely, prevalence of NAFLD is high in 
patients with components of the metabolic syn-
drome and is reported in over 75% of patients 
with T2D and in over 90% of severely obese 
patients undergoing bariatric surgery.9 Diabetes 
in individuals with NAFLD is a risk factor for 
progression toward NASH, cirrhosis, and for 
increased mortality, and poor glycemic control 
increases the risk of fibrosis in NASH.12 Heart 
disease is one of the leading causes of death for 
NAFLD patients.10 NAFLD and its severity has 
been suggested a major determinant of cardio-
vascular disease (CVD) outcome. However, 
when corrected for conventional risk factors, this 
link seems to disappear,13 but subjects with both 
NAFLD and T2D carry a higher overall risk.14

NAFLD patients have an almost twice-higher risk 
of incidental T2D compared with non-NAFLD 
patients and this risk increases with expanding 
waist circumference.15 T2D and NAFLD are 
mutually, closely, and bi-directionally associated.16

From a pathophysiological point of view, the liver 
is particularly prone to the accumulation of 
ectopic lipids when subcutaneous adipose-tissue-
expanding capacity is reached.17 Increased dietary 
fat intake, adipose-tissue-derived free fatty acids 
(FFAs) and de novo lipogenesis in the liver can all 
contribute to excess liver fat storage.18,19 Weight 
gain and fat excess in the liver contribute to the 
induction of hepatic insulin resistance. The liver 
continuously produces glucose (gluconeogene-
sis), regulated by insulin. In an insulin-resistant 
state, inhibition of hepatic glucose production is 
tempered, leading to slight hyperglycemia. These 

higher insulin levels enhance carbohydrate-
induced liver lipogenesis, leading to more fat 
accumulation and inducing a vicious cycle.20 
Dietary carbohydrates, especially derived from 
fructose, further stimulate de novo lipogenesis, 
additionally contributing to liver steatosis and its 
metabolic consequences.21

Although the association between overweight, 
alterations in fat distribution with visceral and 
ectopic fat accumulation, and metabolic compli-
cations are obvious in epidemiological studies, 
the exact pathophysiological pathways underlying 
these consequences are not fully elucidated. 
Several major abnormalities are currently being 
suggested as possible pathophysiological mecha-
nisms.17–20,22 First, the lipid overflow theory pro-
poses that the incapacity of subcutaneous adipose 
tissue to store fat leads to accumulation of fat in 
the visceral fat depots and of triglycerides within 
cells of non-adipose tissue [e.g. liver, muscle, 
heart, pancreatic beta (β) cell], defined as ectopic 
fat. Second, these ectopic fat deposits are associ-
ated with the formation of toxic metabolites that 
increase insulin resistance, and are potentially 
cytotoxic to the fat-loaded non-adipose tissues 
(lipotoxicity).23 Third, obesity, metabolic syn-
drome and T2D are also characterized by a state 
of chronic inflammation, caused by infiltration of 
macrophages in the adipose tissue. This leads to 
the production of inflammatory molecules that 
have been associated with insulin resistance, pan-
creatic β-cell dysfunction, liver inflammation and 
CVD. Finally, fat cells secrete a variety of adi-
pokines acting as an endocrine organ and exerting 
autocrine, paracrine, and endocrine actions. 
Large adipocytes, as found in visceral fat, secrete 
less anti-inflammatory and protective but more 
harmful adipocytokines, further disturbing over-
all metabolism.17

In view of this booming epidemic, with a back-
ground of obesity and T2D, and the important 
medical consequences, early recognition and 
intervention of NAFLD/NASH seems appropri-
ate. In this review, we will focus on the different 
actual and future therapeutic intervention 
options, taking into consideration the complex 
pathophysiology of this disease.

Diagnostic procedures to diagnose NAFLD
Liver biopsy still remains the gold standard for 
the diagnosis of NAFLD, since histology allows 
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exact measurements of hepatocyte fat content, 
inflammation, fibrosis rate, and hepatocyte dam-
age.6 However, due to its invasive nature with a 
small, but significant risk of complications and 
high cost, it is not suitable for daily clinical prac-
tice and routine follow up during treatment. 
Therefore, reliable, accurate, and non- or mini-
mally invasive biomarkers and non-invasive pro-
cedures are being explored.24 Liver enzymes are 
unreliable or inaccurate predictors, since up to 
80% of NAFLD patients have normal serum liver 
tests.25

In a general population, indices combined with 
biological parameters, can offer an adequate diag-
nostic efficacy [area under the receiver-operator 
curve (AUROC): 0.7, 95% confidence interval 
(CI) 0.53–0.87] and relate positively to hepato-
cellular liver content, insulin sensitivity and β-cell 
function.26 However, although these indices can 
accurately diagnose NAFLD, none of them can 
be used to quantitate liver fat and evaluate treat-
ment effect.26

Ultrasound-based techniques such as transient 
elastography (TE) and controlled attenuation 
parameter (CAP) are techniques enabling the 
simultaneous measurement of steatosis (by CAP) 
and liver stiffness (by TE), the latter reflecting 
fibrosis. The AUROC for CAP to diagnose mild 
(S1), moderate (S2), and severe steatosis (S3) is 
0.96 [standard error (SE) 0.01], 0.82 (SE 0.03), 
and 0.70 (SE 0.02) respectively.27

With advanced magnetic resonance imaging 
(MRI) of proton-density fat fraction (PDFF), 
hepatic fat content across the entire liver can be 
measured in an accurate and reproducible man-
ner. MRI-PDFF has been validated against liver 
histology, and shows more sensitivity (optimal 
cut-off point 29.8%) in detecting changes in 
hepatic fat content and treatment response.28 
However, although non-invasive imaging tech-
niques such as MRI-PDFF are evolving at increas-
ing pace and provide early diagnosis and prognostic 
information on NAFLD, MRI is not largely avail-
able in common clinical practice. Furthermore, 
MRI-PDFF does not provide reliable evaluation 
of the presence of NASH, nor fibrosis.

Methodology
The authors executed a literature search using the 
PubMed, Embase and Web of Science databases. 

The authors used the following MeSH terms: 
‘NonAlcoholic Steatohepatitis’[MeSH] OR 
‘Non-alcoholic Fatty Liver Disease’[MeSH]) 
AND ‘Therapy’[Subheading]; ‘NonAlcoholic 
Steatohepatitis’[MeSH] OR ‘Non-alcoholic Fatty 
Liver Disease’[MeSH] AND ‘Pathophysiology’ 
[Subheading] AND ‘Drug’; ‘Pharmacological 
therapy’[MeSH] AND ‘Non-alcoholic Fatty 
Liver Disease’[MeSH]. Articles were ranked, and 
abstracts were screened for relevance. Language 
was restricted to English. Authors provided addi-
tional articles based on relevance for this paper 
from a personal archive or search strategy. We 
searched for articles published between April 
2019 and April 2021. References were screened 
for additional papers. Abstract books from rele-
vant conferences were screened for unpublished 
trials. Clinical trials were further identified by 
consulting ClinicalTrials.gov.

Therapeutic approaches

Lifestyle measures by diet adaptation
There is a general consensus that 5–10% weight 
loss will reduce the majority of risk factors leading 
to glucose disturbance, hepatic fat accumulation, 
and CVD.28–31 It is also long known that a calorie-
restricted diet rapidly decreases liver fat and can 
completely normalize hepatic insulin sensitivity in 
obese individuals with or without T2D.32,33 
Macronutrient composition of the diet, high ver-
sus low carbohydrate, high versus low fat and high 
versus low protein, seems to be of less importance 
than total caloric deficit in determining fat loss. 
Among different macronutrient diets, no differ-
ences were noted in body composition, abdomi-
nal or hepatic fat loss.34 A more recent trial found 
that both a low-carbohydrate, high-fat diet and an 
intermittent calorie-restrictive diet were more 
effective compared with general lifestyle advice 
from a hepatologist.33

The current American Association for the Study 
of Liver Diseases (AASLD) and European 
Association for the Study of the Liver guidelines 
recommend weight loss achieved by hypocaloric 
diets in conjunction with increased physical activ-
ity for treatment of NAFLD/NASH.6,7 While life-
style modification consisting of diet, exercise, and 
weight loss is advocated to treat patients with 
NAFLD/NASH, such modifications are difficult 
for subjects to sustain in long term.35 Moreover, 
weight loss alone may not always suffice for the 
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majority of patients, particularly those with 
advanced hepatic fibrosis, and as it is known from 
obesity management, challenges exist with imple-
menting lifestyle recommendations.

Many studies exist that analyzed the effects of 
lifestyle and weight loss on NAFLD and the risk 
of subsequent NASH, including MRI spectros-
copy studies.36 Results in overweight patients 
with biopsy-proven NAFLD could confirm initial 
findings, also offering the opportunity to assess 
important changes in inflammation, lobular 
changes, and fibrosis.37 Improvements in lifestyle 
can have immediate and sometimes significant 
effects on the liver in NAFLD patients, and may 
contribute to the high rate of ‘placebo response’ 
observed in NASH trials.38 Lifestyle modification 
remains key to managing NASH even after medi-
cal interventions become available.

In a sub-analysis of the LOOK-AHEAD study 
after 12 months, participants allocated to an 
intensive lifestyle intervention lost significantly 
more weight than participants receiving therapeu-
tic support and education only and showed a 
greater decline in hepatic steatosis.36 In addition, 
26% of those on conventional therapy without 
NAFLD at baseline, developed steatosis.36 In the 
COUNTERPOINT (COUNTERacting 
Pancreatic inhibitiOn of INsulin secretion by 
Triglyceride) study, designed to study insulin 
secretion after short-term weight loss with a 
600-kcal-restricted diet, and after withdrawal of 
metformin, patients with T2D achieved a weight 
loss of 15.3 kg over an 8-week period. Within 
7 days, liver fat levels and hepatic insulin sensitiv-
ity returned to levels seen in weight-matched 
non-diabetic controls. After 8 weeks, pancreatic 
fat content decreased as well, and the first-phase 
insulin response normalized.39

Paired liver biopsy studies revealed that 5% loss 
of body weight is associated with significant 
reductions in hepatic steatosis, over 7% weight 
loss is associated with reduction in hepatic inflam-
mation, and over 10% weight loss, with reduction 
in fibrosis.40

The Diabetes Remission Clinical Trial(DiRECT) 
included T2D patients with a body mass index 
(BMI) of 27–45 kg/m² and a disease duration for 
up to 6 years. The mean weight loss in the inter-
vention group at 12 months was 10 kg. Diabetes 
remission, defined as glycated hemoglobin 

(HbA1c) < 6.5% without the use of antidiabetic 
drugs, was achieved in 46% of patients after 
1 year, and in 36% of patients after 2 years.41,42 In 
a post hoc analysis of the whole-study population, 
of those participants who maintained at least 
10 kg weight loss (24% of the patients in the inter-
vention group), 64% achieved diabetes remission. 
Liver fat content fell to 3.3% after rapid weight 
loss and remained at 3.0% after 12 months of fol-
low up, even though mean BMI remained at 
31.5 kg/m² after weight loss.42 Very-low-density 
lipoprotein 1 (VLDL1), triglyceride production, 
and intrapancreatic fat also decreased after weight 
loss. In those who relapsed after initial remission, 
a greater VLDL1–triglyceride content, re-accu-
mulation of intrahepatic fat, and loss of the first-
phase insulin response was observed.43 The 
finding that liver fat accumulation remains low, 
despite the high residual BMI, confirms the con-
cept that ectopic fat accumulation only occurs 
when an individual threshold of body fat burden 
is exceeded. Moreover, the timeframe of reversal 
and regain of intrahepatic fat and lowering and 
increasing of VLDL–triglyceride content, with 
pancreatic fat content and effects on first-phase 
insulin secretion, confirms that weight-related 
disturbed fat metabolism drives the development 
and reversal of T2D.44

In a recent systematic review, including six stud-
ies comprising 317 patients, reduction in hepatic 
steatosis was statistically significant, concomi-
tantly with weight loss, mainly in Mediterranean 
diets but also with one low-carbohydrate-, one 
intermittent-fasting- and one low-fat-based inter-
vention.45 Despite this promising outcome, it 
remains unclear what will be the optimal nutri-
tional approach in this population. Indeed, little 
is known of popular weight-loss diets such as low-
carbohydrate diets and the recent ketogenic diets. 
Other review articles have previously shown simi-
lar findings.46,47 Further randomized trials of 
longer duration, exclusively focusing on NAFLD 
individuals and on sustainability, are needed to 
evaluate the most appropriate nutritional plan.

Systematic reviews have also shown that exercise 
can reduce liver steatosis in patients with NAFLD, 
independent of weight loss and dietary intake.48,49 
The main results suggest that, regardless of type, 
exercise can reduce the amount of intrahepatic 
fat. In a separate exercise study of short duration, 
Houghton et  al.50 reported the reduction of 
hepatic triglyceride content with limited effects 
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on markers of inflammation and fibrosis. There is 
no consensus as to whether physical exercise may 
have antifibrotic effects, but Linden et  al.51 
reported that liver fibrosis in a fatty rat model 
may benefit from exercise by altered stellate-cell 
activation.

Lifestyle intervention with mainly aerobic exer-
cise was more recently studied with spectroscopy 
techniques to analyze the effects of exercise on 
hepatic fat content. A randomized controlled trial 
with over 100 participants with prediabetes from 
China studied whether exercise alone or in com-
bination with a fiber-enriched diet could have an 
effect on fat content. The authors found that aer-
obic exercise was able to reduce the liver fat con-
tent by 24.4%, increasing to almost 48% when a 
fiber-enriched diet was combined, confirming the 
previous data that combination therapy may aug-
ment the outcome effects.52

It is generally accepted that exercise at moderate 
level (three to four times a week, at 20–40 min per 
session, achieving 70% maximal oxygen uptake 
volume) is ideal for mobilizing fat from the liver. 
Although the effects of exercise are generally 
known to act protectively on overall metabolism, 
relatively little is known about the underlying 
molecular and metabolic mechanisms; reduction 
of inflammation through adipokine modulation 
could be one of the explanations.48 An important 
limitation is that the majority of studies on exer-
cise have solely analyzed intrahepatic fat, without 
assessing factors of inflammation and ballooning 
as part of NASH.

Since a link between gut-microbiome-derived 
metabolites and steatosis has been suggested, a 
proof-of-concept study indicated that probiotics 
could improve liver fat in NASH patients.12,53,54 
More recent research is ongoing, studying probi-
otics as potential new strategies in the treatment 
of NAFLD.55

Bariatric surgery
Bariatric surgery, as an alternative option for 
patients with severe obesity and T2D, is known to 
be an effective intervention for weight reduction 
and diabetes control in many individuals.56 To 
date, it is the only procedure able to restore glu-
cose tolerance. The effects of these procedures 
reach far beyond isolated reduction of body fat, 

explaining why it is referred to as metabolic 
surgery.57

Long-term diabetes incidence reduction is 
reported, with slight differences between surgical 
procedures. An early reported meta-analysis by 
Buchwald et  al.58 already indicated diabetes 
improvement and resolution by 86% and 77%, 
respectively.

Metabolic surgery, by reducing subcutaneous 
and visceral adipose-tissue volumes, can reduce 
HbA1c numerically by over 3%, as was reported 
in several outcome studies among obese individu-
als with T2D.59–62 Remission, defined as return to 
normal glucose tolerance without medication, 
was found to be dependent on the duration of the 
disease in a subanalysis form the Swedish SOS 
study.63 In addition, surgical procedures also 
improve both micro- and macrovascular compli-
cations, and the reduction of microvascular com-
plications was found to occur when early 
intervention (<4 years) was achieved.63 When 
compared with intensive medical therapy, the 
5-year outcome in the STAMPEDE trial clearly 
showed superiority in diabetes control and a 
reduction in the need of glucose-lowering medi-
cation, even in the lower BMI subgroups.61

Metabolic surgery also reduces ectopic fat, 
hepatic fat in particular, contributing to a marked 
improvement of NAFLD/NASH manifesta-
tions.42,64,65 The development of non-invasive 
imaging techniques (myocardial, hepatic and 
pancreatic triglyceride content) has made it pos-
sible to accurately quantify ectopic fat accumula-
tion. In an MRI-based study, 89% of individuals 
with the diagnosis of NAFLD at baseline, were 
cleared from NAFLD after 6 months.66 This 
effect is likely due to the reduction of FFAs circu-
lating to the liver.67 In several studies, after only a 
few weeks, early changes in liver fat fractions are 
described.68 In another study, the reduction rates 
of intrahepatocellular lipid levels in obese women 
were up to 80% after 12 months following sur-
gery. With biopsy-proven NASH, metabolic 
intervention led to the resolution of NASH in 
nearly 85% of patients.

Concomitant with fat in the liver, pancreatic fat 
reduction could be shown in a study with an MRI 
evaluation, as well.66,69 This reduction was asso-
ciated with improved β-cell function and glucose 
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control.70 Improvement of ectopic fat in the 
heart, e.g. epicardial or intracardial steatosis, has 
been documented with several reports.65,71,72 
Differences have indeed been demonstrated con-
cerning epicardial fat reduction with less effect 
on myocardial fat reduction. Such anatomic 
effects were associated with significant changes 
in left ventricle mass and cardiac output.65

A recent report revealed a rapid decrease of car-
diac dietary fatty acid partitioning (cardiac fatty 
acid uptake and systemic spillover) after sleeve 
gastrectomy and biliopancreatic diversion.73

Insights into mechanisms of ectopic fat changes 
added the potential enhancing effect on adeno-
sine monophosphate (AMP)-activated protein 
kinase (AMPK) phosphorylation and chaper-
one-mediated autophagy translating into 
removal of lipid droplets, leading to an increase 
in lipolysis and amelioration of hepatic insulin 
resistance.64

A few systematic reviews concluded that bariatric 
surgery is associated with significant reduction of 
a number of histological features of NAFLD, 
mainly after Roux-en-Y gastric bypass graft 
(RYBG) surgery, with the most pronounced 
effect on steatosis, ballooning, and inflammation, 
and the lowest beneficial effect on fibrosis.74 A 
recent meta-analysis of 20 studies compared 
RYBG and sleeve gastrectomy based on four 
indices: alanine transaminase, aspartate transami-
nase, NAFLD activity score, and NAFLD fibro-
sis score. All criteria improved after either surgery, 
but superiority of any procedure could not be 
demonstrated.75 However, a novel study, not 
included in the aforementioned analysis, com-
pared 16 patients who underwent RYBG with 
eight patients with sleeve gastrectomy. This study 
found that RYBG provided better results accord-
ing to NAFLD activity score compared with 
sleeve.76 Studies on the effect of bariatric surgery 
on NAFLD stratified per procedure are summa-
rized in Tables 1–3.

The safety of bariatric surgery for patients with 
NASH, and particularly NASH cirrhosis, is not 
well established.105 Some reports mentioned an 
increased mortality in obese individuals with 
NASH undergoing bariatric surgery, suggesting 
a reduced survival time.106 On the contrary, in a 
large propensity-matched analysis, bariatric 
surgery was associated with reduction of 

hepatocellular carcinoma.107 Despite the 
improvements in NASH histology after bariat-
ric surgery, the 2018 AASLD guidelines state 
that it is premature to consider foregut bariatric 
surgery as an established option to treat NASH.7 
In our opinion, this statement is certainly valid 
for patients with NASH cirrhosis. Larger-scale 
outcome studies will be necessary, also indicat-
ing optimal indication and timing of interven-
tion, to identify the full long-term outcome.

Pharmacological intervention
Currently available pharmacological treatment 
options. Several drugs, not specifically licensed 
for the treatment of NASH but with a potential 
benefit based on their mode of action, have been 
tested in several trials. Actual and future phar-
macological interventions may tackle different 
pathophysiological background mechanisms, 
such as insulin sensitivity, inflammation, weight 
lowering, antifibrotic and lipid-lowering mecha-
nisms. To date, no drugs are officially licensed 
for the treatment of NAFLD. Multiple drugs, 
initially introduced in other fields of medicine, 
mainly T2D, are extensively being explored for 
their potential direct or indirect, through weight-
loss effects on NAFLD.108 From the hepatolo-
gist’s viewpoint, ursodeoxycholic acid (UDCA), 
a hepatoprotective bile acid used in cholestatic 
disease, did not show histological benefit in two 
long-term trials and is therefore not 
recommended.108

Since the strong entanglement between NAFLD, 
insulin resistance and visceral adipose tissue 
(VAT), a great proportion of drugs originating 
from the metabolic arsenal are investigated for 
NAFLD due to their insulin-sensitizing activity 
and impact on glycemic control.

Metformin was the first molecule to be tested for 
NASH, since its beneficial effect on insulin resist-
ance, but no histological effects were witnessed, 
and as a consequence, metformin is not indicated 
to treat NAFLD.109 New recent data however in 
animal studies revealed that metformin could 
attenuate the onset of NAFLD in association with 
changes of intestinal microbiota.110

Another antidiabetic class of drugs that has been 
thoroughly tested for NASH are the thiazolidinedi-
ones (TZDs) or glitazones. These drugs are ago-
nists of peroxisome-proliferator-activated receptor 
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(PPAR), gamma (γ) isotype, a nuclear receptor 
that exerts a pivotal role in glucose and lipid home-
ostasis, but also influences inflammation and fibro-
genesis.111,112 TZDs exert their hepatoprotective 
effect not only by increasing insulin sensitivity and 
subcutaneous fat accumulation, but also by 
enhancing adiponectin production and decreasing 
pro-inflammatory cytokine production in adipose 
tissue and macrophages. Glitazones have been 
approved for the treatment of diabetes, but were 
also shown to be effective in improving histological 

lesions of NASH in several trials.16,113–115 The 
improvement in liver histology is probably driven 
by both direct intra- and extrahepatic effects that 
subsequently benefit the liver, most importantly, 
an improvement in adipose-tissue dysfunction.116 
Safety concerns have been raised for some 
molecules.116

Pioglitazone has been shown to reduce hepatic 
steatosis, inflammation, and ballooning, although 
effects on fibrosis were less consistent.114 There  

Table 1. Studies on the effect of RYBG on NAFLD and its aspects.

Author Patients Duration Type Clinical effect

 Steatosis NASH Fibrosis Enzymes

Ranlov and Hardt77 7 12 months Prospective ↓ NA 0 0

Silverman et al.78 91 18.4 months Retrospective ↓ NA ↓ ↓

Clark et al.79 16 305 ± 131 days Prospective ↓ ↓ ↓ 0

Mattar et al.80 70 15 ± 9 months Prospective ↓ ↓ ↓ ↓

Mottin et al.81 90 12 months Retrospective ↓ NA NA NA

Klein et al.82 7 12 months Prospective ↓ 0 0 0

Barker et al.83 19 21.4 months Prospective ↓ ↓ ↓ 0

Csendes et al.84 16 22 months Prospective ↓ ↓ NA NA

De Almeida et al.85 16 23.5 ± 8.4 months Prospective ↓ ↓ ↓ NA

Furuya et al.86 18 24 months Prospective ↓ ↓ ↓ 0

Liu et al.87 39 18 months Retrospective ↓ ↓ ↓ ↓

Weiner et al.88 68 18.6 ± 8.3 months Mixed design ↓ ↓ ↓ ↓

Moretto et al.89 78 Unmentioned Retrospective NA NA ↓ NA

Tai et al.90 21 12 months Prospective ↓ ↓ ↓ ↓

Caiazzo et al.91 167 60 months Prospective ↓ ↓ ↓ ↓

Lassailly et al.92 70 12 months Prospective ↓ ↓ ↓ ↓

Praveen Raj et al.93 10 7.1 months Prospective ↓ ↓ ↓ NA

Froylich et al.94 14 18 months Retrospective ↓ ↓ ↓ 0

Winder et al.95 19 826 days Retrospective ↓ NA NA NA

Luo et al.96 26 6 months Prospective ↓ NA NA ↓

Schwenger et al.97 42 12 months Prospective ↓ ↓ ↓ ↓

Von Schönfels et al.98 19 192 days Retrospective ↓ ↓ ↓ 0

↓, ameliorated; 0, no effect; NA, not applicable; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; RYBG, Roux-en-Y 
gastric bypass graft.
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is some weight gain with PPAR-γ, but mostly due 
to a translocation from fat from visceral to subcu-
taneous adipose tissue, which is less harmful.116 
Pioglitazone clearly improved cardiovascular out-
comes in diabetic patients and has a more favora-
ble safety profile, but is nevertheless not frequently 
used.117 There are some concerns regarding the 
possibility of eliciting heart failure in predisposed 
individuals, although, as mentioned, an overall 
significant cardiovascular benefit has been 
recently demonstrated.

Novel PPAR agonists, acting on one or more of 
the PPAR isoforms, including pan-PPAR ago-
nists, are being studied for their potential use in 
the treatment of NAFLD.118,119

Fibroblast growth factor-21 (FGF21) has insulin-
mimetic properties that beneficially affects carbo-
hydrate and lipid metabolism. Although mainly 
secreted by the liver, FGF21 is also secreted by 
adipocytes and acts in an autocrine fashion in adi-
pocytes. FGF21 is required to mediate the effects 
of the PPAR-γ agonists. Besides FGF21, adi-
ponectin also seems to play a role in the mecha-
nistic benefit of pioglitazone in NASH.120

More recent molecules with effects on glycemic 
control and weight loss also show the potential to 
improve NASH.

Dipeptidyl peptidase-4 (DPP4) inhibitors are 
molecules that inhibit the rapid breakdown of 

Table 2. Studies on the effect of gastric banding on NAFLD and its aspects.

Author Patients Duration Type Clinical effect

 Steatosis NASH Fibrosis Enzymes

Dixon et al.99 36 25.6 ± 10 months Prospective ↓ ↓ ↓ ↓

Dixon et al.100 60 29.5 ± 10 months Prospective ↓ ↓ ↓ ↓

Mathurin et al.101 214* 60 months Prospective ↓ ↓ ↑ ↓

Caiazzo et al.91,92 246 60 months Prospective ↓ ↓ ↓ ↓

Lassailly et al.92 32 12 months Prospective ↓ ↓ ↓ ↓

*Unknown how many exactly had a follow-up biopsy, > 80% according to the authors.
↑, deteriorated; ↓, ameliorated; 0, no effect; NA, not applicable; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis.

Table 3. Studies on the effect of sleeve gastrectomy on NAFLD and its aspects.

Author Patients Duration Type Clinical effect

 Steatosis NASH Histology Enzymes

Ranlov and Hardt77 8 12 months Prospective ↓ NA NA 0

Jaskiewicz et al.102 10 8 months Prospective ↓ ↓ NA ↓

Stratopoulos et al.103 51 18 ± 9.6 months Prospective ↓ ↓ ↓ ↓

Praveen Raj et al.93 20 7.1 months Prospective ↓ ↓ ↑ ↓

Froylich et al.94 9 18 months Retrospective ↓ ↓ ↓ 0

Esquivel et al.104 43 12 months Prospective ↓ ↓ NA NA

Von Schönfels et al.98 34 192 days Retrospective ↓ ↓ ↓ 0

↑, deteriorated; ↓, ameliorated; 0, no effect; NA, not applicable; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis.
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incretins like glucagon-like peptide-1 (GLP-1). 
They are used for T2D and are tested for NASH 
as well, but to date, no large phase IIb trials with 
histological endpoints have been reported.121 
DPP4 inhibitors only have short-acting effects, 
acting indirectly on GLP-1. Therefore, direct 
GLP-1 agonists, or incretin mimetics, are intro-
duced due to their longer-lasting effects. They 
have been approved for the treatment of T2D. 
Exenatide, an exendin derived GLP-1 receptor 
agonist was initially studied in NAFLD patients.122 
Liraglutide in a dose up to 3 mg per day is also 
approved for the treatment of obesity in the 
absence of diabetes, since they reduce weight by 
more than 5% when applied on top of dietary 
measures and can normalize glucose intoler-
ance.123,124 Despite significant weight losses with 
GLP-1-receptor-agonist therapy, the effects of 
incretin mimetics on ectopic fat are conflicting. 
Some studies show dose-dependent decreases in 
visceral and ectopic adiposity and liver fat reduc-
tion.124,125 In a south Asian diabetic population, 
26-week treatment with liraglutide decreased 
VAT volume, and the reduction in VAT was 
associated with an improved HbA1c.124 On the 
other hand, in other studies, treatment with lira-
glutide reduced subcutaneous adipose-tissue vol-
ume without effects on VAT volume or did not 
reduce visceral, epicardial, paracardial or pericar-
dial fat mass, and had no effect on hepatic or 
myocardial steatosis compared with placebo.125

Liraglutide improves liver enzymes and has been 
reported in several trials to beneficially affect liver 
histology in subjects with NAFLD. The effect 
may be partially indirect due to the accompanied 
weight loss, although direct hormonal effects on 
the liver might coexist. Multiple phase II and 
phase III studies with GLP-1 agonists are cur-
rently ongoing, but to date, they are not (yet) 
approved to treat NASH, except in individuals 
with coexisting T2D and/or obesity. Liraglutide 
(at a dose of 1.8 mg four times daily) has been 
reported to beneficially affect liver histology in a 
small randomized controlled trial (RCT) with 23 
patients in each arm.126 It induced NASH resolu-
tion without worsening of fibrosis significantly 
more than placebo, and there was a trend for less 
fibrosis progression. It is likely the induced weight 
loss is one of the main drivers of the histological 
benefit, although other hormonal effects might 
also contribute to the overall effect on liver histol-
ogy. Until further data become available (several 
other GLP-1 analogs are currently being studied, 

including semaglutide), its use should be 
restricted to the approved indications. However, 
the addition of NASH to the list of comorbidities 
of obesity that justify pharmacological treatment 
of obesity is increasingly proposed.116 Most stud-
ies that explored the effects of GLP-1 receptor 
agonists on liver histology in patients with 
NAFLD/NASH were performed in patients with 
T2D. In this population, histological evaluation 
of the treatment with the GLP-1-receptor agonist 
showed that hepatic steatosis, lobular inflamma-
tion, hepatocyte ballooning, and fibrosis were 
reduced.127,128

With the newer molecule semaglutide, promis-
ing effects have been reported on liver enzymes 
and inflammation parameters.129 Recently, in a 
large phase IIb study, semaglutide at a daily dose 
of 0.4 mg significantly induced resolution of 
NASH without worsening of fibrosis after 
72 weeks of treatment, but it did not induce an 
improvement of fibrosis stage > 1.130 Studies 
with the once-weekly approach have shown 
promising effects on body weight, and an out-
come trial is ongoing.

Sodium–glucose cotransporter 2 (SGLT-2) 
inhibitors or gliflozins are another new class of 
antidiabetic drugs that inhibit glucose reabsorp-
tion from the urinary ultrafiltrate leading to 
increased glucosuria and subsequent metabolic 
control.131 They are also associated with weight 
loss and cardiorenal protection.132 Outside dia-
betes, SGLT-2 inhibitors are increasingly inves-
tigated for their beneficial effects in patients with 
heart failure, even without diabetes, as shown  
in the EMPEROR-Reduced and DAPA-HF  
trials.133,134 Multiple phase II and phase III stud-
ies are currently ongoing in NAFLD patients 
since early preclinical data suggested that 
SGLT-2 inhibitors reduce liver fat content in 
NAFLD patients with T2D.135 A trial of 50 
patients with T2D randomized to empagliflozin 
versus placebo on top of their treatment showed 
significant reduction in liver fat content and 
improvement of liver enzymes.131 Using MRI 
analyses in subjects with T2D, there was a sig-
nificant > 30% reduction from baseline in liver 
fat (p = 0.007) and > 10% reduction in adipose-
tissue volumes (p < 0.01) with dapagliflozin plus 
saxagliptin/metformin at week 52 versus glime-
piride plus metformin.136 A Swedish study with 
84 participants with T2D showed a significant 
reduction in hepatic fat content in those taking a 
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combination of dapagliflozin and omega-3 car-
boxylic acids compared with placebo, but not in 
those taking dapagliflozin in monotherapy.137 A 
recent meta-analysis of RCTs analyzing liver 
parameters and steatosis confirmed these prelimi-
nary findings in patients with T2D.138 So far, 
there are no published RCTs available evaluating 
histological endpoints, so SGLT-2s are not yet 
established in NASH therapy.135 One prospective 
trial in five NAFLD patients without controls 
using paired biopsies showed histopathological 
improvement.139

Combinations of SGLT-2 inhibitors with GLP-1 
receptor agonists (exenatide and dapagliflozin) 
have been shown to improve markers of steatosis 
and fibrosis in T2D patients, but effects on histo-
logical endpoints are still unknown.140,141

Vitamin E improved liver histology in non-dia-
betic NASH patients without cirrhosis, so its use 
can be recommended in this specific patient cat-
egory, dosed at 800 IU/day according to the 
PIVENS trial data.116,142 Indeed, vitamin E was 
ineffective in treating NASH in patients with 
T2D, while the combination of vitamin E and 
pioglitazone was significantly better than placebo. 
Although a recent large meta-analysis did not 
confirm earlier safety issues, the risk of prostate 
cancer in males is an issue of concern.143

Drugs in development. There is currently no 
pharmacological treatment that has NASH in its 
label. There is, however, a large pipeline of drugs 
being tested, some of them already in phase III.

Indeed, numerous drugs are currently being 
tested for the treatment of NASH. The develop-
ment is complex, as different endpoints can be 
defined and a variety of targets proposed. Efficacy 
must be present on the following clinical end-
points: development of cirrhosis, cirrhosis-related 
complications and all-cause mortality.116,144 Due 
to the long duration of these phase III–IV trials, 
drugs can be applied for conditional approval 
based on histological benefit, which is considered 
a reasonable surrogate for later clinical outcomes. 
Histological benefit is defined as resolution of 
NASH without worsening of fibrosis, or improve-
ment in at least one stage of fibrosis without wors-
ening of NASH.144

An important consequence of these considerations 
is the necessity of histological proof of efficacy and 

serial biopsies. In the following paragraphs we will 
briefly discuss the most important drug classes 
currently under investigation. An extensive review 
of all potential targets is beyond the scope of this 
review, so we will focus on the major classes. The 
most important phase II and III trials are summa-
rized in Table 4.

PPAR agonists. Three isoforms of PPARS 
exist.145,146 PPAR alpha (α) is mainly expressed in 
hepatocytes but also in many other cell types, 
including muscle cells. PPARα agonists like fibrates 
have not been extensively studied, but smaller stud-
ies did not show a histological benefit.108 We dem-
onstrated previously that PPARα expression is 
inversely correlated to the severity of NASH and 
that NASH improvement is associated with 
increased PPARα expression, giving rationale to a 
PPARα-targeted treatment despite the negative 
data with fibrates.145 Elafibranor is a hepatotropic 
dual PPARα-δ agonist, hence targeting not only 
PPARα but also PPARδ that is expressed in stellate 
cells and several other cell types. In a large phase 
IIb trial including 276 patients, elafibranor was able 
to induce resolution of NASH without worsening 
of fibrosis in significantly more patients compared 
with placebo if baseline NASH was sufficiently 
severe.118 The drug had a very good safety profile 
and also improved serum lipids and HbA1c, reduc-
ing the calculated overall risk of CVD. Interim anal-
ysis of the elafibranor phase III trial failed to show a 
benefit of the drug on liver histology and further 
development was halted. Several other PPAR drugs 
are in development, including lanifibranor (a pan-
PPAR agonist potentially combining positive effects 
of the glitazones with PPARα-δ agonism,73,93,94 
saroglitazar (a PPARα-γ dual agonist) and seladel-
par (a PPARδ agonist).119,147,148

Lanifibranor, as studied in the phase II NATIVE 
trial [ClinicalTrials.gov identifier: NCT03008070], 
showed significant results on both NASH resolu-
tion without worsening of fibrosis, and fibrosis 
improvement without worsening of NASH, and is 
thus the first compound to report efficacy in both 
these histological endpoints. The drug showed sig-
nificant results on the composite endpoint of 
NASH resolution and fibrosis improvement, 
improved lipid profile and HbA1c. Based on these 
efficacy data and accompanying safety data, the 
drug received the breakthrough therapy designa-
tion by the US Food and Drug Administration and 
is currently moving into phase III (NATiV3). 
Saroglitazar is also further studied as individual 
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compound in the EVIDENCES IV trial 
[ClinicalTrials.gov identifier: NCT03061721].

Farnesoid X receptor (FXR) agonist. FXR is a 
nuclear receptor in enterocytes and hepatocytes 
that plays in important role in bile-acid metabo-
lism but also impacts several metabolic, inflam-
matory, and fibrogenic pathways. FXR is present 
in the liver and the intestine, with some differ-
ences in effect, depending on the site.149

Bile acids are the natural ligands of FXR. UDCA 
has no FXR agonistic effect, but the bile acid 
obeticholic acid (OCA) is a potent FXR agonist 
and resulted in a significant response compared 
with placebo, as defined by at least a 2-points 
reduction in NAFLD activity score (NAS) in the 
FXR Ligant obetIcholic acid in NASH Treatment 
(FLINT) trial in 110 treated versus 109 placebo 
patients with paired biopsies.150 There was also a 
beneficial effect on fibrosis and a trend for 

Table 4. New therapeutic drugs targeting NASH in phase II and III trials.

Molecule Drug Phase Trial Histological effect

 Steatosis NASH Fibrosis

PPAR agonists Elafibranor II GOLDEN 505 ↓ ↓ 0

 Elafibranor III RESOLVE-IT NA 0 0

 Lanifibranor II NATIVE ↓ ↓ ↓

 Lanifibranor III NATiV3 Initiating soon

Farnesoid X receptor 
agonist

Obeticholic 
acid

II FLINT ↓ ↓ ↓

 Obeticholic 
acid

III REGENERATE 0 0 ↓

 Nor-UDCA II EudraCT number 
2013-004605-38

No histological endpoint, significant reduction in 
ALT

C-C chemokine receptor 2 
and 5 antagonist

Cenicriviroc II CENTAUR ↓ ↓ ↓

 Cenicriviroc III AURORA discontinued (no effect on fibrosis)

Apoptosis signal-regulating 
kinase 1 inhibitor

Selonsertib III STELLAR-3 and 
STELLAR-4

NA NA 0

Stearyl-CoA desaturase 1 Aramchol II ARREST ↓ ↓ 0

 Aramchol III ARMOR Trial ongoing

Fibroblast growth factor 19 NGM282 II NCT02443116 ↓ ↓* ↓*

Thyroid hormone receptor Resmetirom 
(MGL-3196)

II NCT02912260 ↓ ↓ 0

 Resmetirom 
(MGL-3196)

III MAESTRO-NASH Trial ongoing

 VK 2809 II VOYAGE Trial ongoing

Hepatokine FGF21 
(BMS986036)

II NCT02413372 ↓ NA NA

*Positive effect on composite endpoint NASH resolution and fibrosis regression, trend towards fibrosis regression.
ALT, alanine transaminase; ↓, ameliorated; 0, no effect; CoA, coenzyme A; FGF21, fibroblast growth factor 21; NA, not applicable; NASH, non-
alcoholic steatohepatitis; PPAR, peroxisome-proliferator-activated receptor: UDCA, ursodeoxycholic acid.
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resolution of NASH, both secondary endpoints. 
Because of the significant benefit in terms of the 
primary endpoint, the study was stopped prema-
turely and the drug went on to phase III. Pruritus 
is a known side effect of OCA, which is currently 
already licensed for the treatment of primary bil-
iary cholangitis. Furthermore, OCA decreased 
high-density-lipoprotein cholesterol levels and 
did not improve glycemic control. OCA is cur-
rently tested in a large phase III trial 
(REGENERATE). The interim analysis showed 
a significant effect of OCA on at least one-stage 
improvement of liver fibrosis without worsening 
of NASH after 18 months of treatment. The 
NASH resolution endpoint was not met. Based 
on these interim results, the drug was filed for 
conditional approval but has not yet been granted 
by the regulatory authorities.151

Several other bile-acid FXR agonists are currently 
investigated, with nor-UDCA (phase II) being 
the most advanced. Furthermore, several non-
bile-acid FXR agonists are being developed. 
Since they have different effects on intestinal or 
hepatic FXR and exhibit variable pharmacoki-
netic and pharmacodynamic properties, their net 
effects on the liver and metabolism as well as their 
safety profile are curiously awaited.

Cenicriviroc. Cenicriviroc is a C-C chemokine 
receptor (CCR)2 and -5 dual antagonist. CCR2 
and CCR5 play an important role in macrophage 
recruitment and differentiation and have been 
implicated in NASH pathogenesis. A large 2-year 
phase II trial studying the efficacy and safety of 
cenicriviroc for the treatment of NASH in adult 
subjects with liver fibrosis (CENTAUR) includ-
ing 289 patients reported after 1 year a significant 
decrease in systemic inflammation, but this did 
not clearly ameliorate NASH.152 By contrast, 
there was a significant benefit of cenicriviroc over 
placebo with regards regression of fibrosis. The 
data after 24 months corroborates antifibrotic 
findings after 1 year of treatment in the group that 
started on placebo, but switched to active drug 
after 1 year. The majority of participants who 
achieved fibrosis response after 1 year could 
maintain it, with greater efficacy in patients with 
advanced fibrosis at baseline.153 Based on these 
data, the drug entered phase III with reduction in 
fibrosis as the primary endpoint. Interim analysis 
showed that cenicriviroc failed to achieve this pri-
mary endpoint, which resulted in terminating the 
study.

Apoptosis signal-regulating kinase 1 inhibitor (sel-
onsertib). Selonsertib is an apoptosis signal-regu-
lating kinase 1 (ASK1) inhibitor involved in 
response to various stresses that was tested in a 
6-month trial in combination with or without 
simtuzumab in an antifibrotic strategy. When the 
other simtuzumab trials produced negative 
results, simtuzumab was considered the placebo. 
In this new setting, selonsertib was superior to 
placebo in terms of fibrosis regression, without an 
effect on steatohepatitis or on the metabolic fea-
tures. It was subsequently tested in two phase III 
trials, one for cirrhotic patients and one in 
advanced fibrosis patients (STELLAR trials). 
Harrison et al.154 recently reported the results of 
these two STELLAR studies, indicating that sel-
onsertib monotherapy had no antifibrotic effect 
in patients with bridging fibrosis or compensated 
cirrhosis due to NASH.

Stearyl-CoA desaturase 1 (aramchol). Besides the 
molecules currently in phase III, several other 
molecules are under investigation. Aramchol is a 
compound of which the phase II ARREST study 
data in 247 patients showed higher rates of 
NASH resolution without worsening of fibrosis, 
and fibrosis amelioration without worsening of 
NASH, leading to the initiation of the phase III 
ARMOR trial [ClinicalTrials.gov identifier: 
NCT04104321]. Aramchol is a bile-acid–fatty-
acid conjugate acting as a stearyl-coenzyme A 
desaturase 1 (the rate-limiting enzyme in the syn-
thesis of unconjugated fatty acids) inhibitor. 
Other attempts, like ezetimibe, have failed in that 
regard. Different approaches, like fatty-acid syn-
thase inhibition and other targets of cholesterol 
and triglyceride metabolism are tested in earlier 
phases of clinical development.

Fibroblast growth factor 19 (FGF19). FGF19 is 
released by the intestinal cells upon FXR stimula-
tion and will, after reaching the liver via the portal 
vein, exerts its actions on bile-acid metabolism via 
the FGF-receptor 4/β-klotho complex and also 
impacts lipid and glucose metabolism. Via the 
interleukin (IL)-6/STAT3 pathway, however, it 
also drives tumorigenesis. NGM282, a recently 
engineered FGF19 analog that lacks effect on the 
STAT3 pathway and hence most likely lacks 
tumorigenic effect of FGF19, demonstrated a sig-
nificant reduction in liver fat content in a phase II 
study including 82 NASH patients. Data of sin-
gle-arm studies have also been released recently. 
This injectable drug, named Aldafermin, appeared 
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to have an acceptable safety profile and was fur-
ther investigated in a phase II study. This study 
reported a significant reduction in absolute liver 
fat content compared with placebo after 24 weeks, 
alongside a trend toward fibrosis improvement155

Thyroid hormone receptors. Thyroid hormones 
increase energy expenditure and have catabolic 
properties, acting via the thyroid hormone receptor 
(THR), a nuclear receptor with different isoforms. 
An intrahepatic hypothyroidism has been shown to 
be present in NASH and potentially contributes to 
its pathophysiology.156 This intrahepatic hypothy-
roidism is potentially attributable to alterations in 
hepatic deiodinase expression because of repair-
related Hedgehog activation.156 The THR agonist 
resmetirom (MGL-3196) has a selectivity for the 
THR-β1 receptor mainly expressed in the liver and 
the kidney and therefore most likely lacks some 
potentially important side effects; among others, on 
bone metabolism. A study of 348 patients found that 
resmetirom treatment resulted in a significant reduc-
tion of liver fat content after 12 weeks and 36 weeks 
of treatment compared with placebo.157 In addition, 
liver enzymes were reduced, and biomarkers (adipo-
nectin, pro-C3 and cytokeratin-18) associated with 
inflammation and fibrosis were statistically signifi-
cantly changed by resmetirom.158 In secondary anal-
yses, liver biopsy data after 36 weeks showed 
reduction in NAS and NASH resolution, together 
with significant improvement of a number of athero-
genic lipids and lipoproteins. Based on the provided 
data, this compound also entered a phase III clinical 
trial (MAESTRO-NASH). VK2809, a compound 
with similar effects, is also currently in phase II to 
evaluate its effects on NASH [ClinicalTrials.gov 
identifier: NCT04173065].

Hepatokines. FGF21 is a so-called hepatokine, a 
peptide hormone predominantly produced by the 
liver (but also by multiple other organs, but circu-
lating levels are mainly determined by hepatic pro-
duction), regulating sugar intake, glucose 
homeostasis, and energy expenditure. Interest-
ingly, in view of the PPAR drugs in the pipeline, its 
expression in the liver is regulated by PPARα. Ani-
mal data suggest enhanced NASH and associated 
metabolic derangements upon FGF21 deficiency 
and improvement upon administration.114 Human 
data are conflicting, with increased FGF21 levels 
in NASH patients suggesting FGF21 resistance.69 
Recent data demonstrated a beneficial effect on 
liver fat content of BMS986036, an injectable 
pegylated analog of human FGF21, along with a 

reduction in biomarkers of liver injury and fibrosis 
in a placebo-controlled phase IIa trial.159

As with cenicriviroc, some drugs that mainly tar-
get inflammatory mechanisms are even so tested. 
BI 1467335, an oral small-molecule inhibitor of 
amine-oxidase copper-containing 3 (AOC3), also 
called vascular adhesion protein 1 (VAP-1), has 
been tested in phase II; results are pending. 
AOC3 plays an important role in the recruitment 
of various inflammatory cell types to the site of 
inflammation and was shown to play a role in 
NASH pathogenesis in preclinical models. Its 
soluble variant showed a correlation with NAFLD 
severity. Despite the study meeting the trial tar-
gets, including clinically relevant changes in 
NASH biomarkers, Boehringer Ingelheim 
decided not to further develop the drug. 
Interestingly, VAP-1 has been implicated in ath-
erosclerosis and cardiovascular prognosis, rein-
forcing the link between NAFLD and CVD and 
the rationale for AOC3 antagonists in NASH.160

Inhibition of caspases to interfere with inflamma-
tory and apoptotic processes is another of the 
many pathways that can be targeted in the attempt 
to stop/regress the NASH–fibrosis process.

While we are still waiting for more phase III proof 
of efficacy of single drugs, several combinations 
of drugs are already being tested. As outlined 
before, disease pathophysiology is heterogeneous 
and complex, offering a rationale for combining 
drugs with different modes of action that can have 
additive or even synergistic effects. Beside testing 
combinations of individual drugs (e.g. tropifexor 
and cenicriviroc), several molecules that combine 
different structures are engineered and tested: 
dual peptide molecules that combine a GLP-1 
receptor agonist with a glucagon receptor agonist 
or GIP (tirzepatide) are actually in clinical devel-
opment. Tirzepatide has shown very promising 
strong metabolic effects (both glucose and 
weight lowering) in individuals with T2D and is 
now studied in phase IIb and III (SURPASS 
CVOT) and in NASH individuals (SYNERGY-
NASH).161 The triple GLP-1/GIP/glucagon 
receptor agonist HM15211 is currently under 
development, but the first trials in non-diabetic 
obese subjects with NAFLD showed signifi-
cantly decreases in liver fat content and body 
weight.162 Another potential future bimolecule 
approach is the semaglutide/cilofexor (FXR ago-
nist) combination.
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Conclusion
NAFLD is a worldwide epidemic associated with 
metabolic and endocrine pathologies. The most 
evidenced approach is lifestyle intervention, 
which lacks long-term efficacy. Therefore, pre-
vention merits more attention, since the pharma-
ceutical options currently available are limited. 
Although multiple pharmacotherapies are in 
development, response rates appear modest, 
mainly for fibrosis treatment. From different 
phase II trials, antidiabetic drugs seem promising, 
both in mono- or bitherapy. Derivatives of PPAR 
molecules may have an interesting future, as well. 
As a general recommendation, we propose early 
screening and recognition of the problem, to 
deliver optimal treatment once an approved phar-
macological armamentarium becomes available.
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