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Abstract
Background: As phenotypic features derived from heritable characters, the topologies of
metabolic pathways contain both phylogenetic and phenetic components. In the post-genomic era,
it is possible to measure the "phylophenetic" contents of different pathways topologies from a
global perspective.

Results: We reconstructed phylophenetic trees for all available metabolic pathways based on
topological similarities, and compared them to the corresponding 16S rRNA-based trees. Similarity
values for each pair of trees ranged from 0.044 to 0.297. Using the quartet method, single pathways
trees were merged into a comprehensive tree containing information from a large part of the entire
metabolic networks. This tree showed considerably higher similarity (0.386) to the corresponding
16S rRNA-based tree than any tree based on a single pathway, but was, on the other hand,
sufficiently distinct to preserve unique phylogenetic information not reflected by the 16S rRNA
tree.

Conclusion: We observed that the topology of different metabolic pathways provided different
phylogenetic and phenetic information, depicting the compromise between phylogenetic
information and varying evolutionary pressures forming metabolic pathway topologies in different
organisms. The phylogenetic information content of the comprehensive tree is substantially higher
than that of any tree based on a single pathway, which also gave clues to constraints working on
the topology of the global metabolic networks, information that is only partly reflected by the
topologies of individual metabolic pathways.
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Background
Genes usually do not act individually but form functional
or structure organizations, exemplified by metabolic path-
ways. As metabolic pathways are essential to the survival
of organisms, and their evolution has been under debate
for more than half a century [1], a combined phylogenetic
and phenetic analysis of pathway topology might expand
the understanding of the evolutionary processes molding
their form and structure.

Up to now, more than 280 organisms have been fully
sequenced, and the Kyoto encyclopedia of genes and
genomes (KEGG: [2]) has computationally reconstructed
organism-specific pathways based on genome informa-
tion and reference pathways, thereby making it possible to
compare metabolic pathways or networks between spe-
cies. Several groups have carried out phylogenetic analyses
based on metabolic pathways, deriving phylogenetic trees
from the information of individual pathways [3-5], the
presence and absence of entire pathways [6], or the reac-
tion content of entire pathways [7]. Other groups have
reconstructed the phylogenies based on the enzyme con-
tent of entire metabolic networks [8,9]. One of these
groups used a method based on the combination of
sequence information and graph topology [3,4]. The com-
bination of these two sources of information was also
used for analyzing protein-protein interaction networks,
known as PathBLAST [10,11]. These studies have pro-
vided valuable insight into the evolution of metabolism;
however, as phylogenetic trees they have generally
diverged substantially from trees based on 16S rRNA, the
most used molecule for phylogeny reconstruction. A com-
mon feature of phylogenetic trees based on metabolic
information is that, owing to similar evolutionary pres-
sures, organisms in similar habitats tend to be clustered
together, and Aguilar et al. [9] therefore regarded such
trees as phenetic rather than phylogenetic. Furthermore,
one group showed that trees based on different subsets of
metabolic networks were different [9], and another result
also indicated a similar situation when several different
pathways were used to construct trees separately [5], just
like when different molecules are used for reconstructing
phylogenies [12].

Our study extends previous works in two ways. First, in
order to elucidate to what extent the topologies of single
pathways, as functional elements of an organism, provide
phylogenetic information and reflect evolutionary pres-
sures, we have subjected information on all available met-
abolic pathways to topological analysis. Second, we have
attempted to measure the phylogenetic information con-
tent of larger pathways sets, or partial metabolic networks,
compared to single metabolic pathways. Considering that
the topologies of metabolic pathways are phenotypic fea-
tures derived from heritable characters, they will necessar-

ily contain both phylogenetic and phenetic components,
and we have therefore regarded the properties derived
from pathway topologies as "phylophenetic". The work
has proceeded through three steps. First, a topologically
based definition for metabolic pathway profiles was intro-
duced; hence the taxonomic distributions of pathways
were studied. Second, for each metabolic pathway, a phy-
logeny based on the topological similarity was recon-
structed and quantitatively compared to the
corresponding 16S rRNA-based tree. Finally, by using the
quartet method, the trees based on single pathways were
combined into one comprehensive tree, which showed a
much higher similarity to the corresponding 16S rRNA-
based tree than any tree based on a single pathway.

Results and discussion
Taxonomiac distributions of pathways
In order to obtain an overview of the distribution of path-
ways relative to the phylogenetic classification of the 184
organisms studied, we produced a grid showing the frac-
tion of organisms in each KEGG [2] category containing a
given pathway, based on the definition given in Methods
(Figure 1). Organisms containing any given pathway were
far from equally distributed among the phylogenetic cate-
gories. Therefore, using equations 1 and 2 separately,
pathway specific P-values were assigned to measure
whether a pathway specific subset was enriched in or
depleted of organisms from a particular category (Figure
2). For pathways found in only a small number of studied
organisms, these organisms usually belonged to one or
two phylogenetic categories. For example, the C21-steroid
hormone pathway (map00140) was present only in three
of the organisms studied, all animals (Penriched-value = 9.8
× 10-6). On the other hand, for a pathway conserved in
most organisms, there were usually some phylogenetic
categories in which none or only a few organisms con-
tained the given pathway. For example, the riboflavin
metabolism (map00740) was present in 126 of the 184
organisms, while only 1 of 19 archaea contained it (Pde-

pleted-value = 1.7 × 10-9), which is consistent with previous
findings that several steps in the biosynthesis of riboflavin
in archaea were absent [13]. In addition, many metabolic
pathways were absent in obligate parasites like Chlamydia
and Mollicutes.

Phylophenetic properties of single pathways
To be able to compare to 16S rRNA-based trees, for each
pathway that was present in more than 10 prokaryotes, a
phylophenetic tree was reconstructed based on the path-
way topology for the pathway specific subset of prokaryo-
tes (details shown in Methods, with distance definition in
equation 3). As little evolutionary information could be
acquired from the most conserved pathways, only meta-
bolic pathways whose topological variation between
organisms is significant enough were studied. A total of 37
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The distribution of pathway specific organisms in different phylogenetic categoriesFigure 1
The distribution of pathway specific organisms in different phylogenetic categories. The grid color indicates the 
fraction of organisms in each category containing a certain pathway. The definition of presence or absence of metabolic path-
ways is given in Methods.
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The distribution of P-values in differentphylogenetic categoriesFigure 2
The distribution of P-values in differentphylogenetic categories. The Penriched-values and Pdepleted-values were calcu-
lated by using the equation 1 and equation 2 (see Methods), measuring whether a pathway specific subset was enriched in or 
depleted of organisms from a particular category (only P-values less than 0.05 are shown).



BMC Bioinformatics 2006, 7:252 http://www.biomedcentral.com/1471-2105/7/252
pathway specific phylophenetic trees were inferred and
compared to 16S rRNA-based trees for the corresponding
prokaryotes. The similarity values for each pair of trees
(single pathway-based and 16S rRNA-based trees) ranged
from 0.044 (nucleotide sugars metabolism, map00520)
to 0.297 (valine, leucine and isoleucine degradation,
map00280), with nearly 90% (33 out of 37) of the path-
ways having a similarity value of more than 0.1 (Figure 3;
Table 1). For each of the 37 pathways, 1,000 random trees
for the same subset of organisms were produced. Only
0.23% (86 out of 37,000) of the random trees had simi-
larity values (compared to 16S rRNA-based trees) of more
than 0.1, showing that topological variations in metabolic
pathways contain a certain measure of phylogenetic infor-
mation. When using Heyman and Singh's distance defini-
tion [5], similar results were obtained, also with nearly
90% (32 out of 37) pathways having similarity values
above 0.1 (Table 1). The consistency in the results indi-
cates that these two topology-based distance definitions
are equally good at preserving evolutionary information.
The result is similar to a previous analysis of the topology
of the citric acid cycle (map00020) and glycolysis/gluco-
genesis (map00010), where the clustering of organisms
agreed well with the NCBI taxonomy [5]. Comparisons of
trees based on glycolysis/glucogenesis to the NCBI taxon-
omy gave similarity values of 0.18 and 0.19 for two sets of
48 and 72 organisms, respectively [5], very close to the
value of 0.178 calculated by our method for 154 organ-
isms containing this pathway. As the similarity values of
these two pathways are only intermediate among all the
37 studied pathways, this should indicate that most single

pathways contain a substantial amount of phylogenetic
information.

The trees derived from topological information of each of
the 37 single pathways generally had a different informa-
tion content than those derived from 16S rRNA. Whereas
the main phylogenetic aspects of evolution are conserved
to some extent, these trees also portray how the essential-
ity of specific metabolic pathways has shaped the evolu-
tionary paths of different organisms. Thus, different
aspects of evolutionary pressure result in the different sim-
ilarity values when comparing to 16S rRNA-based trees,
because, as functional features, the operation of metabolic
pathways is essential to the survival of organisms; and due
to selection on these feature, the topologies of the same
pathways in two organisms with short divergence distance
might be quite different if the selection pressures differs.
For example, although the divergence distance between
two γ-proteobacteria Buchnera aphidicola (Buc) and
Escherichia coli (Eco) is much shorter than that between B.
aphidicola and the mollicute Mycoplasma pneumoniae
(Mpn), due to their similar environments, the topology of
the glycolysis/gluconeogenesis (map00010) for the obli-
gate intracellular symbiont B. aphidicola is much more
similar to that of the obligate intracellular parasite M.
pneumoniae (Figure 4a). Another example is the phyloge-

The differences between single pathway-based treesand 16S rRNA-based treesFigure 4
The differences between single pathway-based tree-
sand 16S rRNA-based trees. (a) In the 16S rRNA-based 
tree, two γ-proteobacteria Buchnera aphidicola (Buc) and 
Escherichia coli (Eco) are clustered together. In the phylophe-
netic tree based on the topology of the glycolysis/gluconeo-
genesis (map00010), the obligate intracellular symbiont B. 
aphidicola (marked with red color) is clustered with the obli-
gate intracellular parasite M. pneumoniae (Mpn), mainly due 
to the gene loss in the two organisms. (b) In the 16S rRNA-
based tree, two archaea Halobacterium sp. NRC-1 (Hal) and 
Aeropyrum pernix (Ape) are clustered together. In the phylo-
phenetic tree based on the topology of the selenoamino acid 
metabolism (map00450), Halobacterium (marked with red 
color) is clustered with actinobacteria Streptomyces coelicolor 
(Sco), mainly due to the putative horizontal gene transfer of 
selenocysteine lyase.

Eco Buc MpnBuc

gene loss

Ape Hal ScoHal

putative HGT

(a) (b)

The distribution of similarity values betweensingle pathway-based trees and 16S rRNA-based treesFigure 3
The distribution of similarity values betweensingle 
pathway-based trees and 16S rRNA-based trees. 
Thirty-seven pathways were studied. The similarity value 
between the pathway set based tree and the 
corresponding16S rRNA-based tree is indicated by an arrow.
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Table 1: List of parameters and similarity values for 37 metabolic pathways. The information on pathway IDs, names and categories 
was obtained from KEGG [2]. For each pathway reference graph, the diameter and average path length were calculated by regarding 
the graph as directed, and the clustering coefficient was calculated by regarding the graph as undirected. TopNet [36] was used to 
calculate the clustering coefficient. The prokaryote number refers to the number of studied prokaryotes containing the pathway, 
based on the definition of presence or absence of metabolic pathways given in Methods.

pathway ID pathway name category vertex number diameter average 
path length

clustering 
coefficient

prokaryote 
number

similarity to 
16S rRNA 

based tree a

similarity to 
16S rRNA 

based tree b

map00010 Glycolysis / 
Gluconeogenesis

Carbohydrate 
Metabolism

40 12 4.58 0.617 154 0.178 0.198

map00020 Citrate cycle (TCA cycle) Carbohydrate 
Metabolism

23 9 3.06 0.594 118 0.13 0.121

map00030 Pentose phosphate pathway Carbohydrate 
Metabolism

34 8 3.24 0.468 107 0.153 0.163

map00040 Pentose and glucuronate 
interconversions

Carbohydrate 
Metabolism

53 13 5.28 0.441 14 0.272 0.363

map00051 Fructose and mannose 
metabolism

Carbohydrate 
Metabolism

61 10 3.60 0.419 96 0.225 0.182

map00052 Galactose metabolism Carbohydrate 
Metabolism

37 14 4.80 0.408 38 0.171 0.142

map00130 Ubiquinone biosynthesis Metabolism of Cofactors 
and Vitamins

21 7 3.13 0.088 39 0.222 0.194

map00220 Urea cycle and metabolism 
of amino groups

Amino Acid Metabolism 33 13 4.46 0.285 110 0.112 0.121

map00230 Purine metabolism Nucleotide Metabolism 97 16 3.78 0.481 164 0.236 0.204
map00240 Pyrimidine metabolism Nucleotide Metabolism 59 9 2.95 0.408 170 0.149 0.161
map00251 Glutamate metabolism Amino Acid Metabolism 35 5 1.83 0.622 148 0.172 0.172
map00252 Alanine and aspartate 

metabolism
Amino Acid Metabolism 38 7 2.50 0.626 139 0.213 0.198

map00260 Glycine, serine and 
threonine metabolism

Amino Acid Metabolism 55 14 4.09 0.556 116 0.238 0.212

map00271 Methionine metabolism Amino Acid Metabolism 23 5 2.43 0.515 122 0.126 0.092
map00280 Valine, leucine and 

isoleucine degradation
Amino Acid Metabolism 32 9 3.16 0.402 40 0.297 0.270

map00330 Arginine and proline 
metabolism

Amino Acid Metabolism 70 10 4.14 0.502 70 0.238 0.268

map00340 Histidine metabolism Amino Acid Metabolism 39 15 5.10 0.276 110 0.056 0.056
map00360 Phenylalanine metabolism Amino Acid Metabolism 39 4 1.84 0.465 34 0.258 0.258
map00362 Benzoate degradation via 

hydroxylation
Biodegradation of 

Xenobiotics
44 9 3.02 0.202 19 0.250 0.187

map00400 Phenylalanine, tyrosine and 
tryptophan biosynthesis

Amino Acid Metabolism 31 10 3.48 0.464 149 0.075 0.089

map00450 Selenoamino acid 
metabolism

Metabolism of Other 
Amino Acids

19 7 2.70 0.253 52 0.142 0.122

map00500 Starch and sucrose 
metabolism

Carbohydrate 
Metabolism

74 12 4.23 0.283 82 0.189 0.164

map00520 Nucleotide sugars 
metabolism

Carbohydrate 
Metabolism

28 5 2.16 0.548 93 0.044 0.055

map00530 Aminosugars metabolism Carbohydrate 
Metabolism

38 7 2.93 0.582 130 0.110 0.133

map00561 Glycerolipid metabolism Lipid Metabolism 80 13 4.02 0.343 74 0.295 0.211
map00620 Pyruvate metabolism Carbohydrate 

Metabolism
67 7 2.43 0.598 155 0.296 0.263

map00630 Glyoxylate and 
dicarboxylate metabolism

Carbohydrate 
Metabolism

58 8 3.10 0.618 57 0.129 0.166

map00640 Propanoate metabolism Carbohydrate 
Metabolism

45 10 3.05 0.513 21 0.055 0.055

map00650 Butanoate metabolism Carbohydrate 
Metabolism

52 13 3.90 0.429 32 0.275 0.275

map00670 One carbon pool by folate Metabolism of Cofactors 
and Vitamins

24 4 1.57 0.80 157 0.103 0.116

map00710 Carbon fixation Energy Metabolism 23 8 3.28 0.247 97 0.117 0.117
map00730 Thiamine metabolism Metabolism of Cofactors 

and Vitamins
14 6 2.88 0.199 20 0.117 0.117

map00760 Nicotinate and nicotinamide 
metabolism

Metabolism of Cofactors 
and Vitamins

32 8 2.47 0.518 121 0.118 0.118

map00770 Pantothenate and CoA 
biosynthesis

Metabolism of Cofactors 
and Vitamins

27 10 3.43 0.320 92 0.134 0.157

map00790 Folate biosynthesis Metabolism of Cofactors 
and Vitamins

25 7 2.69 0.322 124 0.115 0.115

map00860 Porphyrin and chlorophyll 
metabolism

Metabolism of Cofactors 
and Vitamins

60 20 6.37 0.171 90 0.241 0.183

map00910 Nitrogen metabolism Energy Metabolism 63 5 1.87 0.508 137 0.231 0.186

a Pathway-based phylophenetic trees were derived by using distance definition in equation 3.
b Pathway-based phylophenetic trees were derived by using Heymans and Singh's distance definition [5].
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netically closely related archaea Halobacterium sp. NRC-1
(Hal) and Aeropyrum pernix (Ape). In the tree based on the
selenoamino acid metabolism (map00450), Halobacte-
rium is clustered with an actinobacteria Streptomyces coeli-
color (Sco), rather than with A. pernix, mainly due to the
influence on pathway topology from selenocysteine lyase
(EC 4.4.1.16). This enzyme has been found in more than
91 studied bacteria, but among archaea only in Halobacte-
rium, most likely due to horizontal gene transfer (HGT)
(Figure 4.b). Thus, pathway topologies can be regarded as
the results of a compromise between phylogenetic infor-
mation inherited from the last common ancestor and evo-
lutionary pressure causing more rapid shifts in metabolic
structure, and varying similarity values may reflect the
strength of the two factors.

Calculation of various topological parameters for each of
the 37 pathways (Table 1) showed that except for vertex
number, no obvious correlation could be found between
the similarity values and other topological parameters,
including diameter, average path length and clustering
coefficient of the reference pathway graphs. Nor did the
similarity values display any obvious correlation to path-
way category or number of pathway specific prokaryotes.
However, with increasing number of vertices in a graph
(i.e. enzymes in a pathway), the pathway-inferred trees
had a tendency towards higher similarity to the corre-
sponding 16S rRNA-based tree. When considering a
model of complex networks, if one new vertex is added,
the number of all possible sub-networks is doubled.
Therefore, the amount of potential variation within a
pathways graph could be expected to increase exponen-
tially in relation to vertex number. As the opposite is
observed (i.e. a conservation of phylogenetic information
with increasing vertex number), this implies that most of
the potential topological variation in metabolic pathways
is never realized, possibly due to strong evolutionary con-
straints on topological variation, particularly in larger
pathways.

The topologies of the remaining 66 pathways provided lit-
tle phylophenetic information, mainly for two reasons.

One was that 47 of the pathways were either only found
in a small number of specialized organisms, or were too
incomplete to be regarded as present in most studied
organisms. For example, although glycosphingolipid
metabolism (map00600) widely exists in animals, its
topology provided little evolutionary information as only
5 animals were available for study; given more animal
genomes and proper methods, it should be possible to
derive evolutionary information also from this pathway.
The other reason was that the remaining 19 pathways
were too conserved to contain any useful information for
distinguishing between organisms. For example, the pep-
tidoglycan biosynthesis (map00550) exists in 135
prokaryotes; however specific pathway graphs for 101 of
these were identical, and it was therefore impossible to
derive any relationships between these organisms based
on the topological information.

Phylophenetic properties of the pathway set based tree
Based on the topologies of the 37 single pathway trees, a
comprehensive tree was constructed using the quartet
method described in Methods (Figure 5). In order to com-
pare this pathway set based tree to trees based on 16S
rRNA, gene content and gene order, we limited tree con-
struction to 47 organisms for which relevant data was
available in the SHOT server [14]. Comparison of the
pathway set based tree to the 16S rRNA-based tree gave a
similarity value of 0.386, which was higher than for any
single pathway (Figure 3). As single pathways only pro-
vided topological information of "branches" to recon-
struct the pathway set based tree, the higher similarity
value for the pathway set based tree might indicate the
existence of global constraints working on the global met-
abolic networks topology, which are reflected by the indi-
vidual metabolic pathways. However, with the exception
of the gene order tree based on SHOT version 2.0, the
other three gene order and gene content based trees
showed higher similarity to 16S rRNA-based tree than the
pathway set based tree (similarity values ranging from
0.522 to 0.613; Table 2), indicating that evolutionary
influences generally not accounted for by the rRNA-based
phylogeny (e.g. HGT, gene loss and evolutionary pres-

Table 2: Similarities values from comparisons between pathway set based tree and trees based on other information. The similarity 
values range from 0 to 1 (1 being identical topology).

Pathway set 
based tree

Gene content tree 
(SHOT vs. 1.0)

Gene order tree 
(SHOT vs. 1.0)

Gene content tree 
(SHOT vs. 2.0)

Gene order tree 
(SHOT vs. 2.0)

16S rRNA 
based tree

Pathway set based tree - 0.409 0.318 0.409 0.295 0.386
Gene content tree (SHOT vs. 1.0) - 0.613 0.727 0.409 0.545
Gene order tree (SHOT vs. 1.0) - 0.568 0.363 0.522
Gene content tree (SHOT vs. 2.0) - 0.477 0.613
Gene order tree (SHOT vs. 2.0) - 0.340
16S rRNA based tree -
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sures) have made a stronger mark on the topology of the
metabolic networks than on the genome as a whole.

The pathway set based tree reflected both the classical taxa
and the living styles of analyzed organisms (Figure 5). It
showed a definite separation between archaea and bacte-
ria, with all 10 archaea clustered in the same branch and
the two-crenarchaeotan species (Sulfolobus solfataricus
(Sso) and A. pernix (Ape)) being separated from other 8
euryarchaeota on two different sub-branches. Among the

eubacteria, the largest branch contained 13 organisms
which all belonged to obligate parasites or obligate sym-
bionts with small genomes. This clustering of intracellular
parasites/symbionts from various rRNA based taxa is a
persistent feature of metabolism-based phylogenies [7-9],
and reflects a convergence towards small metabolic net-
works consisting of functions that cannot be substituted
by import of host-produced metabolites. Of the 8 γ-pro-
teobacteria, 6 were placed in one branch; the two excep-
tions were B. aphidicola (Buc), an obligate intracellular

The pathway set based treeFigure 5
The pathway set based tree. The names and categories of organisms included in the tree are given in Additional file 1. The 
tree was drawn with the program TreeconW [35].
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symbiont which clustered with other obligate parasites or
symbionts, and Xylella fastidiosa (Xfa), the only plant path-
ogen. Interestingly, the latter shared a separate branch
with two other pathogens (Mycobacterium lepra (Mle) and
M. tuberculosis (Mtu)), possibly indicating some related-
ness in metabolic design also for extracellular pathogens.
The fourth member on this branch was the hyperther-
mophilic Aquifex aeolicus (Aae), which also cluster close to
X. fastidiosa based on enzyme content [8], and relatively
close to the mycobacteria in the 16S rRNA tree. Another
branch included 6 organisms, which, with the exception
of the cyanobacterium Synechocystis sp. (Syn), all belonged
to non-γ proteobacteria, whereas an additional two para-
sitic non-γ subclass proteobacteria (Rickettsia prowazekii
(Rpr) and Helicobacter pylori (Hpy)) were grouped with the
obligate intracellular parasites/symbionts. The nine
Gram-positive organisms were placed in two branches;
two mycobacteria were clustered together in one branch,
and the remaining seven in another branch also contain-
ing the hyperthermophilic organism Thermotoga maritima
(TMA). T. maritima is much of an orphan in bacterial phy-
logeny. Whereas the 16S rRNA-based tree places it on a
branch together with the other hyperthermophilic A.
aeolicus, it ends up on a separate branch on a gene content
tree [15], and in close proximity to the bacillales in the
metabolic reaction content tree [7].

The phylogenetically most interesting aspect of the path-
way set based tree is that it coincides with the consensus
genome tree [15] in clustering chlamydiae and spiro-
chetes among the bacteria, and methanogen and pyro-
cocci among the archaea. Both of these two 'new clades'
are strongly supported by information derived from entire
genome information, but not by rRNA phylogenies. This
strongly indicates that the combination of metabolic
pathway topologies not only depicts phenotypic similari-
ties between different groups of prokaryotes, but also con-
tains a substantial measure of phylogenetic information.

Evaluation of the approach
As one of the types of complex intracellular networks,
metabolic networks have drawn much attention in recent
years [16-18]. Our results relate to two aspects of complex
networks. First, our results show that the topological vari-
ations of metabolic pathways can reflect the adaptation to
specific evolutionary pressures, indicating the possible
relationships between the structure of a metabolic path-
way (which can be regarded as a type of functional mod-
ule) and organismal adaptation. Secondly, the results
touch upon the relation between phylophenetic proper-
ties at different levels of the metabolic networks. One of
these levels refers to the metabolic pathway, or functional
module, the other refers to the sets of pathways, or the
partial metabolic networks. The study of evolutionary
relations between different levels of networks will not be

limited to metabolic networks, but may also be applicable
to other types of networks like transcriptional regulation
networks and protein-protein interaction networks. How-
ever, as this study mainly concentrated on the topological
information of metabolic pathways, it will have some lim-
itations. Whereas our study gave insight into evolutionary
pressures that might shape the topology of metabolic
pathways, it could not show how the modified pathway
might help the organism adapt to a specific environment.
In further studies, more biochemical analysis, such as flux
balance analysis [19], could be used to perform more
detailed studies on the relationships between pathway
topology and evolutionary pressures.

Though the KEGG pathway reference maps and KEGG
enzyme annotations are probably among the most relia-
ble available datasets of this kind, errors in reference maps
or annotation may occur, and could affect our results. To
test the robustness against such errors we randomly added
specified errors (from 1% to 10%, with 1% intervals) in
either the reference graph of each metabolic pathway, or
in the KEGG annotation of enzymes for each organism.
For each interval we repeated the whole analysis 100
times, thereby acquiring a consensus pathway set based
tree with bootstrap-like values (see details in Methods).
To obtain a measure of the robustness, two sets of values
for consensus pathway set based trees were calculated: the
similarity to the original tree, and the average of boot-
strap-like values of all branches. The former reflects the
variation of pathway set based tree given a specific error
and the latter the stability of pathway set based tree
against specific errors. Both values decreased when the
fraction of added errors increased (Figure 6). However,
even with an error rate up to 10% most features of original
pathway set based tree were preserved; e.g. both the
branch of obligate parasites/symbionts and the branch of
archaea were persistent up to 10% error rate. The test indi-
cates that a moderate amount of errors in KEGG pathway
maps or enzyme annotations will not influence our
results substantially.

Conclusion
This analysis has clearly shown that the topologies of dif-
ferent metabolic pathways contain different phylogenetic
and phenetic information content. This suggests that
pathway topologies can be regarded as the results of a
compromise between phylogenetic information inherited
from the last common ancestor and evolutionary pressure
causing more rapid shifts in metabolic structure, and var-
ying similarity values might reflect the strength of the two
factors. The analysis has also shown that the phylogenetic
information content of the pathway set based tree is sub-
stantially higher than that of any tree based on a single
pathway, which indicates that metabolic pathway evolu-
tion might be influenced by the potential constraints
Page 9 of 13
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working on the topology of global metabolic networks.
When more organisms, especially eukarya, are available in
KEGG, the details of the compromise between phyloge-
netic information and evolutionary pressure on metabo-
lism features as well as global constraint working on
metabolic networks topology might be more thoroughly
studied.

Methods
Deriving specific pathway graphs for each organism
Two complementary ways of representing metabolic path-
ways or networks have commonly been used for topolog-
ical based analysis [5,16,20-23], using either enzymes or
metabolites as vertices. In this work, for each reference
pathway in KEGG PATHWAY [2], a corresponding refer-
ence graph was obtained by using enzymes as vertices. The
enzymes were denoted by the Enzyme Classification (EC)
number, and a directed edge leading from an enzyme E1
to an enzyme E2 arise if the compound A is a product of a
reaction catalyzed by E1 and a substrate of E2. Totally, 103
reference graphs were manually retrieved.

A total of 184 fully sequenced organisms were used in this
work, including 19 archaea, 152 bacteria and 13 eukarya;
all being annotated in KEGG GENE [2]. The phylogenetic
categories of the selected organisms were also obtained
from KEGG, which classified the organisms into 3
domains and 27 categories (Additional file 1). The infor-
mation of whether or not a specific enzyme is present in a
specific organism is available in the ENZYME section of
the KEGG LIGAND [2]. By combining the information on
enzyme presence with reference graphs, and removing iso-
lated vertices, specific pathway graphs for each organism
were derived. Therefore, for each metabolic pathway, any
organism-specific graph is a sub-graph of the reference
pathway graph.

Definition of presence or absence of pathways
We introduced a new topology-based definition for
whether a pathway exists in a given organism. If the diam-
eter of an organism-specific pathway graph was larger
than the average path length of the reference pathway
graph, the pathway was regarded as present in the organ-
ism, if shorter, the pathway was regarded as absent. The
average path length of a directed pathway graph was cal-
culated as the average number of edges in the shortest
path between any pairs of reachable vertices. The diameter
of the graph was the maximum shortest path length
between any two reachable vertices.

There are several possible definitions that could be used to
determine whether or not a pathway is present in an
organism. For example, Liao et al. [6] used a strict defini-
tion for whether a pathway from the WIT database [24]
existed in a given organism, requiring that all enzymes of
the WIT pathway be present. This definition is too strict
for this work, as most reference pathways in KEGG are
quite complex. Other candidate definitions include
requiring that a specific fraction (such as 1/3, 1/2 or 2/3)
of enzymes in one pathway (or edges in one pathway
graph) are present in an organism. Those definitions do,
however, not consider topological information, whereas
our new definition focuses on the continuity of chemical

Robustness testingFigure 6
Robustness testing. (a) Similarities between consensus 
pathway set based trees and the original one. (b) Average 
bootstrap-like values of consensus pathway set based trees.
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reactions, represented by the diameter of an organism-
specific pathway graph. We compare the diameter of an
organism-specific pathway graph to the average path
length of the reference pathway graph, which is one of the
most important topological parameters of a graph and
also taken as the characteristic path length of the graph
[25]. The definition is effective because if a pathway is
defined as present in an organism, the pathway graph in
that specific organism must contain at least one series of
continuous chemical reactions with relative large path
compared to the size of reference graph, and, on the other
hand, if a pathway is defined as absent in an organism, it
would at least be very incomplete or very unconnected.

Assignment of pathway specific P-values to categories
Given the topological definition of absence and presence
of pathways, for each metabolic pathway there was a path-
way specific subset of organisms that contained it. Usu-
ally, the organisms in a pathway specific subset were not
equally distributed among the different phylogenetic cat-
egories. P-values [26,27] were therefore calculated to dis-
tinguish categories that tended to be significantly
enriched or depleted in each pathway specific subset (cat-
egories containing less than 3 organisms were not
included).

Hypergeometric distribution was applied to model the
probability of observing by chance, at least k organisms in
a pathway specific subset size n belonging to a category
containing C organisms from the total number of G
organisms, such that the Penriched-value was given by

Equation 1 measures whether a pathway specific subset is
more enriched in organisms from a particular category
than expected by chance.

Conversely, hypergeometric distribution was also applied
to model the probability of observing by chance, at most
k organisms in a pathway specific subset size n belonging
to a category containing C organisms from the total
number of G organisms, such that the Pdepleted-value was
given by

Equation 2 measures whether a pathway specific subset is
more depleted to organisms from a particular category
than expected by chance.

Computing distances between organism-specific pathway 
graphs
To compute the distances between organism-specific
pathway graphs, we used a definition based on the topo-
logical relationship between shared vertices. Assume a cer-
tain pathway is present in two organisms i and j. If the two
organism-specific pathway graphs contain Gi and Gj verti-
ces, respectively, with n shared vertices, and each shared
vertex has ki and kj neighbors, then the topological dis-
tance between two organism-specific pathway graphs can
be defined as

As an alternative, we also used a more complex distance
definition of Heymans and Singh [5], which is based on
the similarity between vertices, measured by the similarity
between EC numbers, and the structural relationship
between vertices. (Software used for calculating the dis-
tance of Heyman and Singh's definition was kindly
obtained from A. K. Singh.)

Building metabolic pathway based phylophenetic trees
Under the definition of presence or absence of pathways,
for each metabolic pathway, there was a pathway specific
subset of organisms that contained it. After selecting all
prokaryotes from the subset, a distance matrix was
obtained by computing the distances between all pairs of
studied organisms. The program NEIGHBOR in the
PHYLIP package with the neighbor-joining algorithm [28]
was used to build a metabolic pathway based phylophe-
netic tree from the distance matrix. For the same set of
organisms, random trees were generated with a BioPerl
[29] object called Bio::Tree::RandomFactory.

Building 16S rRNA based trees
Prokaryote 16S rRNA gene sequences were obtained from
the Ribosomal Database Project-II [30]. The exception
was the 16S rRNA gene of Pyrobaculum aerophilum, which
contains an intron [31] and for which the sequence was
derived by splicing according to the annotation in NCBI.
The program CLUSTALW [32] was used to do multiple
sequence alignment for all 171 16S rRNA genes, and
thereafter the program DNADIST in the PHYLIP package
with default settings was used to calculate a distance
matrix based on the alignments. Organisms were selected
to correspond to the metabolic pathway based trees, dis-
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tances matrices were derived, and trees were build using
the PHYLIP package as above.

Combining total single pathways based trees into one tree
The quartet method was used to reconstruct a combined
tree based on the set of single pathway trees. In order to
compare this combined tree to gene content and gene
order based trees, we limited tree reconstruction to 47
organisms for which relevant data was also available in
the SHOT server (Additional file 1; [14]). For each path-
way-specific subset with more than 4 organisms repre-
sented in SHOT, a distance matrix was obtained by
computing the distances between all pairs of shared
organisms, from which the topology of a pathway based
tree was inferred. A set of quartets was inferred from the
distance matrix by the program Distquart in the Phylo-
Quart package [33] and all pathway specific quartet files
were transformed and combined into one quartet file. By
using the Q* method [33], from the PhyloQuart package,
a file of bipartitions was obtained. The whole pathway set
based tree for the representative set of organisms was
inferred by the program Tree-pop in the PhyloQuart pack-
age. (No branch length information was provided by this
program.)

In addition, two gene content trees and two gene order
trees for the 47 organisms were reconstructed using the
two versions of the SHOT database, with all settings at
default.

Computing the similarity between trees
The similarity between two trees was computed based on
Penny and Hendy's method [34]. One cut at any interior
branch divided a tree into two groups; therefore, for an
unrooted bifurcating tree with n species, there were n-3
(n>3) cuts resulting in different partitions. No matter
being bifurcating trees or multifurcating trees, if tree i and
tree j concerned the same set of organisms and there were
Ti and Tj partitions for tree i and tree j separately, the sim-
ilarity between them was defined as

Under this definition, the similarity between two trees
varies from 0 to 1.

Robustness tests
Two criterions were used to test the robustness of our
approach against different fractions of errors in the under-
lying data. One criterion added specified errors (from 1%
to 10%, with 1% intervals) to the reference graph of each
metabolic pathway by randomly altering a specific frac-
tion of edges (removing existing ones or creating new
ones). The other method added specified errors (from 1%

to 10%, with 1% intervals) to the KEGG annotation of
enzymes for each considered organism by randomly
choosing a specific fraction of enzymes and then annotat-
ing existing enzymes as absent or non-existing enzymes as
present. For each interval a metabolic pathway based phy-
lophenetic trees were reconstructed (using the distance
definition in equation 3) based on the perturbed pathway
graphs or error-added enzyme annotations, and the single
pathway based trees were combined into one tree. This
process was repeated 100 times, and based on these 100
pathway set based trees a consensus tree with bootstrap-
like values was constructed using the program CON-
SENSE in PHYLIP package.
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