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Abstract. An inaugural workshop supported by “The Leo and Anne Albert Charitable Trust,” was held October 4–7, 2019 in
Scottsdale, Arizona, to focus on the effects of exercise on the brain and to discuss how physical activity may prevent or delay
the onset of aging-related neurodegenerative conditions. The Scientific Program Committee (led by Dr. Jeff Burns) assembled
translational, clinical, and basic scientists who research various aspects of the effects of exercise on the body and brain, with
the overall goal of gaining a better understanding as to how to delay or prevent neurodegenerative diseases. In particular,
research topics included the links between cardiorespiratory fitness, the cerebrovasculature, energy metabolism, peripheral
organs, and cognitive function, which are all highly relevant to understanding the effects of acute and chronic exercise on the
brain. The Albert Trust workshop participants addressed these and related topics, as well as how other lifestyle interventions,
such as diet, affect age-related cognitive decline associated with Alzheimer’s and other neurodegenerative diseases. This
report provides a synopsis of the presentations and discussions by the participants, and a delineation of the next steps towards
advancing our understanding of the effects of exercise on the aging brain.

Keywords: Alzheimer’s Disease, Parkinson’s Disease, exercise, cardiorespiratory fitness, blood vessels, mitochondria, cere-
brovasculature, neurotrophins, cognition

INTRODUCTION

Alzheimer’s disease (AD) is the most preva-
lent neurodegenerative disease. With the increase in
human lifespan [1] the incidence of AD will likely
continue to rise in the coming decades. Risk for
the disease is increased in individuals with a family
member affected by AD or who have apolipopro-
tein e4 genotype (APOE4) alleles [2], as well as by
physical inactivity and associated conditions, such
as arterial hypertension and hypercholestremia [3].
The accumulation of amyloid plaques and neurofib-
rillary tangles in the hippocampus and cortex result
in a progressive loss of brain function accompa-
nied by physical and cognitive decline [4]. To date
there are no effective treatment options for AD
patients, and pharmaceutical trials have generally
resulted in failure [5]. Indeed, the recently approved
monoclonal anti-amyloid antibody aducanumab has
unclear therapeutic efficacy [6]. Therefore, at present
lifestyle interventions hold the most promise for
delaying or preventing the onset of dementia [7]. In
particular, aerobic physical activity, such as walk-
ing, running, swimming or cycling, that improves
cardiorespiratory endurance is a low-cost and low-
risk intervention [8]. In rodents, running enhances
adult hippocampal neurogenesis and neurotrophin
levels, and memory function [9, 10]. In animal mod-
els of AD, exercise improves pathophysiology and
cognitive function [11–13]. In humans, longitudinal
epidemiological studies suggest that aerobic exercise
benefits memory function during normal aging [14],
and reduces the incidence of AD [15, 16]. Moreover,
randomized controlled trials indicate that aerobic
exercise training in older adults can increase brain
volume, blood flow, memory, and executive func-

tion [17–19], which may delay or prevent AD onset
[7, 20, 21].

Observational studies indicate moderate to high
intensity aerobic activity of at least 150 minutes
per week may be needed for cognitive benefits in
middle-aged and older adults [22, 23]. To better
understand the outcomes and mechanisms under-
lying effects of exercise on human brain function,
objective measures of physical activity capacity such
as peak oxygen consumption (VO2peak) and car-
diorespiratory fitness (CRF) are very important [24].
Research has shown that increased CRF is associated
with a larger hippocampal volume and better cog-
nitive function scores in normal aging adults [25],
improved functional connectivity in the default mode
network [26], and is linked to a reduction in brain
atrophy in patients with AD [27]. Similarly, random-
ized controlled trials suggest that higher intensity
exercise, which results in increased CRF, is the opti-
mal approach to improvement and maintenance of
memory function in older adults [28–30]. In late-
middle-aged adults with increased risk for AD due to
family history and APOE4 status, six months of aer-
obic exercise training increased CRF in correlation
with enhanced executive function [31]. Indeed, there
is increasing evidence that CRF is an important indi-
cator of brain health both during normal aging and in
AD patients [32]. In addition, randomized controlled
trial data suggest aerobic exercise may influence brain
structure and function in older adults both with and
without AD. In early AD, exercise-related increases
in VO2peak are associated with improved memory
performance and reduced hippocampal atrophy over
6 months [33]. Jeff Burns and colleagues showed
that in older adults without cognitive impairment, a
dose-response relationship likely exists between aer-
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obic exercise and cognition, beginning with low doses
(75 mins/week) and with increased benefits at higher
doses (150 and 225 mins/week) in those who adhered
to the exercise protocol [29]. Maximizing CRF may
be an important therapeutic target for achieving cog-
nitive benefits [34].

In a study of the benefits of acute exercise in
chronic stroke survivors (>6 months post-stroke),
Swathi Gujral and colleagues showed that an acute
bout of exercise in chonic stroke survivors and age-
matched controls had broad-based cognitive benefits
(i.e., processing speed, memory, global cognition),
regardless of intensity (low or moderate) or modality
(aerobic or stretching). However, only aerobic exer-
cise resulted in attentional and executive functioning
benefits specifically in chronic stroke survivors but
not in age-matched controls.

The link between exercise, CRF, cognition and
dementia was discussed in this Workshop by Jeff
Burns, Swathi Gujral, Eric Vidoni and Jill Morris.

CEREBROVASCULATURE

The mechanisms underlying the association
between CRF and brain health remain under inves-
tigation. In a healthy brain, cerebral blood flow is
augmented in response to a vasodilatory stimulus.
Exercise modulates the cerebrovasculature, which
may allow for better cerebral perfusion, delivery
of oxygen, nutrients, neurotrophins, and other fac-
tors that may promote brain function. In animal
studies, acute bouts of running increase cerebral
blood flow (CBF) in several brain regions, includ-
ing the hippocampus [35], and chronic voluntary
wheel running enhances angiogenesis, neurogene-
sis and spatial memory function [36]. On the other
hand, in mouse models of AD, cerebral hypoperfu-
sion and inflammation are associated with memory
impairment [37]. Similarly, cerebrovascular reactiv-
ity to CO2 is impaired in patients with mild cognitive
impairment [38]. Reductions in global CBF and
cerebrovascular reactivity may lower blood flow to
critical areas of the brain and augment neurological
disease burden [39]. In a collaborative study resulting
from the Workshop, Jill Barnes, Sandra Billinger
and Patrice Brassard combined data sets to show
that middle cerebral artery blood velocity (MCAv)
declines across the lifespan with older women show-
ing the most rapid decline after the 6th decade of
life [40]. Therefore, interventions are necessary to
maintain CBF and cerebrovascular reactivity, and to

potentially reduce or delay the onset of cognitive
decline or Alzheimer’s disease. In humans, exercise
may counteract the age-related decline in CBF [41]
and cerebrovascular reactivity [42, 43] findings sup-
ported by a collaborative paper that resulted from
the Workshop [44]. In addition, gadolinium contrast
imaging in humans revealed hippocampal perfusion
changes after long-term exercise in young [45] and
older adults [46]. However, questions remain with
regard to the exercise modality, intensity, duration of
the intervention as well as the types of measurements
used to assess CBF and cerebrovascular reactivity. In
the Workshop various aspects of exercise effects on
the cerebral vasculature was discussed by Jill Barnes,
Paul Fadel, Jill Morris and Shawn Whitehead.

Cross-sectional studies examining the influence of
habitual exercise on cerebrovascular function have
reported conflicting results [43, 47–49]. The majority
of studies assessing habitual aerobic exercise effects
on cerebrovascular function have been performed
in older adults. Furthermore, the underlying mech-
anisms by which exercise may impact the cerebral
circulation remains unclear. To address these gaps
in the literature, the Barnes lab designed a study
to examine cerebrovascular function, determined as
cerebrovascular reactivity to CO2, in healthy young
adults who were either aerobically trained, resistance
trained, or untrained. This is the first study to date,
to evaluate cerebrovascular reactivity in resistance
trained individuals and to directly compare across dif-
ferent modes of exercise. Contrary to the hypothesis,
there was no difference in cerebrovascular reactiv-
ity to CO2 between untrained, aerobic trained, or
resistance trained healthy young adults. The results
suggest that exercise mode does not influence cere-
brovascular reactivity in healthy young adults, but
may influence resting cerebral hemodynamics in this
population [50].

Although there were no differences in cerebrovas-
cular reactivity between healthy adults with different
modes of exercise, acute exercise is known to cause
shifts in vascular function, and this may be dependent
on exercise intensity. Specifically, the function of the
peripheral blood vessels is acutely improved after a
single bout of moderate intensity aerobic exercise in
young adults, and it was hypothesized that the cere-
bral circulation would respond in a similar manner.
Previous studies have shown that CBF during exer-
cise is highest at moderate intensities, but is lower
at near-maximal exercise [51]. Yet, it is still unclear
what exercise “dose” is necessary to improve CBF
and cerebrovascular reactivity after exercise. There-
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fore, a study to assess cerebral and peripheral vascular
function after an acute bout of aerobic exercise at low
(30% VO2max) and high (70% VO2max) intensity
was conducted in young healthy adults. Data from
the Barnes lab show that carotid artery blood flow
increased immediately after high intensity exercise,
whereas there was no change in carotid artery blood
flow after low intensity exercise. This study will help
inform future exercise protocols to improve cere-
brovascular health in young adults, and then extend
this protocol to middle-aged and older adults. This
information will help determine the aerobic exercise
dose that may be needed to improve cerebrovascular
function, promote brain health, and reduce the risk of
cognitive decline (Fig. 1).

In related work to understand the cerebrovas-
cular dynamic response during an acute bout of
exercise, Sandra Billinger, David C. Poole and col-
leagues developed a novel method for measuring
cerebrovascular response from rest to moderate-
intensity exercise in the middle cerebral artery
(MCA) [52–54]. The resolution of the MCAv kinetic
response has provided unique information for age-
and sex-differences with a blunted response in older
adults when compared to their younger counterparts
(Fig. 2). For those with chronic conditions, the MCAv
kinetic response may provide valuable insight into
cerebrovascular function. For instance, stroke in the
MCA negatively affects the MCAv kinetic response
and those with stroke differ compared to age-and sex-
matched sedentary individuals. Future work is needed
to understand which exercise parameters (frequency,
intensity, time and type) possess the greatest influence
on cerebrovascular health. The downstream conse-
quences, specifically in the capillary bed, of these
slowed kinetics and reduced blood flow amplitude in
response to increased metabolic demands have not
been resolved, as described below.

Effective blood-tissue oxygen delivery depends
not only on bulk arterial blood flow but cru-
cially on the capillary distribution of that flow.
David C. Poole and colleagues have developed
a contemporary model of capillary function that
replaces extant Kroghian-based models, which more
accurately describes oxygen transport especially in
muscle and brain [55–58], (Fig. 3). Disease processes
that impair red blood cell (RBC) distribution within
the capillary bed, such as homogenization of flow,
longitudinal recruitment of capillary surface area,
capillary hematocrit and glycocalyx function, may
restrict blood-tissue oxygen transport as much as a
substantial reduction in bulk blood flow. However,

Fig. 1. Preliminary data showing common carotid artery flow
differences before (Pre-Exercise) and immediately after (Post-
Exercise) 30 minutes of treadmill-based exercise in n = 10 young
adults (4M:6F). The common carotid artery blood flow was signif-
icantly increased Post-Exercise with the 70% VO2max treadmill
exercise. * P < 0.05 vs. Pre-Exercise.

Fig. 2. Typical middle cerebral artery velocity (MCAv) at rest
and response following the onset of moderate intensity exercise
(dashed vertical line, time 0). Solid circles are from a representa-
tive young healthy subject, Subject 2. Hollow circles are from an
older healthy subject (Subject 20). Hollow squares are from stroke
patient (Subject 201) using the ipsilateral MCA. By comparison,
note very slow mean response time (MRT) and low amplitude of
response in the older subject and absence of any response in the
stroke patient [52].

present diagnostic approaches that permit clinicians
to visualize large arteries and measure blood perfu-
sion regionally cannot assess capillary distribution
of that flow. Thus, accurate capillary hemodynamic
models are desperately needed to provide insights
into the impact of ageing, vascular risk factor and
diseases such as Alzheimer’s disease (AD) on capil-
lary function and oxygen transport (Fig. 4) over and
above their impact on bulk blood supply [59, 60].
That large vessel alterations are absent in AD has
resulted in the prevailing view that vascular imped-
iments are not involved in its etiology: This despite
the common risk factors for AD as for stroke and car-
diovascular disease. Counter to this notion, capillary
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hemodynamic derrangements, that impair brain oxy-
gen transport, were found in AD patients [61, 62].
These observations highlight a clear and pressing
urgency for application of realistic capillary func-
tional models (Fig. 3), in the steady-state and across
metabolic transients, to the brain in health and dis-
ease. Key questions that such models will usefully
address are listed in Table 1. Development of better
visualization techniques and models, likely combined
with machine learning, to better understand the role of
microvascular dysfunction and oxygenation deficits
in AD and other diseases is crucial for this undertak-
ing.

In the Dementia Risk and Dynamic Response to
Exercise clinical trial Eric Vidoni and colleagues
are characterizing the acute exercise response in cere-
bral perfusion, and circulating neurotrophic factors in
older adults with and without APOE4, the strongest
genetic predictor for sporadic, late onset AD. Older
adults will undergo single bouts of a moderate inten-
sity exercise intervention. Pre- and post-exercise CBF
will be examined using arterial spin labeling, as well
as blood-based neurotrophic factors. Indeed, it is very
important to accurately measure circulating factors
that are responsive to acute exercise. Some of the
most dynamic biomarkers, such as neurotrophins, are
markedly affected by draw timings and post blood
draw processing [63]. Moreover, Jill Morris and col-
leagues have shown that medication use can markedly
affect mitochondrial bioenergetic outcomes, which
may add another dimension to trial design in cogni-
tively impaired individuals [64]. It is expected that
APOE4 carriers will have poor CBF regulation and
will demonstrate blunted neurotrophic response to
exercise. Accurately understanding the acute effects
of aerobic exercise on cognitive function and brain
health is especially important for those at a higher
genetic risk of Alzheimer’s disease (Fig. 5).

Exercise modality may also have effects on human
cerebrovascular function [65]. In particular, Patrice
Brassard addressed the growing interest in high-
intensity interval training (HIIT) because of its
efficacy in improving cardiovascular and metabolic
functions, both in healthy individuals and in people
with chronic disease. However, there are important
knowledge gaps regarding the impact of acute and
chronic HIIT on cerebrovascular function. For exam-
ple, high-intensity exercise is usually associated with
rapid elevations in arterial blood pressure, which
could be directly transmitted to the brain without effi-
cient neuroprotective mechanisms. Unless countered
by the neuroprotective influences of sympathetic acti-

vation or cerebral autoregulation, these acute and
repeated surges in blood pressure could potentially
increase the risk of hyperperfusion injury predispos-
ing to stroke or blood–brain barrier breakthrough
(reviewed in [65, 66]). Recent research shows that
the acute cerebral artery blood velocity response to a
high-intensity exercise bout is biphasic in young fit
individuals: a rapid elevation in cerebral artery blood
velocity relative to baseline is followed by a return
toward baseline values at the completion of exercise
[67, 68]. Both of these studies also reported large
elevations in cerebral artery blood velocity during
the recovery period following high-intensity exercise.
These results suggest that cerebral blood vessels of
young fit individuals are challenged during and after
a bout of high-intensity exercise. Further research is
needed to evaluate how the cerebral vessels respond
to rapid surges in blood pressure during and following
high-intensity exercise in patients with cardiovascu-
lar and cerebrovascular diseases. Knowledge gaps
also exist regarding the chronic effects of HIIT on
the cerebrovascular function as recently highlighted
in a systematic review [69]. Studies reported either
no training effect (aerobic exercise training of varied
nature and intensity including high-intensity exer-
cise) on cerebral autoregulation in healthy older
sedentary participants [70], or a subtle reduction in
dynamic cerebral autoregulation following 6 weeks
of HIIT to exhaustion in young endurance-trained
men [71]. Further research showed an acute increase
in MCAv during HIIT, in particular in women, which
will further understanding the long-term implications
of HIIT on cerebrovascular function in health and
disease [72].

Another important consideration in studying cere-
bral vasculature is race. American Non-Hispanic
Black (BL) individuals have a greater prevalence
of cerebrovascular and neurocognitive conditions
including cognitive dysfunction, and AD, relative
to other racial groups. Although it is known that
long-term exercise is important for cognitive function
and overall brain health, the impact of race remains
incompletely understood. This is important because
the increased blood flow response leads to elevations
in shear stress, a primary stimulus to improve vascular
health. Recently, Paul Fadel and colleagues studied
forearm blood flow responses to acute bouts of mod-
erate and high-intensity rhythmic handgrip exercise
and found that these were lower in young, healthy BL
compared to White (WH) men, indicating a reduced
peripheral vascular responsiveness [73]. Additional
research found that BL men have an overall blunted
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Fig. 3. Contemporary model of brain capillary function developed in skeletal muscle [54] that demonstrates key features of the capillary
bed crucial for blood-tissue O2 (and other substrates) exchange. It is anticipated that further development of these more accurate capillary
function models will provide invaluable insights into dysfunction in diseases such as Alzheimer’s and dementia.

Table 1
Brain Microcirculation: Pressing questions

How does brain capillary RBC flux and distribution change from rest-↑metabolic rates in health
and disease?

Is the necessary homogenization of capillary hematocrit across units impacted in disease?
How does this affect blood-tissue O2/substrate delivery?
What is the distribution of PO2 s across the capillary, interstitium and intracellular space at rest

and during ↑ metabolic rates in health and disease?
What might be the role of pericytes in re-distributing RBC distribution?
How can regular exercise improve brain capillary function to improve O2 delivery?
What is the best exercise format – resistance, endurance and what frequency, duration and

intensity?

Key questions pertaining to brain microcirculation that the model of capillary function shown in Figure
3 could address.
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Fig. 4. Geometry of oxygen (O2) diffusion from red blood cell
(RBC) in brain capillary to neurons, astrocytes and pericytes.
Effective O2 supply is dependent upon adequate capillary RBC
flux and its distribution as well as capillary hematocrit (gener-
ally lower than systemic hematocrit) as it determines capillary O2
diffusing capacity [144].

ability to rapidly vasodilate in the peripheral cir-
culation at the onset of exercise compared with
young WH men [74]. Whether these reduced hyper-
emic responses to exercise are also present in BL
women remains unclear. Heightened peripheral vaso-
constriction and reduced vasodilation under resting
conditions, highlight peripheral vascular differences
in young BL compared to WH individuals. In stud-
ies performed mainly in WH individuals, cerebral
blood flow increases during acute bouts of aerobic
exercise. Whether this occurs in BL individuals is
unknown. The impact of race on cerebral hemody-
namics in response to acute exercise remains to be
studied.

There is emerging evidence for a relationship
between AD and cerebrovascular disease. Research
presented by Shawn Whitehead proposes that white
matter inflammation plays a role in linking vascu-
lar risk factors and cognitive impairment. Changes
to brain volume and white matter integrity can be

Fig. 5. Example of study flow for assessing markers of the acute
effects of exercise using both MRI and blood-based biomarkers by
Eric Vidoni and colleagues NCT04009629.

measured by magnetic resonance imaging (MRI) but
may only be visible upon irreversible damage to neu-
rons and axons. Through the application of positron
emission tomography (PET) and radio labelled lig-
ands targeting specific proteins, it may be possible
to quantify physiological events, such as inflamma-
tion and synaptic degeneration, prior to manifestation
of the aforementioned damage. Changes to the white
matter, in particular chronic activation of microglia,
in aging and following cerebrovascular stress, stroke
and prodromal AD are related to cognitive impair-
ment. Using a combination of behavioral testing,
focused on executive dysfunction, live animal imag-
ing with PET/MRI and brain histopathology, it is
suggested that the vascular contribution to chroni-
cally activated microglia within the white matter may
be prevented or ameliorated by exercise.

SLEEP

Diffusion weighted imaging has been used by J.
Carson Smith and colleagues to show acute exer-
cise induces microstructural plasticity within the
hippocampus [75]. Hippocampal diffusion was ele-
vated following an acute bout of exercise compared
to seated rest; an effect not observed in a whole-brain
average or in other control regions. Additional work
showed that large-scale brain networks interact with
acute exercise related effects on executive function
and mood. The default mode network (DMN), where
beta-amyloid aggregates in Alzheimer’s disease, the
executive control network (ECN), which promotes
inhibitory control and dual-task capabilities, and
the salience network (SN, also called the cingulo-
opercular network), which helps direct attention, is
sensitive to emotion, and shows hyperactivation in
mood disorders, all interact to support goal directed
behavior. Using functional MRI, Smith and col-
leagues showed that aging-related changes in sleep
may benefit from acute exercise through its impact
on brain networks that regulate mood states [76].
Thirty minutes of moderate-intensity aerobic exercise
increased positive affect and also reduced func-
tional connectivity between the cingulo-opercular
network and the hippocampus. Both of these effects
after exercise were greater among older adults who
showed greater sleep disturbance, measured by wrist
actigraphy. Moreover, the exercise-related decrease
in functional connectivity was found to mediate
the correlation between greater sleep disturbance
and exercise-related improvement in positive mood.
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Another study found that older adults with a longer
total sleep time showed greater improvements in
executive function after acute exercise, and this effect
was mediated by greater volume of the caudate
nucleus [77]. The effect of acute exercise on improve-
ment in executive function has also been shown to
be related to greater activation of the ECN dur-
ing the performance of incongruent conditions on
the Flanker task [78]. In summary, acute exercise
seems to produce complex interactive effects among
large-scale brain networks that regulate both mood
and cognitive function in older adults, with greater
exercise-related effects on mood in poor sleepers, and
greater exercise-related effects on executive function
in better sleepers.

ENERGY METABOLISM

Supply of energy in the form of ATP, produced
from glucose by oxidative phosphorylation in mito-
chondria, and by aerobic glycolysis in the cytoplasm
is needed for brain function. With aging there are
deficits in brain energy metabolism. In particular,
mitochondria are critically important for cell energy
metabolism, calcium homeostasis, cell genesis, cell
death and synaptic plasticity [79]. In the brains of
AD patients, mitochondria have structural and func-
tional deficits [80] and mitochondrial dysfunction
may further AD pathology [81]. AD, and metabolic
conditions such as diabetes, are associated with an
upregulation in inflammatory markers leading to
deficient microglial and astrocytic activation [82]
which may affect mitochondrial function [83]. Aer-
obic exercise upregulates markers of mitochondrial
biogenesis in aged mice [84] and reduces markers of
inflammation [9, 85]. How different cell types, e.g.
hippocampal progenitor cells [86], neurons, astro-
cytes, are affected by the effects of exercise on
mitochondrial biogenesis remain to be defined and
are being studied using novel genomic and proteomic
approaches [87]. Russell Swerdlow, Jacob Haus
and Benjamin Miller discussed aspects of these
topics during the Workshop.

Proteostatic quality control mechanisms fail with
age, resulting in the accumulation of damaged and
dysfunctional proteins, including mitochondrial pro-
teins [88, 89]. Protein breakdown and synthesis
(collectively referred to as protein turnover) is the
primary mechanism to mitigate accumulation of
damaged proteins. Protein turnover is one of the
most energetically costly cellular processes [90]. In

turn maintaining efficient energy production relies
on the maintenance of mitochondrial proteosta-
sis. Therefore, targeting mitochondrial proteostasis
and preserving cellular energetics may have signif-
icant benefits for tissue function. Aerobic exercise
improves cognitive function in older individuals and
those who exercise have reduced risk for develop-
ing neurodegeneration [91]. The protective benefits
of exercise on cognition are well-established, but
the underlying mechanisms are relatively unknown.
In peripheral tissues, aerobic exercise stimulates
mitochondrial turnover [92], increases antioxidant
capacity and reduces accumulation of reactive oxy-
gen species damage [93]. The limited research on
the topic suggests these adaptations occur in the
brain as well [94]. Benjamin Miller and colleagues
are currently studying the impact of exercise on
mitochondrial protein turnover in the brain. Key
methodological developments include the ability to
measure synthesis rates of individual proteins using
stable isotopes and proteomic approaches, and cell-
specific (e.g. neuron versus astrocyte) measurements
of turnover [87].

Lactate is a myometabolite produced via exercise
that could potentially mediate molecular changes in
non-muscle tissues, including mitochondrial biogen-
esis and turnover in the brain. Lactate can signal
through the hydroxycarboxylic receptor (HCAR1),
and is also provided to neurons by myelin and
myelin-forming cells (oligodendrocytes) by coupling
monocarboxylate transporters (MCT) 1 and 2 to neu-
ronal processes [95, 96]. In research by Russell
Swerdlow and colleagues, C57BL/6 mice underwent
seven weeks of treadmill exercise sessions at inten-
sities intended to exceed the lactate threshold. In
liver, mRNA levels of gluconeogenesis-promoting
genes increased. Peroxisome-proliferator-activated
receptor-� coactivator-1� (PGC-1�) expression
increased, PGC-1� expression decreased, and over-
all gene expression changes favored respiratory
chain down-regulation. In brain, PGC-1� and
PGC-1� were unchanged but PGC-1 related co-
activator (PRC) expression and mtDNA copy number
increased. Brain TNF-� expression fell, and vascu-
lar endothelial growth factor (VEGF)-A expression
rose. In adjunct experiments, exogenously adminis-
tered lactate was found to reproduce some but not all
observed liver and brain changes. Thus, lactate, an
exercise byproduct, could mediate some of exercise’s
extra-muscular effects (including the brain), and lac-
tate itself can act as a partial exercise mimetic [84,
97]. Indeed, these findings are supported by studies
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Fig. 6. Lactate plays a role in adult neurogenesis, hippocam-
pal BDNF expression, mitochondrial biogenesis and reduction of
inflammation.

showing that lactate plays a role in adult neurogen-
esis, hippocampal BDNF and VEGF-A expression,
and learning and memory [98–100] (Fig. 6).

Cognitive dysfunction is an emerging chronic com-
plication of diabetes mellitus type 2, which was
discussed by Jacob Haus and colleagues. The long-
term risk of dementia, and progression of mild
cognitive impairment (MCI) to dementia, increases in
patients with diabetes. Even with prediabetes, there is
an increased risk of dementia which is not related to
the future development of diabetes. While the mech-
anisms for these trends are unclear, diabetes-related
cognitive decline has been linked to the formation
of advanced glycated end products (AGEs) and their
receptors (RAGE). AGEs are a heterogenous class
of chemical protein adducts that form spontaneously
between amino acids and reactive carbonyl groups,
such as sugar aldehydes, that disrupts protein charge
and function. Circulating AGEs and other damage
associated molecular pattern (DAMP) molecules (i.e.
amyloid beta, HMGB1, S100 s) bind to RAGE which
induces chronic inflammatory signaling. AGE for-
mation and RAGE expression both increase under
conditions of hyperglycemia and oxidative stress.
Conversely, a number of inflammatory transmem-
brane cell surface proteins, such as RAGE, also
exist as soluble forms (i.e. soluble RAGE, sRAGE)
which suggests that their cleavage and release from
the cell surface may be a regulatory mechanism.
Individuals with metabolic derangement (i.e insulin
resistance, elevated BMI, or increased fat mass)
concurrent with cognitive impairment, present with
aberrant sRAGE profiles [101]. These findings are
consistent with prior reports demonstrating decreased

plasma sRAGE in individuals with cognitive impair-
ment, obesity, insulin resistance and type 2 diabetes
[102–104] and further supports the protective role of
sRAGE in inflammatory diseases. In addition, both
acute and chronic exercise appears to be effective in
attenuating AGE burden and reducing RAGE expres-
sion in metabolic tissues of patients with type 2
diabetes and prediabetes [105–107]. RAGE/sRAGE
is a potential therapeutic target for the treatment of
diabetes-associated cognitive decline and modulation
of neuronal plasticity with exercise.

PERIPHERAL ORGAN-BRAIN
CROSSTALK

There is increasing evidence that peripheral organs
such as muscle, liver and the gut microbiome play a
role in the effects of exercise on the brain. Skele-
tal muscle is of particular interest, it makes up more
than 45% of total body weight, and is important
for general health and wellness because of its pri-
mary role in movement, as well as in the control
of systemic functions such as glucose homeostasis,
thermoregulation and fat metabolism. Muscle adapts
to a variety of signals to modify its size and func-
tion throughout life; however, the adaptability of
muscle to increased loading is diminished with age.
With aging and neurodegenerative conditions there
is a loss of muscle mass and motorneuron function
[108] as a result of deleterious changes to multi-
ple components of the neuromuscular system. The
degree to which loss of function and mass is triggered
by motoneurons or muscle is unclear and is under
investigation in the laboratory of Sue Bodine. In par-
ticular, the extent to which exercise can modify these
changes during normal aging and in neurodegenera-
tive conditions remain to be determined [108]. This
is also important given that studies have shown that
muscle weakness (sarcopenia) often coincides with
cognitive decline [109]. Interestingly, recent research
by Marcas Bamman and colleagues pertaining to
Parkinson’s Disease, the most common motor neu-
rodegenerative disease, shows that HIIT improves
muscle, neuromuscular function and motor function
as well as indices of brain neural activity, includ-
ing increased substantia nigra and frontal activity as
measured by fMRI, cognition, and emotional well-
being [110]. These findings indicate that exercise is a
powerful form of regenerative medicine [111]. How-
ever, it should be considered that exercise modality,
strength or endurance, can produce distinct behav-
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ioral and neural plasticity phenotypes accompanied
by differential gene expression in peripheral organs
and the brain. Another consideration is the motiva-
tion to exercise. Frank Booth and colleagues have
shown that signaling pathways within the rat nucleus
accumbens may mediate voluntary wheel running
motivation [112].

The benefits of exercise may be communicated
to the brain via factors secreted from peripheral
organs, comprehensively referred to as exerkines
[113]. These include myokines [114, 115] such as
VEGF [116] irisin [117–119] and Cathepsin B [30,
120–122] as well as the myometabolite lactate [98].
In addition, hepatokines (insulin-like growth fac-
tor ([123], clusterin [124], glycerophosphoryl diester
phosphodiesterase-like protein [125]), adipokines
[126], and blood platelets [127] derived from runners
have been shown to play a role in neural plasticity or
cognition [128–130]. Conversely, an unhealthy, high-
fat and sugar diet can result in metabolic disturbances
in the gut microbiome that impair learning and mem-
ory [131]. The human gut microbiome consists of
billions of gut microbes that can communicate with
the central nervous system [132, 133]. Changes and
reduction in the diversity of gut microbiome com-
position have been observed in AD patients, and
have been suggested to play a role in inflamma-
tory processes associated with the disease [134–137].
Exercise training in humans increases the micro-
biome diversity [138], and contributes to delaying the
progression of AD in a mouse model [139]. Another
form of inter-organ crosstalk is being studied by
Paige Geiger and colleagues who hypothesize that
tissue crosstalk via transfer of extracellular vesicles
(EV; exosomes and microvesicles) could underlie the
benefits of exercise in AD patients. Recent studies
of EVs have implicated these bilayer-phospholipid
enclosed vesicles as key regulators of cell behav-
ior and physiology, including nerve regeneration,
synaptic function and behavior. Importantly, rodent
studies have demonstrated that intracerebrally admin-
istered EVs can scavenge amyloid-�-peptide (A�)
and these EVs can be deposited in microglia for
degradation. Thus, interventions that enhance EV
generation, secretion, or A�-scavenging could ben-
efit AD patients. Recent findings suggest aerobic
exercise improves EV clearance of A� in isolated
neuronal cells, increases EV number in human serum,
and that EVs carrying enhanced amounts of heat
shock proteins (HSPs) may clear A� through a novel,
microglial-independent pathway [129]. This research
suggests a novel mechanism of ‘exercise-enriched’

Fig. 7. Exercise can increase HSP content in EVs that travel to the
brain and impact protein aggregation. HSP: heat shock proteins;
EV: Extracellular Vesicles, A�: �-Amyloid.

EVs to prevent or delay the development of AD
by mitigating protein aggregation, inflammation and
cognitive decline (Fig. 7).

Research pertaining to interactions between
peripheral tissues and the brain was discussed by
Marcas Bamman, Sue Bodine, Frank Booth, Paige
Geiger, Henriette van Praag.

DIET AND BRAIN FUNCTION

The hypothalamus is considered as the main locus
of the control of feeding behavior [140]. Neurons
expressing the neuropeptide agouti-related peptide
(AgRP) in the arcuate nucleus of the hypothalamus
are essential for sensing and responding to metabolic
signals; increased activity of these neurons is associ-
ated with increased food seeking and hunger. AgRP
neurons also play a critical role in “top-down” regu-
lation of insulin sensitivity and energy expenditure,
thus the appropriate coupling of neuronal activity to
metabolic need is likely critical for the maintenance
of healthy body weight and metabolic function. Kris-
ten O’Connell and colleagues have demonstrated
that consumption of a‘Western’ diet is associated with
hyperexcitability and leptin resistance in AgRP neu-
rons, resulting in persistent activation and decoupling
of neuronal activity with metabolic state, contributing
to obesity and associated comorbidities. Successful
therapeutics for improving metabolic health and body
weight will likely restore the coupling between AgRP
neuronal excitability and metabolic state. Common
weight control interventions (low-fat diet, intermit-
tent fasting, exercise) may play a role in restoring
AgRP neuronal excitability. Importantly, composi-
tion of the diet plays a more important role than
calorie intake therein [141].

The detrimental effects of a high-fat diet go beyond
disruption of hypothalamic physiology. In addition
to promoting obesity and associated comorbidities,
excessive consumption of saturated fatty acids and
refined sugars – hallmark dietary components of a
Western diet – are associated with cognitive impair-
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ments in both humans and in experimental animal
models [142]. Recent work by Scott Kanoski and
colleagues has identified the juvenile and adolescent
periods of development as particularly vulnerable
stages for learning and memory impairments asso-
ciated with Western diet consumption in rats. More
specifically, free access to a Western diet during these
early life developmental periods yields long-lasting
deficits in learning and memory processes that rely on
the integrity of the hippocampus. These effects appear
to be based, in part, on dietary-induced changes in
the microbiome. These memory deficits and micro-
biome changes persist well into adulthood despite
a dietary intervention of switching the animals to a
healthy control diet for an extended period of time
[131]. Whether exercise can reverse or attenuate the
gut dysbiosis and long-lasting cognitive impairments
associated with early life Western diet consumption
is under investigation.

Many signals that communicate nutrient status to
the brain originate in the gastrointestinal (GI) tract.
Nutrient entry into the GI tract initiates a myriad of
physiological responses including secretion of sev-
eral GI peptides that have paracrine, endocrine, and
neuroendocrine action, and that function to aid in
the processing and systemic assimilation of nutrients.
The small intestine is richly innervated by the auto-
nomic nervous system (ANS), but also contains an
enteric nervous system (ENS) and many of the GI
peptides secreted in response to a meal either have
receptors expressed on local innervation or within the
central nervous system (CNS). This has contributed
to the idea that a “gut-brain axis” is integral to regu-
lating feeding and body mass. Interestingly, Darleen
Sandoval and colleagues have shown that many of
the GI peptides that are secreted in response to meal,
are also increased with stress. Glucagon like peptide-
1, (GLP-1), predominantly secreted from specialized
endocrine cells within the distal gut, is increased in
response to various types of stress, including exercise
[143]. Mice devoid of GLP-1 have impaired exer-
cise capacity suggesting an important physiological
role for GLP-1 in exercise performance. However,
the exact function of GLP-1 during stress is unclear.
Recent work has focused on understanding the source
and function of GLP-1 and GLP-1 receptor signaling
that increases with stress.

After food intake, amylin (a fibrillogenic pro-
tein), is co-secreted with insulin from pancreatic
beta cells. Tameka Clemons and colleagues will
study the impact of vigorous physical exertion and
extended periods of time without food on uncoupling

proteins and amylin interaction. Amylin has been
shown to function in metabolism through its influ-
ence on glucose homeostasis, which includes sending
satiety signals to the brain, inhibiting glucagon secre-
tion and delaying gastric emptying. Amylin has also
been proposed to have an impact on beta-amyloid.
Alzheimer’s disease brains have been shown to have
amyloid plaque formation and decreased expression
of certain isoforms of uncoupling proteins (UCP).
UCP are mitochondrial transporter proteins that cre-
ate proton leaks across the inner mitochondrial
membrane resulting in the dissipation of energy in the
form of heat. UCP2 is expressed in pancreatic beta
cells, which suggests an additional metabolic role for
uncoupling proteins.

The role of diet was highlighted by Kristen
O’Connell, Scott Kanoski, Darleen Sandoval and
Tameka Clemons.

DISCUSSION AND NEXT STEPS

The Albert Trust Workshop provided new knowl-
edge and discussion on the effects of exercise on
cognitive function in the young and elderly. Some
points of further discussion and collaboration were
raised that included, but were not limited to the fol-
lowing items:

1. Optimizing exercise duration, type, therapeu-
tic window (personalized medicine)

For instance, what is the best exercise modality,
aerobic or aerobic plus resistance training? Does
the acute response to exercise predict the chronic
response to exercise? How do age, sex, trained vs.
untrained, or other covariates influence exercise out-
comes? Can we perform dose-response trials? Are
there non-responder biological characteristics?

2. What are good proxy measures for effects of
exercise on the brain?

What are the readouts from blood, muscle, imaging
CSF, brain tissue? Are there outcome anchors that can
be standardized, e.g. Dual-energy X-ray absorptiom-
etry (DXA), VO2max, strength test, blood or muscle
biomarkers? PD is a good example with Unified
Parkinson’s Disease Rating Scale (UPDRS) which
is an anchor.

3. Larger scale trials / pragmatic trials that
are needed because they allow for more inclu-
sion of subjects and therefore lessen the impact of
interindividual variability (and for intervention to
rise above the noise)
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4. Exercise has multipotent systemic effects that
provide feedback to the brain – animal and human
studies need to understand the inter-organ inter-
actions mediated by exosomes and exerkines.

5. How do you propose an exercise trial? How
do you get reviewers of NIH grants to appreciate
the value of the trial?

6. Animal exercise studies: which transgenic
mouse models for AD and PD are optimal? Both
mice and rats can serve as exercise models. Can
we create better models?

7. Team science: collaborations are needed so
we can pool data, share resources, samples and
models to keep moving the field forward.

ACKNOWLEDGMENTS

The Leo and Anne Albert Charitable Trust fully
supported the workshop that led to this publica-
tion. Grateful acknowledgment is made to Gene M.
Pranzo, Trustee, Jeffrey Burns, scientific program
chair and Susan Brogan, meeting planner, for their
efforts in advancing awareness of cognitive dysfunc-
tion research.

FUNDING

The work was supported by P30AG072973,
P30AG035982 (S. Billinger); by NIH R01DK10
9948, Sarns Family Gift to the University of Michi-
gan School of Kinesiology (J.M. Haus); by NIH
R01DK121995, NIH R01DK107282, and by an
American Diabetes Association grant (1–19-IBS-
252) (D.A. Sandoval), and in part, by NIH grants
HL-50306, HL-137156, HL-108328, AG 078060 and
AG 19228, the Johnson Cancer Research Center
(A 21-0645) and a K-State College of Veterinary
Medicine Sustained Momentum for Investigators
with Laboratories Established (S.M.I.L.E.) Award
(D.C. Poole); by the Ministère de l’Éducation, du
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