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Woesearchaeota as a newly established member of the superphylum DPANN (Diapherotrites,
Parvarchaeota, Aenigmarchaeota, Nanoarchaeota and Nanohaloarchaea) are surprisingly abundant and
diverse in a wide variety of environments, including deep oil reservoir, sulfuric springs and anoxic aqui-
fers, indicating a high diversity of their roles in global biogeochemical cycles. However, ecological func-
tions of them remain elusive. To fill up this gap, we analyzed and compared the global distribution
patterns of Woesearchaeota using the genomes available publicly. As a result, both ecological distribution
patterns and metabolic predictions support a key role of woesearchaeotal lineages in cycling of carbon,
nitrogen, and sulfur. Multivariate regression analysis reveals that Woesearchaeota might function in con-
sortium with methanogens in the cycling of carbon in anaerobic environments, particularly in soils or
sediments. Moreover, comparative genomic analysis and ecological distribution suggest the potential
roles of Woesearchaeota in the processes of denitrification, nitrogen fixation, and dissimilatory nitrite
reduction, especially in the wastewater treatment systems; and also uncovered the potential capability
of sulfate reduction, sulfide oxidation and thiosulfate oxidation in sulfuric or sulfidic-rich environments.
Our findings add more information into the ecological roles of archaea in the anoxic environment.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Archaea are ubiquitous microbial members composed of more
than 28 phyla and occupy one of the three domains in the tree of
life [1–3]. Archaeal lineages have been detected in a wide variety
of environments, ranging from extreme hydrothermal vents,
hypersaline environments and polar permafrost soils to freshwa-
ter, wastewater treatment plants and coastal wetland [4–8]. More-
over, they are abundant but widely distributed in soils, marine or
freshwater sediments and water columns, wetlands and estuaries
[9–12]. The rapid development of culture-independent sequencing
technologies and bioinformatics tools have revolutionized our
understanding of archaeal diversity and metabolic potentials in
different ecosystems, which allows the discovery of the new
archaeal lineages and their ecological roles [13]. Therefore,
archaeal diversity, evolution and ecology have been of great inter-
est in the field of microbial ecology.
The widely-distributed archaeal lineages play crucial roles in
the global biogeochemical cycles [14]. For example, in global car-
bon cycling, many archaea have been implicated to participate in
the methane metabolism that affects both the nutrient cycling
and the global climate change [15]. In deep oceans, archaea with
widespread occurrence are capable of scavenging of diverse
organic substrates, such as carbohydrates, fatty acids and lipids
as carbon and energy sources [16]. Asgard archaea can oxidize
hydrocarbons, methane and butane in particular, driving anaerobic
hydrocarbon cycling in the oceanic subsurface [17]. In nitrogen
cycling, ammonia-oxidizing archaea (AOA) have been reported to
play a crucial role in the oxidation of ammonia in a wide variety
of environments [18–20], such as wastewater treatment systems
[21–22], sediments [23], stone cultural heritage [24–27]. More-
over, genes involved in nitrogen metabolism have also been
detected to be abundant in temperate marine sediments [28],
hyperthermophilic environments [29], brine or salted pools [30],
etc. In sulfur cycling, varieties of archaeal lineages are capable of
using elemental sulfur and reduced inorganic sulfur species as
energy source or electron donor in many sulfuric-rich environ-
ments [31–33], such as volcanic hot springs [34], peatlands [35]
and hydrothermal vents [36]. Importantly, elemental sulfur can
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be used as not only the electron donor by aerobic archaea (e.g.,
Acidianus and Sulfolobus) but also the electron acceptor by anaero-
bic chemolithotrophic archaea (e.g., Acidianus and Pyrodictium)
[37]. Therefore, archaea become one of essential participants in
the global biogeochemical cycling of major elements. Exploration
of novel metabolic potential of archaea will help understand their
ecological roles in the global biogeochemical cycles.

Woesearchaeota as one of the members of the archaeal super-
phylum DPANN are widely distributed and abundant in soils,
freshwater, sediments, wetlands, estuaries and hydrothermal vents
[11,38–40]. High diversity of woesearchaeotal lineages yields more
than 26 subgroups at the class level based on the phylogenetic
analysis [39]. High diversity and wide ecological distribution imply
the important roles of woesearchaeotal lineages in the global bio-
geochemical cycles [41]. However, current studies have only
revealed the roles in anaerobic carbon cycling [38–39], and thus
the major functions of Woesearchaeota remain still unknown.
Identification of novel metabolic potential of woesearchaeotal lin-
eages has great importance to unveil their ecological roles in the
global biogeochemical cycles of major elements.

At present, a great number of woesearchaeotal 16S rRNA gene
sequences (ca. 5000) in public databases are originated from a
wide range of environments. This dataset provides large informa-
tion available currently to explore the global ecological patterns
and to imply more on the relationship between the distribution
patterns and the ecological functions/roles of Woesearchaeota in
the global biogeochemical cycles. Here, we retrieved the public
databases of woesearchaeotal lineages and meta-genomes to (i)
characterize the global distribution of woesearchaeotal communi-
ties and unveil the driving environmental factors that affect the
woesearchaeotal distribution among diverse habitats, (ii) identify
the metabolic potential on the basis of comparative genomic anal-
ysis of the woesearchaeotal genomes, and (iii) link the ecological
distribution patterns to their potential ecological roles in the
cycling of carbon, nitrogen, and sulfur. We expect to expand our
understanding of the ecological roles of archaea in the global bio-
geochemical cycles.
2. Materials and methods

2.1. Construction of cultivation-independent libraries

We recovered both the published literature and the GenBank
database for the construction of woesearchaeotal 16S rRNA clone
libraries. The detailed steps involved are available elsewhere
[39]. Specifically, the Esearch Utility was employed to capture
archaeal 16S rRNA gene sequences from the database as per the
following string ‘16S AND 600:2000 [Sequence Length] AND
archaea [Organism] AND rrna [Feature key] AND isolation_source
[All fields] NOT genome OR chromosome OR plasmid’. To make
sure the availability of further analysis, sequences with isolation
source tags missing were removed. To guarantee only studies or
libraries that include woesearchaeotal sequences were retained,
the remaining 122,559 archaeal sequences from 217 libraries were
BLASTed against the reference database SILVA SSU 128 [42–43].
Libraries or studies with the number of 16S rRNA gene sequences
<10 were discarded. Finally, we accomplished the screening with
133 studies or libraries, which contain 15,012 archaeal sequences,
including 3584 woesearchaeotal sequences. Such studies or
libraries were grouped into seven distinct habitats as follows: 32
libraries from freshwater sediment (Fsed), 30 from freshwater
(Fwc), 22 from soil (S), 19 from marine sediment (Msed), 12 from
hydrothermal vent (Hdv), 11 from hypersaline environment (Hsal),
and 7 from marine water column (Mwc) (Table S1). Furthermore, a
semi-quantitative environmental matrix was constructed accord-
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ing to the range of environmental gradients among these habitats:
temperature (cold, temperate, and hot), life style (water, sediment,
and soil), salinity (non-saline, saline, and hypersaline), oxygen con-
centrations (oxic and anoxic), and trophic state (oligotrophic,
mesotrophic, and hypertrophic) (Table S1).

2.2. Taxon-based analysis

The total 15,012 archaeal sequences formed 11,323 operational
taxonomic units (OTUs) at an identity of 97%, including 2180 OTUs
that belonged to Woesearchaeota (Table S1). Next, these OTU
sequences were compared with the reference database SILVA SSU
128 and assigned to the corresponding taxon once one OTU
matches with a reference or identified sequence with an identity
higher than 97%. If an archaeal OTU does not match with any ref-
erence sequence, this OTU will be named ‘unknown archaea’. After
the taxonomy assignment, each named OTU was dated back to the
specific libraries that were associated with a given habitat or envi-
ronmental matrix for further analyses, such as relative abundance
and occurrence frequency.

2.3. Multivariate regression analysis

A multivariate regression tree (MRT) was determined and gen-
erated by the R package mvpart to illustrate the relationship
between the environmental matrix (Table S1) and the table of lin-
eage relative abundances [44]. Meanwhile, we introduced the indi-
cator value (IndVal) index, which combines relative occurrence
frequency and relative abundance to identify archaeal lineages, like
the concept of ‘indicator species’, among the habitats. The indicator
species represents the predominance of a species in both relative
abundance and relative occurrence frequency in a given habitat,
indicating the important ecological niche of a species in such
habitat.

2.4. Comparative genomic analysis

Genomes of Woesearchaeota were retrieved from the NCBI
Genome Database and further confirmed with the authors/owners.
The quality of the retrieved 19 woesearchaeotal genomes was esti-
mated by CheckM and the parameters, such as completeness (%),
sequencing depth (x), relative GC content (%), and number of pro-
tein coding genes were listed in Table S2. To infer the metabolic
functions of specific subgroups of Woesearchaeota, only genomes
that have a 16S rRNA gene sequence were used for analysis. Geno-
mic BLAST analysis for all the genomes was performed to provide
the reciprocal best BLAST hits (rBBHs). The MCL76 algorithm was
then introduced to cluster rBBHs into protein clusters. Finally,
the proteins were ready for further annotation and identification.

2.5. Annotation and identification of genes

Open reading frames (ORFs) were predicted on their genomic
scaffolds using the metagenome mode of Prodigal and were anno-
tated by the NCBI Prokaryotic Genome Annotation Pipeline
(Table S3) and by the comparison with KEGG PATHWAY Database
(https://www.genome.jp/kegg/pathway.html). Genome-based
functional gene annotation was determined by searching all pre-
dicted ORFs in a genome with the presence of the corresponding
enzymes. If a metabolic process is dependent upon more than
one enzyme, it was confirmed based on the presence of all the nec-
essary enzymes. To find out the metabolic potential of the specific
woesearchaeotal subgroups, we assigned the genomes to the cor-
responding subgroups on the basis of their 16S rRNA gene
sequences if available [39] (Table S2).

https://www.genome.jp/kegg/pathway.html
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3. Results

3.1. Ecological distribution patterns of Woesearchaeota

Woesearchaeota over the retrieved 133 archaeal libraries had a
relative abundance of 23% and dominated differentially in the
Fig. 1. Relative abundance of woesearchaeotal lineages (based on sequence abundance) w
above the bar. Error bars represent the standard deviation.

Fig. 2. MRT of the interaction between archaeal lineage abundance and environmental
clustered in the tree leaves according to their sources (Table S1). Pie charts under each
structure of the leaves. The IndVal index for each leaf (data not shown) revealed that mo
Abbreviation of taxonomy: Woese, Woesearchaeota; Thermpl, Thermoplasmata; SCG, Soi
Uncultured Thaumarchaeota; Halo, Halobacteria; Bathy-8/-6, Bathyarchaeota subgroup-
SAGMCG, South African Gold Mine Group 1.
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anoxic habitats, particularly in estuary sediments, lake and wet-
land sediments, and cold sulfuric springs (Fig. 1 and Table S1).
For example, the abundance of Woesearchaeota throughout the 5
libraries of estuary sediments reached up to 70%, whereas the
abundance over the 5 libraries of cold sulfuric springs was more
than 50%. They tended to occur more frequently in paddy soils, lake
ithin anoxic habitats. The number of libraries used for each kind of habitat is given

factors. The model explained 51.1% of the variance of the whole data set. Libraries
leaf indicate how the relative abundance of archaeal lineages contributed to the

st core lineages are still indicator lineages (p < 0.01), which are labeled on each pie.
l Crenarchaeotic Group; Tergp, Terrestrial group; MG-I, Marine Group I; UncThaum,
8/-6; Metcoc, Methanococci; Metmic, Methanomicrobia; Metbac, Methanobacteria;



Fig. 3. Metabolic potential of Woesearchaeota in nitrogen cycling. Colorful nodes indicate the corresponding woesearchaeotal subgroups that might hold the metabolic
function of the corresponding pathways. Only genes detected are listed for the corresponding pathways. Dash lines indicate the pathways that are not detected in any
woesearchaeotal subgroups based on the current genomic information available, whereas the solid lines indicate the pathways that might occur. The two arrows outside the
chart indicate the start of the pathways that take place under anoxic or oxic condition.
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and wetland sediments, and hydrothermal vents, where oxygen
availability is largely limited or none existence.

To link the abundance of the archaeal lineages to environmental
factors, MRT was constructed (Fig. 2). The MRT analysis generated
a twelve-leaf tree ordination based on oxic status for the first two
branches, totally explaining 51.1% of the phylogenetic variance.
Anoxia tended to combine S (soil with a depth of more than
10 cm) and anoxic water–sediment, Fsed and Fwc (sediments
and water column from anoxic freshwaters or springs), as well as
Hdv and Msed (hot- and cold-temperate anoxic marine sites),
which agrees with previous study [4]. Woesearchaeota are the
indicator lineage over the 7 leaves of the anoxic branch of the tree,
covering 103 libraries. However, Woesearchaeota are detected
only in 30 libraries on the oxic branch of 5 leaves, which represents
only a small portion of the ecological distribution. Therefore, both
distribution and abundance patterns indicate the predominance of
Woesearchaeota in anoxic environments.

Notably, the MRT analysis showed that Woesearchaeota are the
only lineage to be indicator for all anoxic leaves and also the co-
indicator lineage of Methanomicrobia in soil, anoxic water and
sediments (Fig. 2), such as paddy soil, permafrost soil, oil and gas
Fig. 4. Metabolic potential of Woesearchaeota in sulfur cycling. Colorful nodes indicate th
of the corresponding pathways. Only genes detected are listed for the corresponding path
subgroups based on the current genomic information, whereas the solid lines indicate t
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fields, and freshwater sediments (Fig. 1). Moreover, Woe-
searchaeota are a co-indicator lineage of Methanococci in temper-
ate fresh sediments and Methanobacteria in anoxic water. Such
findings might further provide ecological evidence for Woe-
searchaeota as a potential partner of methanogens in methanogen-
esis, which takes place in the anaerobic environments lacking
sulfate.

3.2. Potential functions in nitrogen cycling

We identified some genes involved in the processes of denitrifi-
cation (e.g., nirK, norD, and nosZ), nitrogen fixation (e.g., nifH), and
dissimilatory nitrate reduction to ammonium (e.g., nrfA and nirB)
as well as the genes relevant to the conversion of organic nitrogen
(e.g., ure ABC) (Fig. 3). However, genes involved in the processes of
anammox, aerobic ammonia oxidation, nitrate reduction, and
nitrite oxidation are missing in Woesearchaeota. Such functional
properties further agree with the distribution patterns that Woe-
searchaeota dominate in anoxic environments, particularly in the
wastewater treatment systems (Fig. 1), where nitrogen is normally
very rich and anaerobic nitrogen cycling processes are very active.
e corresponding woesearchaeotal subgroups that might hold the metabolic function
ways. Dash lines indicate the pathways that are not detected in any woesearchaeotal
he pathways that might occur.
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3.3. Potential roles in sulfur cycling

Comparative genomic analysis also revealed the potential roles
of Woesearchaeota in sulfur cycling, particular for the reduction of
sulfate (e.g., the genes sat, aprA, and dsrA) and thiosulfate oxidation
(e.g., soxB) as well as sulfide oxidation (e.g., sqr) (Fig. 4). All of the
genomes contained the genes sat and/or aprA that encode the
enzymes that catalyze the reduction of sulfate to sulfite. Members
of Woese-3, Woese-18 or the other ungrouped might complete the
sulfate reduction to sulfide. Furthermore, members of Woese-3,
Woese-5a or the other ungrouped might oxidize sulfide to sulfur.
Only the members of Woese-18 show the potential to perform
the thiosulfate oxidation. However, genes involved in the processes
of thiosulfate reduction, sulfur oxidation, sulfur reduction or sulfite
oxidation are not detected in the genomes of Woesearchaeota in
this study. These functions in combination with the distribution
patterns support the potential ecological role of Woesearchaeota
in the sulfuric or sulfidic environments, particularly for hydrother-
mal vent and cold or hot sulfuric or sulfidic springs (Fig. 1), where
sulfur is typically abundant and the element cycling is actively car-
ried out.
4. Discussion

4.1. Dominance of Woesearchaeota in anoxic environments

The ecological distribution patterns indicated that Woe-
searchaeota dominate in anoxic environments, such as soil, sedi-
ments and other anoxic habitats. Meanwhile, high biodiversity of
Woesearchaeota in such habitats has also been observed in our
previous work [39]. These results reflect the important ecological
niche specificity of Woesearchaeota to such environments, because
niche differences over space allow the formation of biogeographic
patterns of species [45]. The properties of the environments would
reveal the ecological functions of woesearchaeotal communities in
anaerobic biogeochemical cycles of elements [38]. For example,
paddy soils [12], oil or gas fields [46–49], wetlands or sediments
[10,50–52] are the typical habitats of methane-producing organ-
isms, which contribute greatly to the global biological methane
emission. In wastewater treatment systems, nitrogen cycling is
actively driven by nitrifiers or denitrifiers [22,53–55]. In sulfur-
rich hydrothermal vents and cold or hot springs, sulfur-cycling
archaea and bacteria manipulate the reduction and oxidation of
elemental sulphur [36,56–58]. These ecological implications reveal
the potential roles of woesearchaeotal lineages in the specific bio-
topes. However, the frequency of the habitats may not represent
the real ecological distribution of Woesearcheota, given the small
sample sizes or the choice of habitats depent upon scientists’ inter-
est in the studies.
4.2. Potential partner of methanogens in anaerobic carbon cycling

According to the distribution patterns and metabolic modeling,
it seems that Woesearchaeota tends to co-occur with methanogens
by a mean of consortium or syntrophy [39]. The MRT analysis
showed that Woesearchaeota are the co-indicator lineage of
methanogens in many anoxic environments, which further sup-
ports the hypothesis that Woesearchaeota might function as a
partner with methanogens biochemically in anaerobic carbon
cycling. Although the direct evidence has not yet been obtained
or confirmed, many indirect findings support this hypothesis. Woe-
searchaeota have been found to perform the fermentation lifestyle
and convert organic substrates (e.g., starch) into acetic acid or
hydrogen [38], which might favor the growth of acetotrophic or
hydrogenotrophic methanogens [39]. The retroelement-guided
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protein diversification mechanisms widely-existed in DPANN
super-phylum, including Woesearchaeota, have revealed the pres-
ence of a versatile tool that could help them adapt to a dynamic,
host-dependent existence [59]. As methanogenesis has a great
impact on the global carbon cycle and climate change, further con-
firmation of the participation by Woesearchaeota is extremely
important. Further work should be focused on the two directions
to determine the effects. On the one hand, given the fact that the
identified number of woesearchaeotal genomes is still very small,
it is necessary to expand the genomic information of woe-
searchaeotal communities to support the direct evidence by
exploring the methyl-coenzyme M reductase (Mcr) complex,
which is the key enzyme that catalyses the final step in methano-
genesis and the first step in methanotrophy [15]. Meanwhile, the
analysis using more undiscovered genomes from both archaea
groups for metabolic models’ reconstruction may provide further
evidence to reveal their partnership in C cycling in anaerobic envi-
ronments. On the other hand, co-culture of Woesearchaeota and
methanogens or other highly co-occurring dominant microbial
members based on metabolic complementation could also help
prove the hypothesis of the partnership or syntrophic lifestyle.

4.3. Participant in nitrogen cycling

Woesearchaeota are also found to be abundant in the libraries
of wastewater treatment systems, such as anaerobic wastewater
bioreactor, activated sludge, and anaerobic digester plan. Such
environments are characterized by the active nitrogen cycling dri-
ven by nitrifiers or denitrifiers, which include archaea, bacteria and
fungi [21–22,60–62]. A few genes, nirK and nosZ in particular,
involved in nitrogen cycling are detected in Woesearchaeota. The
genes are mainly responsible for biochemical processes of nitrogen
cycle under anoxic conditions, such as denitrification from nitrite
to dinitrogen (N2), N2 fixation, dissimilatory nitrite reduction to
ammonium as well as the ammonification of organic nitrogen.
Thus, both ecological distributions and metabolic predictions
revealed the potential roles of Woesearchaeota as a participant in
nitrogen cycling in anoxic environments. However, it is also possi-
ble that the denitrification process from nitrite to N2 is a typical
mechanism of detoxification in Woesearchaeota [38]. If this
hypothesis is true, it is difficult to explain the dominance of Woe-
searchaeota in such nitrogen-rich environments because they may
need more energy to cope with the damage from toxic nitrite or
other products generated in the nitrogen cycle [63–64]. Therefore,
further experimental tests are still required to elucidate the func-
tions of Woesearchaeota in the nitrogen cycle. Isotopic labeling
test with specific substrates would be an effective way to confirm
the actual expression of the genes in woesearchaeotal genomes.

4.4. Potential roles in sulfur cycling

In addition, the comparative genomic analysis indicated some
potential roles of Woesearchaeota in sulfur cycling, such as sulfate
reduction to sulfide, sulfide oxidation to sulfur, and thiosulfate oxi-
dation. Importantly, such functions again agree with the high
abundance of woesearchaeotal lineages in sulfuric or sulfidic-rich
environments, such as hydrothermal vents and cold or hot springs
[58,65–67]. Therefore, these findings would well support the
potential roles of Woesearchaeota in sulfur cycling. If it is true, this
information will greatly advance our understanding of archaea in
the global biogeochemical cycling of sulfur. Investigation into sul-
fur metabolism in archaea could help explore many novel enzymes
and pathways of the archaea, particularly from extreme environ-
ments. For example, two anaerobic chemolithotrophic archaeal
genera, Acidianus and Pyrodictium, have been found to be able to
use elemental sulfur as the electron acceptor in a short electron
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transport chain based on a sulfur reductase and a membrane-
bound hydrogenase in hyperthermal habitats [37]. In contrast,
the relevant mechanisms remain unclear in heterotrophic anaero-
bic archaea, such as Pyrococcus and Thermococcus, though they are
also found to use element sulfur as the electron acceptor. In a low-
salt, sulfide- and sulfur-rich spring, Halobacteriales may adopt a
novel sulfur-metabolic mechanism different from that in their typ-
ical high-salt habitats [68]. Such metabolic mechanisms and path-
ways would evolve diversely in the specific environments and,
thus, could be one reason to explain archaeal distribution and
diversity with ecological function on Earth.

Further studies for functional confirmation are still required. On
the one hand, cultivation of the samples in these environments or
in situ experiments might help us to confirm the roles of Woe-
searchaeota. On the other hand, molecular test based on synthetic
biology is an effective approach to verify the function of the speci-
fic gene. Moreover, a comparative analysis of metabolic potential
of Woesearchaeota from different environments will provide more
insightful details on their ecological roles and functions in the bio-
geochemical cycles, given the fact that more genomes are discov-
ered from different environments.

5. Conclusions

In this study, we investigated the ecological distribution pat-
terns of woesearchaeotal lineages and linked the habitat properties
to the predicted functions. The agreement between ecological dis-
tribution patterns and metabolic functions reveals the potential
roles of Woesearchaeota in anaerobic biogeochemical cycling of
carbon, nitrogen and sulfur. These findings will advance our under-
standing the ecological functions of the new archaea in the global
biogeochemical cycles. Since thre is no pure culture of Woe-
searchaeota available now, information derived for this group is
based entirely on 16S rRNA genes and Metagenome Assembled
Genomes of this group, and further experimental demonstration
is still required to confirm their ecophysiology in the ecosystems.
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