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Abstract: Plasma renin activity (PRA) is a predictive biomarker of blood pressure (BP) response to
antihypertensives in European–American hypertensive patients. We aimed to identify the metabolic
signatures of baseline PRA and the linkages with BP response to β-blockers and thiazides. Using
data from the Pharmacogenomic Evaluation of Antihypertensive Responses-2 (PEAR-2) trial, multi-
variable linear regression adjusting for age, sex and baseline systolic-BP (SBP) was performed on
European–American individuals treated with metoprolol (n = 198) and chlorthalidone (n = 181),
to test associations between 856 metabolites and baseline PRA. Metabolites with a false discovery
rate (FDR) < 0.05 or p < 0.01 were tested for replication in 463 European–American individuals
treated with atenolol or hydrochlorothiazide. Replicated metabolites were then tested for validation
based on the directionality of association with BP response. Sixty-three metabolites were associated
with baseline PRA, of which nine, including six lipids, were replicated. Of those replicated, two
metabolites associated with higher baseline PRA were validated: caprate was associated with greater
metoprolol SBP response (β = −1.7 ± 0.6, p = 0.006) and sphingosine-1-phosphate was associated
with reduced hydrochlorothiazide SBP response (β = 7.6 ± 2.8, p = 0.007). These metabolites are
clustered with metabolites involved in sphingolipid, phospholipid, and purine metabolic pathways.
The identified metabolic signatures provide insights into the mechanisms underlying BP response.

Keywords: plasma renin activity; metabolomics; hypertension; blood pressure

1. Introduction

Hypertension (HTN) affects 46% of the US European American adults [1]. It is associ-
ated with an estimated annual cost of USD 52.4 billion and a mortality rate reaching 137.7
per 100,000 for European American men and 101.9 per 100,000 for European American
women [1]. Three-quarters of European American hypertensive patients have uncontrolled
blood pressure (BP) despite being prescribed antihypertensive medications [1,2]. Poor BP
control is caused, in part, by a selection of antihypertensive therapy with mechanisms
of action discordant from the pathophysiologic pathway(s) underlying HTN [3]. A per-
sonalized treatment approach, matching an individual’s hypertensive pathophysiologic
pathway with an antihypertensive drug mechanism of action, may improve BP response
and control [4].

The renin–angiotensin–aldosterone system (RAAS) is an important and highly variable
BP regulator. The activity of this system can be assessed by measuring plasma renin activity
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(PRA). Previous studies demonstrate that PRA is a predictive biomarker of BP response to
antihypertensive agents particularly in European American hypertensive patients [5–8].
Patients with lower PRA (< 0.65 ng/mL/h) achieve greater BP reductions in response
to thiazide diuretics than β-blockers, whereas those with higher PRA (≥ 0.65 ng/mL/h)
respond better to β-blockers than thiazide diuretics [9–11]. However, PRA, other clinical
factors and the genetic variants identified to date, including those related to PRA, only
explain about 3–4% of the total variability in the BP trait [12–14].

Metabolomics is an emerging tool that defines perturbations in metabolic pathways
and informs the molecular basis for a phenotype [15,16]. The human metabolome is
regulated by net interactions between genetic and environmental influences [17,18]. Several
metabolic pathways have been linked to HTN and antihypertensive drug responses [19–25],
but no evidence exists for metabolic signatures of PRA and the link to BP response. In
the present study, we hypothesized that at least part of the variability in BP response
among European American hypertensives is driven by metabolites related to PRA. Using
an untargeted metabolomics approach, we aimed to identify the metabolites associated with
pre-treatment PRA in European American hypertensive individuals, followed by replication
in an independent cohort. We then sought to validate the successfully replicated metabolic
signals with respect to BP responses to β-blockers and thiazide diuretics. We also aimed to
identify common clusters of our validated metabolites, allowing us to further understand
the metabolic processes underlying PRA and BP responses in European Americans.

2. Results
2.1. Study Population

The primary analysis of the current study included data from the principal component
analysis (PCA)-determined European American participants enrolled in the Pharmacoge-
nomic Evaluation of Antihypertensive Responses-2 (PEAR-2) trial (discovery cohort) and
PEAR trial (replication cohort). We restricted the analysis to European American partici-
pants based on our previous findings that PRA is a predictive biomarker of BP response
in Europeans, but not in African Americans [7,11]. A total of 198 metoprolol- and 181
chlorthalidone-treated PEAR-2 participants and a total of 463 PEAR participants treated
with atenolol monotherapy or HCTZ monotherapy were included in this study (Figure S1).
Baseline characteristics for the participants from both cohorts were similar (Table 1). Partic-
ipants were 50 years old, on average and 44% were women; mean body mass index was
30.5 kg/m2 and median baseline PRA was 0.9 ng/mL/h.

2.2. Data Processing and Quality Control on PEAR-2 Metabolomics Data

Of the 1132 metabolites (761 structurally known and 371 unknown) detected in PEAR-
2 samples, 276 were removed, including all xenobiotics (n = 165), metabolites with a
constant or single value across samples (n = 13) and metabolites with >60% missing
data (n = 98). The remaining 856 metabolites included in the quality control (QC) and
final analyses consisted of 530 known and 326 unknown compounds. The PCA showed
no clustering among the PEAR-2 participants. However, four outliers were identified
(Figure S2). Eleven participants had outlying metabolic states and were flagged based on
the pairwise standard Euclidean distance (SED) values. Five of those were found to have
>10% missing metabolomics data. Of these five, three had extreme lipid (triglycerides, LDL
and HDL) values (Table S2). The Bland–Altman (BA) method, which was used to assess the
concordance of the metabolomics data between each pair, flagged 23 metabolites. Greater
than 5% of the values for these metabolites were considered outliers (Table S3). The top
10% of metabolites with the largest coefficient of variation (CV) values (n = 37) are listed in
Table S4. We included all the participants and metabolites flagged by the above QC steps.
However, a sensitivity analysis was conducted, excluding the flagged participants and a
further investigation of the flagged metabolites was performed if any of them were one
of the top signals. More details on the data processing and QC results are illustrated in
the Supplement.
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Table 1. Characteristics of the European American participants included in PEAR-2 and PEAR studies.

Baseline Characteristics

Variable
PEAR-2 PEAR

Metoprolol (n = 198) Chlorthalidone (n = 181) Atenolol (n = 233) HCTZ (n = 230)

Age, years 51.1 ± 9 51.1 ± 8.9 49.6 ± 9.5 50 ± 9.4

Females, N (%) 89 (45%) 77 (42.5%) 109 (46.8%) 93 (40.4%)

BMI, kg/m2 30.8 ± 5.1 30.6 ± 5 30.3 ± 5.6 30.3 ± 4.9

Baseline PRA, ng/mL/h 0.91 (0.49–1.77) 0.85 (0.55–1.46) 0.9 (0.46–1.52) 0.87 (0.46–1.43)

Baseline SBP, mmHg 150 ± 12.2 151.2 ± 13.2 151.1 ± 12.4 151.8 ± 12.5

Baseline DBP, mmHg 97.8 ± 5.2 98.9 ± 5.5 97.9 ± 5.7 98.1 ± 5.8

Post-treatment BP

Post-treatment SBP, mmHg 136.8 ± 15.4 136 ± 12.7 135.7 ± 14.6 140.8 ± 13.5

Post-treatment DBP, mmHg 86.7 ± 8.3 90.3 ± 8.2 85.9 ± 8.9 93.1 ± 8.3

SBP response *, mmHg −13.2 ± 13.7 −15.3 ± 13.9 −15.4 ± 14.7 −11 ± 12.8

DBP response *, mmHg −11.1 ± 8.2 −8.6 ± 8.3 −12 ± 9 −5 ± 7.2

All continuous variables are presented as means with standard deviations (SD), except for PRA, which was not normally distributed, thus
presented as median with interquartile range (IQR). * BP response calculated as post-treatment BP minus pre-treatment BP. Abbreviations:
PEAR, Pharmacogenomic Evaluation of Antihypertensive Responses; HCTZ, hydrochlorothiazide; BMI, body mass index; PRA, plasma
renin activity; SBP, systolic blood pressure; DBP, diastolic blood pressure.

2.3. Untargeted Metabolomics Analysis

The flow of the study results is summarized in Figure 1. Associations between baseline
log-transformed levels (in terms of raw area counts) of each of the 856 PEAR-2 metabolites
(non-imputed data) and baseline log-transformed PRA were assessed. Based on a false
discovery rate (FDR) < 0.05, 15 metabolites were significantly associated with baseline log-
transformed PRA (Step 1), including five lipids (four involved in sphingolipid metabolism),
three amino acids, one energy metabolite and six structurally unknown metabolites. Twelve
of these metabolites were associated with higher baseline PRA (Table 2). Additionally,
48 metabolites had nominal associations (suggestive p < 0.01) with baseline log-transformed
PRA, including 22 lipids involved in fatty acid, phospholipid and glycerolipid metabolic
pathways, among others. Of these 48 metabolites, 40 were associated with higher baseline
PRA levels (Table S5).

Table 2. The fifteen metabolites significantly associated with baseline log-transformed PRA in PEAR-2 European Americans.

Metabolite Name Classification Pathway HMBD Estimate ± SE p-Value FDR

Sphinganine-1-phosphate Lipid Sphingolipid
Metabolism HMDB01383 0.21 ± 0.05 4.45 × 10−5 0.01

Sphingomyelin (d18:1/20:1,
d18:2/20:0) Lipid Sphingolipid

Metabolism unknown 0.09 ± 0.02 0.00012 0.026

Sphingosine-1-phosphate Lipid Sphingolipid
Metabolism HMDB00277 0.24 ± 0.06 0.0002 0.033

Sphinganine Lipid Sphingolipid
Metabolism HMDB00269 0.09 ± 0.03 0.0007 0.042

Caprate (10:0) Lipid Medium Chain
Fatty Acid HMDB00511 0.04 ± 0.01 0.0005 0.042

N-acetylglutamate Amino Acid Glutamate
Metabolism HMDB01138 0.26 ± 0.07 0.00018 0.03
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Table 2. Cont.

Metabolite Name Classification Pathway HMBD Estimate ± SE p-Value FDR

Beta-hydroxyisovalerate Amino Acid

Leucine,
Isoleucine and

Valine
Metabolism

HMDB00754 0.14 ± 0.04 0.0007 0.042

Threonine Amino Acid
Glycine, Serine
and Threonine

Metabolism
HMDB00167 0.11 ± 0.03 0.0008 0.045

Fumarate Energy
Metabolite TCA Cycle HMDB00134 0.22 ± 0.06 0.0007 0.042

3-Hydroxybutyroylglycine Lipid Fatty Acid
Metabolism NA 0.21 ± 0.05 1.57 × 10−5 0.007

3-Hydroxystachydrine Unknown Unknown NA 0.1 ± 0.03 0.0006 0.042

1-Methyl-5-imidazoleacetate Unknown Unknown NA −0.94 ± 0.27 0.0006 0.042

Glucuronide of C10H18O2 (7) Unknown Unknown NA −0.08 ± 0.02 0.0007 0.042

X–12726 Unknown Unknown NA 0.23 ± 0.05 1.45 × 10−5 0.007

X–12818 Unknown Unknown NA −0.11 ± 0.03 0.0003 0.042

p-values were produced using linear regression analysis of each metabolite with the baseline log-transformed plasma renin activity (PRA)
in PEAR 2 European Americans, with adjustment of age, sex and baseline systolic blood pressure (SBP). False discovery rate (FDR)
with a significant threshold of less than 0.05 was used to account for multiple comparisons. Abbreviations: PRA, plasma renin activity;
PEAR, Pharmacogenomic Evaluation of Antihypertensive Responses; SE, standard error; TCA, tricarboxylic acid cycle; HMDB, Human
Metabolome Database; FDR, false discovery rate; NA, not applicable.

Figure 1. Flow chart showing the flow of the study results. Abbreviations: FDR, false discovery rate; PRA, plasma renin
activity; PEAR, Pharmacogenomic Evaluation of Antihypertensive Responses; BP, blood pressure; MMC, Modulated
Modularity Clustering.
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Similar results were obtained after conducting a sensitivity analysis, excluding those
participants with outlying baseline PRA (n = 13) and those flagged by PCA (n = 4) and SED
(n = 11) QC steps.

2.4. Replication of Top Signals

Of the 63 total metabolites identified in Step 1 (significant plus nominally significant),
46 (8 metabolites with FDR < 0.05 + 39 metabolites with p < 0.01) had available data in
the PEAR replication cohort (Table S6). One metabolite, X–21815, had > 60% missing data
and was excluded. Associations between baseline log-transformed levels of each of the
46 metabolites (non-imputed data) moved to replication and baseline log-transformed
PRA were assessed in PEAR. Of those 46 metabolites, 9 metabolites were significantly
associated with baseline log-transformed PRA in the same direction as in PEAR-2 at an
FDR < 0.05 (Step 2). Of those, eight metabolites were associated with higher PRA, including
sphingosine-1-phosphate (a lipid involved in sphingolipid metabolism), caprate (a lipid,
medium-chain fatty acid), 3-hydroxybutyrylcarnitine (1) (a lipid involved in fatty acid
metabolism), cortisol (a lipid, steroid), 1-palmitoyl-GPE (16:0) and 1-palmitoleoyl-GPC
(16:1) (two lysolipids), malate (an energy metabolite involved in tricarboxylic acid cycle
(TCA)) and an unknown metabolite. In contrast, only gamma-glutamylglutamine (a
peptide, gamma-glutamyl amino acid) was associated with lower baseline log-transformed
PRA (Figure 1; Table 3). No successfully replicated metabolites were flagged by the BA or
CV QC steps (Tables S3 and S4).

Table 3. Replicated metabolites in PEAR European Americans.

Metabolite Name Estimate ± SE p-Value FDR

Sphingosine-1-phosphate 0.19 ± 0.06 0.002 0.02

Caprate (10:0) 0.18 ± 0.05 0.0002 0.003

Gamma-glutamylglutamine −0.11 ± 0.03 6.59 × 10−5 0.002

Malate 0.21 ± 0.06 0.0009 0.01

3-Hydroxybutyrylcarnitine (1) 0.10 ± 0.02 3.99 × 10−6 0.0001

Cortisol 0.11 ± 0.04 0.003 0.02

1-Palmitoyl-GPE (16:0) 0.12 ± 0.04 0.004 0.02

1-Palmitoleoyl-GPC (16:1) * 0.13 ± 0.04 0.002 0.02

X–11564 0.21 ± 0.07 0.004 0.02
These results were generated using linear regression models of each metabolite with the baseline log-transformed
plasma renin activity (PRA) in PEAR European Americans, with adjustment for age, sex and baseline systolic
blood pressure (SBP). False discovery rate (FDR) with a significant threshold of less than 0.05 was used. Abbre-
viations: PEAR, Pharmacogenomic Evaluation of Antihypertensive Responses; SE, standard error; FDR, false
discovery rate.

2.5. BP Response Validation

The nine successfully replicated metabolites were then tested for validation based
on BP response in PEAR-2 and PEAR separately, which was assessed after ~8–9 weeks of
treatment. Among those nine metabolites, three were associated with BP response (Step 3).
Two (caprate and sphingosine-1-phosphate) that were associated with higher baseline
PRA, were also significantly associated with BP responses to metoprolol and HCTZ, re-
spectively, in the expected directions (validated). Specifically, the baseline levels of caprate
were associated with a greater systolic BP (SBP) reduction to metoprolol (β = −1.7 ± 0.6,
p = 0.006), which means that a 10% increase in the baseline levels of caprate was asso-
ciated with about 0.2% greater SBP reduction to metoprolol. On the other hand, levels
of sphingosine-1-phosphate were associated with reduced SBP and diastolic BP (DBP)
responses to HCTZ (β = 7.6 ± 2.8, p = 0.007; β = 4.1 ± 1.7, p = 0.018, respectively), which
means that a 10% increase in the baseline levels of sphingosine-1-phosphate was associated
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with about 0.7% and 0.4% lower reduction in SBP and DBP responses to HCTZ, respectively.
Additionally, the metabolite 1-palmitoleoyl-GPC (16:1) associated with higher baseline
PRA was nominally associated with reduced HCTZ SBP response (β = 4.1 ± 2.0, p = 0.038).
This means that a 10% increase in the baseline levels of 1-palmitoleoyl-GPC (16:1) was
associated with a 0.4% lower reduction in SBP to HCTZ (Figure 1; Table 4).

Table 4. Validated metabolites and replicated metabolites with nominal associations with BP re-
sponses in the expected direction in PEAR studies.

Metabolite
Metoprolol SBP Response Metoprolol DBP Response

Estimate ± SE p-Value Estimate ± SE p-Value

Caprate −1.7 ± 0.6 0.006 −0.7 ± 0.4 0.05

HCTZ SBP response HCTZ DBP response

Estimate ± SE p-value Estimate ± SE p-value

Sphingosine-1-phosphate 7.6 ± 2.8 0.007 4.1 ± 1.7 0.018

1-Palmitoleoyl-GPC (16:1) * 4.1 ± 2.0 0.038 1.1 ± 1.2 0.3
These results were generated using linear regression models of each metabolite with the SBP and DBP responses
to metoprolol, atenolol and HCTZ in PEAR-2 and PEAR European Americans, with adjustment for age, sex
and baseline SBP/DBP. Caprate and sphingosine-1-phosphate were considered validated (p < 0.0125), while
1-palmitoleoyl-GPC (16:1) * was nominally validated (p < 0.05). Abbreviations: BP, blood pressure; PEAR,
Pharmacogenomic Evaluation of Antihypertensive Responses; SBP, systolic blood pressure; DBP, diastolic blood
pressure; HCTZ, hydrochlorothiazide.

2.6. Modulated Modularity Clustering

The PEAR-2 metabolites that were clustered with each validated metabolite were
identified using the Modulated Modularity Clustering (MMC), (Step 4). Caprate clustered
with 17 metabolites, of which 6 were also lipids mainly involved in plasmalogen pathway.
Sphingosine-1-phosphate clustered with 33 metabolites, of which 12 were also lipids
(most involved in sphingolipid and phospholipid metabolism) and 7 were nucleotides
involved in purine and pyrimidine metabolism. Lastly, the metabolite 1-palmitoleoyl-GPC
(16:1) clustered with 27 metabolites, of which 16 were also lipids including lysolipids,
monoacylglycerols and lipids involved in phospholipid metabolism. (Figure 1; Table S7).

2.7. Pathway Enrichment Analysis of Validated and Clustered Metabolites

Of the 64 validated and clustered metabolites, 41 had human metabolome database
(HMDB) identifiers, which were imported into the MetaboAnalyst 5.0 enrichment analysis
function [26]. The pathway analysis identified sphingolipid metabolic pathway as the
only significantly impacted pathway (enrichment ratio, 9.8; FDR = 0.0083) (Step 5). Other
top pathways included purine, glycerophospholipid, pentose and phosphonate metabolic
pathways (Figure 2; Table S8).
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Figure 2. Pathway analysis of validated and clustered metabolite. Enrichment ratio of each top
metabolic pathway is shown. Color indicates level of statistical significance, with darker red reflecting
smaller p-values and lighter color down to white reflecting larger p-values.

3. Discussion

To our knowledge, this is the first pharmacometabolomic study to identify PRA
metabolomic signatures and link them with BP response to antihypertensive therapy.
Using a stepwise approach, we identified and replicated nine metabolic signals (six lipids,
an energy metabolite, a peptide and an unknown metabolite) that were associated with
baseline PRA among two cohorts of European American participants with uncomplicated
HTN. Of those replicated, two (caprate and sphingosine-1-phosphate) were validated based
on BP responses to metoprolol and HCTZ, respectively. Moreover, we found that these
validated metabolites were clustered with several metabolites involved in sphingolipid,
phospholipid, plasmalogen, purine and leucine, isoleucine and valine metabolic pathways,
highlighting these as potential pathways underlying PRA and BP response.

Our analysis showed that the medium-chain fatty acid caprate (10:0) was associated
with higher baseline PRA levels in PEAR-2 and that this association was successfully
replicated in the PEAR cohort. We also showed that caprate was associated with a better
SBP response to metoprolol. Similar to our findings, Gleeson et al. reported that caprate
(10:0) enhances the cellular penetration of the tripeptides, IIe-Pro-Pro (IPP) and Leu-Lys-
Pro (LKP) which inhibit the angiotensin-converting enzyme (ACE) (a component of the
RAAS) and result in BP reduction in isolated rat jejunal tissue [27]. Although none of
the human metabolomic studies published to the date indicated that caprate (10:0) is a
potential biomarker of any of the HTN-related phenotypes, our study demonstrated that
it was clustered with several plasmalogens. Increased levels of plasmalogens have been
associated with increased oxidative stress and with higher cardiovascular mortality in
patients with end-stage renal disease [28]. These data suggest that plasmalogens might
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also be involved in the pathways underlying BP response. Of note, we are the first to our
knowledge to identify a relationship between caprate and renin.

We also demonstrated that sphingosine-1-phosphate (a lipid involved in sphingolipid
metabolism) was associated with higher baseline PRA in both discovery and replication co-
horts and with reduced HCTZ BP response. Sphingosine-1-phosphate is a highly bioactive
lipid linked to HTN pathophysiology and elevated BP through vasoconstriction in animal
studies [29–31]. A study suggested that the sphingosine-1-phosphate induced vasocon-
striction is mediated through activation of the RhoA signaling cascade [32]. In contrast, it
has been demonstrated that one of the mechanisms by which HCTZ chronically lowers
BP is through a reduction in the RhoA and Rho kinase expression in the vascular smooth
muscle cells shown in vitro in a previous study, which leads to direct vasodilation [33,34].
This hypothesized mechanism might explain the relationship shown in this study between
sphingosine-1-phosphate and reduced HCTZ response.

We also recently found an association between N24:2 sphingomyelin and better HCTZ
BP response [25]. We additionally showed that European American carriers of the C-
allele of the genetic variant rs6078905 within the SPTLC3 gene, which is associated with
higher levels of N24:2 sphingomyelin had a better HCTZ BP response compared to non-
carriers [25]. The reasons behind the observed opposite effects of sphingosine-1-phosphate
and N24:2 sphingomyelin on HCTZ response are not well understood. However, each of
these metabolites is synthesized through a different pathway which might affect BP in a
different way: shingosine-1-phsophate is synthesized by degradation of sphingolipids in
the plasma membrane or lysosomal compartment, whereas sphingomyelin is synthesized
from ceramide in Golgi apparatus [35]. Moreover, in the present study, sphingosine-1-
phosphate was clustered with several metabolites implicated in sphingolipid, phospholipid
and purine metabolism, which have been previously associated with HTN, BP and anti-
hypertensive responses [20,36–38]. Additionally, from the pathway analysis, we found
that sphingolipid metabolic pathway was the only significantly impacted pathway, which
emphasizes the importance of this pathway for BP response.

In addition to its link with HTN and BP response, sphingosine-1-phosphate has also
been shown to alleviate congestive heart failure induced by increased cardiac renin re-
lease [39]. Angiotensin II (a component of the RAAS) activates the Rho-kinase pathway,
which is also activated by sphingosine-1-phosphate [32,40]. Together, these data suggest
that the sphingolipid metabolism pathway might be involved in the underlying antihy-
pertensive responses through the RhoA-kinase pathway and possibly through the RAAS
pathway. Further work on sphingolipid metabolic pathway might provide more insights
particularly on the link to the RAAS pathway.

We also found that 1-palmitoleoyl-GPC (16:1) was associated with higher baseline PRA
in our discovery and replication cohorts and was nominally associated with a reduced SBP
response to HCTZ. Consistent with our findings, previous studies indicated that palmitic
amide and palmitic acid (structurally related metabolites) were found to be associated with
HTN [36,41,42]. Additionally, 1-palmitoleoyl-GPC (16:1) was clustered with several lipids
involved in phospholipid metabolic pathway, which have been previously associated with
HTN [36,37,41].

Our study has several strengths. The results of the present study were obtained
through a stepwise approach, including replication of our findings and further validation
which confirms the significance of our results and the influence on PRA phenotype and
on BP response complex phenotype. Additionally, the use of MMC clustering and of
the pathway enrichment analysis helped us narrow and highlight the most biologically
relevant metabolic pathways underlying PRA and BP responses. Our study has also several
limitations. One limitation is the unavailability of several PEAR-2 metabolic signals in the
PEAR replication dataset which might have resulted in missing other potential metabolic
biomarkers of PRA and BP response. Additionally, none of our successfully replicated
metabolites were associated with BP responses to both the β-blockers and the diuretics
used in the PEAR studies, in the expected directions. This might be because BP response
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is a complex trait, affected by many other genetic and environmental factors, not related
to the RAAS. Additionally, our validation phase was limited to BP response to β-blockers
and thiazide diuretics. Future studies are warranted to test the association between the
PRA-related metabolites and BP response to other RAAS blockers such as ACE inhibitors
and angiotensin II receptor blockers (ARBs). Moreover, the relatively small sample size in
our study might have limited our power to detect additional metabolic signals associated
with PRA and BP responses.

4. Materials and Methods
4.1. Study Design and Participants

Both PEAR studies were conducted in accordance with the Declaration of Helsinki
and the protocols were approved by the institutional review boards at all participating
sites (University of Florida in Gainesville, FL, USA; Mayo Clinic in Rochester, MN, USA;
and Emory University in Atlanta, GA, USA). All participants provided voluntary, written
informed consent prior to participation. In both studies, participants recruited had either
treated or untreated uncomplicated primary HTN. For the treated participants, all antihy-
pertensive drugs (including β-blockers, calcium channel blockers, ACE inhibitors, ARBs,
diuretics and α-blockers) were discontinued prior to treatment with the study drug, with a
washout period of 4–6 weeks, to allow for re-establishment of their hypertensive status.
In both studies, pre- and post-treatment BPs were measured, and blood samples were
collected at baseline to measure PRA and to conduct the global metabolomics analysis. Both
PEAR trials were conducted to assess ‘omics responses to the commonly prescribed antihy-
pertensive drug classes including thiazide diuretics and β-blockers. Currently, thiazide
diuretics are first-line antihypertensive agents [43]. Although β-blockers are now reserved
for hypertensive patients requiring multiple antihypertensive classes for BP control, about
20% of US adults with uncomplicated HTN are still prescribed β-blockers [43,44]. Further
details about study designs are described below and in the Supplementary Materials.

The PEAR-2 and PEAR trials have been previously described in detail [45,46]. Briefly,
PEAR-2 was a prospective, multicenter, open-label, sequential clinical trial (clinicaltrials.gov
identifier: NCT01203852). Study participants with uncomplicated HTN aged 18–65 years
old were sequentially treated with the β-blocker metoprolol monotherapy, followed by the
thiazide-like diuretic chlorthalidone monotherapy with an intervening 4-week washout.
Participants with cardiovascular disease, diabetes mellitus, renal or hepatic dysfunction
were excluded from enrollment.

PEAR was a prospective, multicenter, randomized, open-label, crossover clinical trial
(clinicaltrials.gov identifier: NCT00246519) and included a similar population to the one in
PEAR-2 with the same exclusion criteria. Participants were randomly assigned to either
atenolol (β-blocker) followed by hydrochlorothiazide (HCTZ) (thiazide diuretic) as add-on
therapy, or HCTZ followed by atenolol (as add-on therapy).

4.2. BP Phenotype

In both PEAR studies, clinic and home BPs at baseline (pre-treatment) and post-
treatment were measured (post-treatment ~8 weeks in PEAR-2 and ~9 weeks in PEAR
and occurred after dose titrations). In the PEAR-2 study, clinic and home BPs were mea-
sured using monitors manufactured by Microlife, model #s BP3AC1-PC and BP3MC1-PC
(Dunedin, FL, USA), which were set to obtain three sequential BP measurements separated
by two minutes each, and the average of the three measurements was used [45]. In the
PEAR study, clinic and home BPs were also taken in a triplicate mode using an automated
oscillometric sphygmomanometer (Microlife 3AC1-PC; Microlife, Minneapolis, MN, USA),
and the average of the three values was used [46]. Clinic BP measurements were used in
the analyses of the current study since most treatment decisions are based on clinic BP [47].
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4.3. PRA Determination

Baseline PRA in both cohorts was measured in plasma samples collected before
treatment [11,46]. Samples were collected under the study participant’s normal sodium
intake and usual clinical settings based on the evidence that PRA measurement is not
significantly affected by sodium restriction and does not need 24 h urinary collection [48].
To prevent cryoactivation of prorenin to renin, blood samples were processed at room
temperature, then stored frozen. The standard incubation time was 3 h but was extended
to 18 h in samples with PRA < 1 ng/mL/h. PRA was measured at pH 5.7 in all samples in
duplicate or triplicate by radioimmunoassay of the generated angiotensin-I according to
Sealy’s method, and the mean value for each participant was used in analyses [49]. The
assay was conducted in the central laboratory at Mayo Clinic, Rochester, MN, USA using
reagents purchased from the DiaSorin company (Stillwater, MN, USA). PRA was reported
as the amount of angiotensin-I generated (in ng/mL) per hour [11,46].

4.4. Untargeted Metabolomics Profiling

Baseline fasting plasma samples from PEAR-2 and PEAR participants were used
for the metabolomics analysis. Untargeted/global metabolite profiling was conducted
by Metabolon using ultrahigh performance liquid chromatography-tandem mass spec-
troscopy (UPLC-MS/MS) (Waters, Milford, MA, USA) [50]. Samples were divided into
aliquots and stored at −80 ◦C until processed. At the time of the analysis, an aliquot
was thawed and extracted with methanol and then centrifuged to remove proteins and
recover the metabolites. The resulting extract was divided into five aliquots. Two aliquots
were analyzed by two separate reverse phases (RP)/UPLC-MS/MS with a positive ion
mode electrospray ionization (ESI); one was chromatographically optimized for more
hydrophilic compounds, and the other was optimized for more hydrophobic compounds.
In this method, the extracts were gradient eluted from a C18 column. Another aliquot
was analyzed by RP/UPLC-MS/MS with a negative ion mode ESI using a separate
dedicated C18 column. The fourth aliquot was analyzed by hydrophilic interaction liq-
uid chromatography (HILIC)/UPLC-MS/MS with a negative ion mode ESI. The fifth
aliquot was reserved for backup. All methods utilized a Waters ACQUITY UPLC and a
Thermo Scientific Q-Exactive high resolution/accurate mass spectrometer interfaced with
a heated electrospray ionization (HESI-II) source and Orbitrap mass analyzer operated at
35,000 mass resolution (Waters, Milford, MA, USA). Compounds were identified by com-
parison to library entries of purified standards or recurrent unknown entries. For each
metabolite, peaks were quantified using the area under the curve in each sample. More
details on metabolomics profiling are presented in the Supplementary Materials.

4.5. Data Processing and QC on PEAR-2 Metabolomics Data

MetaboAnalyst 5.0, an open-source R-based program for metabolomics, and Galaxy
SECIM tools were used to perform processing and QC on the PEAR-2 metabolomics
data [26,51]. Details on this work are presented in the Supplementary Materials. Briefly, all
the xenobiotics, metabolites with a constant or single value across samples and metabolites
with greater than 60% missing data were excluded. The remaining metabolites (non-
imputed) were included in the QC steps and in the analysis. The K-nearest neighbors (KNN)
algorithm was used to impute the data only to perform the PCA, which was performed to
identify if there are any clustering or extreme outliers among the participants based on their
metabolomics data. Participants with outlying metabolic states were identified using the
pairwise SED. The concordance of the metabolomics data between each pair within each
subgroup was assessed using BA method, with the expectation that participants within
the same subgroup have similar metabolic states [52]. Additionally, CV was calculated for
each of the remaining metabolites to assess their variability across participants.
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4.6. Statistical Analyses

Characteristics of the PEAR-2 and PEAR participants were analyzed using descriptive
statistics. Data for continuous variables are presented as means with standard deviations
(SDs), except for PRA, which is not normally distributed, thus is presented as median
with inter-quartile range (IQR). Data for categorical variables are presented as numbers
and percentages. In the PEAR-2 discovery cohort, baseline (pre-metoprolol and pre-
chlorthalidone) PRA outliers were determined based on standardized residuals of greater
than three SDs, Cook’s distance, and DFFITS. Participants with outlying PRA values (n = 13)
were included in the analyses because they were also considered physiological outliers
as they had extreme BP and metabolic responses. Metabolomics data in both cohorts
were also not normally distributed. Therefore, log-transformed PRA and log-transformed
metabolomics data (non-imputed) were used in all analyses. BP responses in both cohorts
were defined by subtracting the pre-treatment BP from the post-treatment BP, such that
negative values were indicative of BP reductions. In this study, we utilized a 5-step analytic
approach as outlined below. All statistical analyses were carried out with SAS (version 9.4;
SAS Institute Inc., Cary, NC, USA) and R Statistical Software (Foundation for Statistical
Computing, Vienna, Austria).

4.6.1. Step 1: Untargeted Metabolomics Analysis

After data processing, associations between baseline levels (in terms of raw area
counts) of each of the PEAR-2 metabolites included in the analysis and baseline PRA were
assessed using multivariable linear regression models, adjusted for age, sex and baseline
SBP. These variables were selected based on their significant associations with baseline
PRA in PEAR-2. Missing values for each tested metabolite were ignored, resulting in
varying sample sizes for each metabolite association. We used two different approaches
to identify the metabolic signals associated with PRA: a strict approach by selecting the
significant metabolites with an FDR < 0.05, and a broader approach by selecting the
nominally significant metabolites with a suggestive p < 0.01.

Also, a sensitivity analysis was conducted, excluding those participants with outlying
baseline PRA and those participants flagged by the PCA and SED QC steps. Metabolites
that were flagged by BA and CV were included in the analysis but planned to be further
investigated if any of them were one of the top signals.

4.6.2. Step 2: Replication of Top Signal(s)

Metabolic signals identified based on the above pre-specified thresholds were tested
for replication by assessing the association of each with baseline PRA in an independent
cohort (PEAR European Americans). Replication was performed using multivariable linear
regression, adjusted for age, sex and baseline SBP. Metabolites were considered successfully
replicated if they had the same direction of effect to the PEAR-2 metabolomic findings and
had an FDR < 0.05.

4.6.3. Step 3: BP Response Validation

Given the well-documented relationship between PRA and BP response to anti-renin
drugs (including β-blockers) and thiazide diuretics [6,9,10], we hypothesized that metabo-
lites associated with higher PRA would be associated with better BP response to metoprolol
and atenolol and poorer BP responses to chlorthalidone and HCTZ (thiazide diuretics),
and vice versa for those metabolites associated with lower PRA. To test this hypothesis, we
assessed the direction of association of each successfully replicated metabolite, with BP
response, in the PEAR-2 and PEAR studies separately using multivariable linear regression,
adjusted for age, sex and baseline SBP and DBP. For a metabolite to be considered validated,
it should be associated with BP response to at least one of the four drugs in the expected
direction at a p < 0.0125 (0.05/4). Nominal validation is considered at a suggestive p < 0.05.
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4.6.4. Step 4: MMC

We then used the MMC tool in Galaxy SECIM tools to identify the PEAR-2 metabolites
clustered with each validated metabolite. This was performed using pairwise Pearson
correlations [53].

4.6.5. Step 5: Pathway Enrichment Analysis of Validated and Clustered Metabolites

Lastly, the HMDB identifiers of the validated and the clustered metabolites were
imported into the MetaboAnalyst 5.0 enrichment analysis function, which investigated
if a group of functionally related metabolites is significantly enriched. The enrichment
ratio per metabolite set was computed by dividing the observed by the expected hits. The
significance threshold was set at FDR < 0.05. The pathway library included 84 metabolite
sets based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) human metabolic
pathways [26].

5. Conclusions

In conclusion, our study reveals several metabolic pathways that might be involved
in the mechanisms underlying the relationship between RAAS activity and BP responses
to β-blockers and thiazide diuretics in European–American patients with uncomplicated
HTN. Personalizing antihypertensive therapy based on an individual’s hypertensive patho-
physiology has long been the holy grail of clinicians. As data such as ours are confirmed
and omics testing becomes clinically available, it will be possible to select antihypertensive
medications based on biomarkers suggesting optimal responses with the potential for
improved BP control. Additional research on the identified and clustered metabolites as
well as integrating them with other omics data may provide us with more insights into
the mechanisms underlying BP-lowering effects of β-blockers and thiazide diuretics. This
may also open avenues for developing new antihypertensive agents targeting specific
metabolic pathways.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/metabo11090645/s1, Figure S1: Consort diagram showing the participants included in this
study, Figure S2: PCA scatter plots showing clustering of the PEAR-2 samples (n = 379) based on the
first three PCs, Table S1: Percent of variability in metabolomics data explained by each one of the
first 10 PCs, Table S2: The 11 PEAR-2 participants with the largest SEDs, Table S3: The 23 metabolites
flagged by BA plots and measures, Table S4: The top 10% of the metabolites with the largest CV
values (n = 37), Table S5: The 48 metabolites nominally associated with the baseline log PRA in
PEAR-2 European Americans with p < 0.01, Table S6: Availability of the metabolites having significant
or nominally significant associations with the baseline PRA from discovery phase (n = 63) in PEAR,
Table S7: The metabolites clustered with caprate, sphingosine-1-phosphate and 1-palmitoleoyl-GPC
(16:1) *, Table S8: List of top metabolic pathways enriched in the pathway analysis.
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