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Abstract
Background: Since the outbreak of coronavirus disease 2019 (COVID-19), human mobility restriction measures have raised
controversies, partly because of the inconsistent findings. An empirical study is promptly needed to reliably assess the causal effects
of the mobility restriction. The purpose of this study was to quantify the causal effects of humanmobility restriction on the spread of
COVID-19.
Methods: Our study applied the difference-in-difference (DID) model to assess the declines of population mobility at the city level,
and used the log–log regression model to examine the effects of population mobility declines on the disease spread measured by
cumulative or new cases of COVID-19 over time after adjusting for confounders.
Results: The DID model showed that a continual expansion of the relative declines over time in 2020. After 4 weeks, population
mobility declined by �54.81% (interquartile range, �65.50% to �43.56%). The accrued population mobility declines were
associated with the significant reduction of cumulative COVID-19 cases throughout 6 weeks (ie, 1% decline of population mobility
was associated with 0.72% [95% CI: 0.50%–0.93%] reduction of cumulative cases for 1 week, 1.42% 2 weeks, 1.69% 3 weeks,
1.72% 4 weeks, 1.64% 5 weeks, and 1.52% 6 weeks). The impact on the weekly new cases seemed greater in the first 4 weeks but
faded thereafter. The effects on cumulative cases differed by cities of different population sizes, with greater effects seen in larger
cities.
Conclusions: Persistent population mobility restrictions are well deserved. Implementation of mobility restrictions in major cities
with large population sizes may be even more important.
Keywords: Coronavirus disease 2019; Mobility restriction; Disease spread; Causal effects
Introduction

Since the outbreak of coronavirus disease 2019 (COVID-
19), non-pharmaceutical interventions (NPIs) have been
used as a major strategy for mitigating the disease
spread.[1,2] In response to the serious health crisis, China
has taken unprecedented measures to contain COVID-19,
including Wuhan lockdown and implementation of strict
NPIs nationwide.[2] Those NPIs may generally be classified
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into two categories. One aimed at controlling sources of
infection, including treatment and isolation of confirmed
cases, quarantine of exposed persons, or screening of
suspicious persons who traveled fromWuhan.[3] The other
was the implementation of human mobility restriction,
aiming to address asymptomatic transmission or transmis-
sion before symptom onset,[4,5] and the strategies included
suspending intra-city public transport, prohibiting inter-city
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travels, closing entertainment venues, or banning public
gatherings.[2] Among the 342 Chinese cities, 39.7%
suspended intra-city public transport and 64.3% closed
entertainment venues.[3] The COVID-19 epidemic in China
was under control for 3 months after the outbreak.[6,7]

COVID-19 continues to spread across the world.[8] In the
context of resource-limited settings (eg, lack of virus
detection kits), implementing a universal coverage to detect
COVID-19 cases is unlikely. The necessary personal
protective measures (eg, face masking) are still in short
supply. As a result, human mobility restriction has been
widely used to contain COVID-19 in most countries.[9-11]

However, the effectiveness of this strategy is in doubt.[12]

Emerging studies investigated its effects on containing
COVID-19[3,11,13-15] including spatial–temporal relation
between mobility restriction and disease transmis-
sion[13,14,16] and initial investigation about the impact of
mobility restriction at the early stage. For instance, one
study found that suspending intra-city public transport or
closing entertainment venues was associated with the
number of cases reported during the first week of
outbreaks[3]; the other suggested that travel restriction
was effective at the early stage of the outbreak, but may be
less useful when the disease is widespread.[17] However,
distinct knowledge gaps exist about the impacts of human
mobility restriction on the disease spread. In particular, the
real-world effects of mobility restriction policy remain less
clear, as the policy implementation may differ across
regions and over time. One plausible argument is that the
effects of human mobility restriction may fade over time,
and a decision on the level and length of mobility
restriction represents a core question for policy makers,
whereby disease control and economic growth have to be
balanced. All these are linked to thorough assessments on
the magnitude of the effects of human mobility restrictions
by time and baseline risks. Thus, we conducted a study to
bridge this important gap.
Methods

Ethical approval

This study was approved by the Ethics Review Board of
West China Hospital, Sichuan University (No. 2020-99).
Design overview

Our study involved two logically linked analyses to
quantify the causal effects of humanmobility restriction on
the spread of COVID-19. First, we applied the difference-
in-difference (DID) model to assess the real-world effects of
mobility restriction policies on mobility declines at the city
level. The intra-city population mobility was measured as
an index developed by Baidu, the largest nation-wide
search engine provider in China. Given that Wuhan
lockdown was implemented on January 23, we used that
date as the starting point for implementing humanmobility
restrictions in China. Subsequently, we used the log–log
regressionmodel to examine the effects of mobility declines
on the disease spread measured by cumulative or new cases
of COVID-19, after adjusting for confounders; the
analyses were at the city level given the availability of
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data and policy implementation. We collected the number
of laboratory-diagnosed cases from the National Health
Commission of China,[7] Chinese Center for Disease
Control and Prevention,[18] and Provincial Health Com-
mission from January 11, 2020 to March 11, 2020,
7 weeks after Wuhan lockdown. We chose January 11,
2020, as the starting date because the complete genome
sequencing of coronavirus was publicly available at that
time.
Measure of intra-city population mobility

Intra-city population mobility was measured by a mobility
index expressed as an exponentially transformed ratio
derived from the daily number of people with outdoor
movements divided by the number of residents in a city, and
was developed by Baidu, the largest nation-wide search
engine provider in China.[19] We collected the population
mobility index data from Baidu Huiyan system (https://
qianxi.baidu.com/). These data were already used for
measuring population mobility in previous studies.[17,20]
Effects of mobility restriction policies on population mobility

We used the DID model to examine the causal effects of
mobility restriction policies on population mobility at the
city level.

To compare the change of population mobility, we paired
intra-city mobility index data between 2019 and 2020 by
the lunar calendar to match the period of the Chinese New
Year, during which the world’s largest population move-
ments occur. To further adjust for the weekend effect of
population mobility, we finally matched January 12, 2019,
to January 4, 2020, both on Saturdays, as the starting date.
Through matching, we were able to fairly compare the
population movements 24 days before the Chinese New
Year and 36 days after that, between 2019 and 2020. The
presence of a parallel trend between 2019 and 2020
confirmed that the assumption of common trends was met
for using the DID model.

The population movement data were aggregated and
anonymized at the county-level from China Unicom, one
of the largest mobile operators in China. In the efforts to
enhance the extrapolation of data, the operator helped us
use a recognized machine learning algorithm, involving the
users’ age, gender, operator’s coverage, and other
parameters, to arrive at the whole network coverage with
all users. The same data resource has been used in a
previous study.[21]

The DID model could be described as follows.

Y it ¼ a þ bTreatit þ cPostit
þ dðTreatit�PostitÞ þ eWeekendt

þ �it ð1Þ
where i, and t, respectively, index the city and date, and Yit
is the dependent variable representing the population

mobility in the i city at t date. Treatit is a dummy variable,
setting 0 for the status of 2019, where no human mobility
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restriction was implemented, as the control group; one for
the status in 2020, where human mobility restriction had
been implemented in response to the outbreak, as the
intervention group. Postit is a dummy, taking 0 for the
period before the lockdown of Wuhan (eg, before January
23, 2020 or before February 3, 2019) and one for the period
after that. Weekendt is a dummy measuring whether the t
date is a weekend. The coefficient d of the interaction term,
multiplying Treatit by Postit, is the effective value to be
estimated, which is the absolute decline of population
activity in i city at t date of 2020, compared with those in
2019.We further calculated a relative decline of population
mobility in 2020over dates, expressedas a proportionof the
absolute decline divided by the baseline populationmobility
index (ie, that in 2019), and reported relative declines by
week (ie, 1, 2, 3, until 6 weeks from January 23, 2020) and
by population size across cities.[22] There were 42, 112, 92,
83 and15 cities with<1million,≥1 and<3million,≥3 and
<5million,≥5 and<10million, and≥10million residents,
respectively.

Impacts of human mobility declines on the spread of COVID-19

We used the log–log regression model to quantify the
impacts of human mobility declines on the spread of
COVID-19 over time by the logarithmic transformation of
dependent variables and population mobility declines,
controlling for the number of population movements from
Wuhan, geo-distances fromWuhan, and population size at
each city.

The log-log regression model could be described as
follows.

Y i;tþ1 ¼ a þ bPopulation mobilityi;t
þ cNumber of population movementsi
þ dNumber of resident Si

þ dDistancei þ �i ð2Þ

where i is the index of the city, t is the index week (t = 1, 2,
3, 4, 5, 6), and Y is the dependent variable representing
i,t+1
the number of diagnosed cases in i city at time t + 1.
Population mobilityi is on behalf of the relative declines of
population mobility in i city during time t, Number of
population movementsi means the number of times of
population movements from Wuhan to imported regions
before January 23, 2020, in i city. Number of residentsi is
the number of residents in i city, and Distancei is the geo-
distance from Wuhan to i city. The dependent variable of
Yi,t+1 and population mobility underwent logarithmic
transformation. Given that the average incubation period
of COVID-19 is about 7 days (range 1–14 days), we
assumed that the putative effect would occur 1 week after
mobility decline. The coefficient of b thus represents the
elasticity (ie, %Dy/%Dx) of the number of COVID-19
cases to population mobility decline.

Using aggregated and anonymized national mobile
data,[21] we calculated population movements from
Wuhan to other cities from January 1, 2020 to January
22, 2020, to resemble the baseline risk (ie, number of cases
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imported from Wuhan) in Chinese cities before Wuhan
lockdown on January 23, 2020. We counted the number
of movements from Wuhan if a person traveled from
Wuhan multiple times. Those travelers who stayed in
Wuhan for <2 h were not counted.[21] We also included
other important city characteristics, including population
size (in 10,000 persons) and geo-distance from Wuhan
(kilometers). Both were collected from Baidu Encyclopedia.

Here, we respectively investigated two dependent varia-
bles. In the first model, we assessed the effects of accrued
mobility declines on cumulative cases, with the exposure of
interest expressed as relative declines of population
mobility during 1 week (ie, from January 23 to January
29), 2 weeks (ie, from January 23 to February 5), until
6 weeks (ie, from January 23 to March 4). In the second
model, we investigated the impact of accrued mobility
declines on newly diagnosed cases that occurred just one
subsequent week. We additionally explored for potential
heterogeneity of effects by population size, measured by
the number of residents (<1 million, 1–5 million, and >5
million). We used STATA12.0 (StataCorp, College
Station, TX, USA) for the statistical analysis.
Results

Declines of population mobility among cities in China

Using mobility index data from 344 cities outside Wuhan
(four municipalities, 26 provincial capitals, and 314 cities),
the average population mobility before January 23, 2020,
was comparable to the matched dates in 2019 [Figure 1A].
Starting from January 23, 2020, the population mobility
declined dramatically [Figure 1A]. The DID model
suggested a continual increase in the relative declines over
time in 2020. In the first week, the implementation of
mobility restriction policies resulted in 31.35% decline
(median [interquartile ranges]: �31.35% [�41.63% to
�24.27%]). After 4 weeks, population mobility declined
by 54.81% (�65.50% to �43.56%) [Table 1]. The
relative declines differed by cities, with a larger number of
residential populations associated with greater declines
[Table 1].

Effects of human mobility declines on the spread of COVID-19

There were 335 cases diagnosed in cities outside Wuhan
by January 23 at Wuhan lockdown. Four weeks later, the
cumulative number of cases was stabilized, and then a
small number of cases increased thereafter. ByMarch 11,
a total of 30,807 COVID-19 cases were diagnosed
in cities outside Wuhan of the mainland of China
[Figure 1B]. The new cases of COVID-19 were rapidly
reduced over weeks [Figure 1C]. We also found the
potential linear association between the relative declines
of population mobility and the numbers of cumulative
and new COVID-19 cases over time by population size of
cities [Figure 2]. Supplementary Table 1, http://links.lww.
com/CM9/A758 reports the median population size in
cities (3,360,000 [1,837,700–5,320,400]), geo-distance
from Wuhan (844.00 [561.50–1291.50] km), and the
number of movements from Wuhan before Wuhan
lockdown (2858 [661–9305] times).
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Figure 1: Human mobility declines and the spread of COVID-19 in China. (A) The left vertical axis represents the paralleled trend of average population mobility among cities outside Wuhan
between 2019 and 2020 by matched dates, and the right vertical axis indicates the accrued mobility decline since January 23, 2020. Red dotted line represents the intra-city mobility index in
2019 over dates and the blue dotted line represents the paired intra-city mobility index in 2020 matched by lunar calendar; yellow dotted line represents the date of January 23, 2020. Yellow
pillar represents the relative decline in population mobility between 2020 and 2019 over weeks, calculated by DID. Horizontal axis indicates the dates from January 1, 2020 to March 4, 2020.
(B) The cumulative number of cases diagnosed in cities outside Wuhan over dates (from January 10, 2020 to March 11, 2020). (C) The number of new cases diagnosed in cities outside
Wuhan over weeks (from January 10, 2020 to March 11, 2020). COVID-19: Coronavirus disease 2019; DID: Difference-in-difference.
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The log–log regression models reported the effects of
accrued mobility declines on cumulative cases [Figure 3].
At 1 week, a 1% decline of population mobility was
associated with 0.72% (95% CI: 0.50%–0.93%) reduc-
tion in the number of cumulative cases, after adjusting for
other confounders. The magnitude of effects continued to
increase until 4 weeks (1.42%, 95%CI: 1.11%–1.74% for
2 weeks; 1.69%, 95% CI: 1.34%–2.03% for 3 weeks;
1.72%, 95% CI: 1.38%–2.05% for 4 weeks; 1.64%,
1.35%–1.94% for 5 weeks and 1.52%, 1.25%–1.78% for
6 weeks). However, the effects of mobility declines differed
among cities of varying population sizes, with larger
effects among larger cities, as opposed to smaller ones
(<1 million) [Figure 4].

There were also statistically significant associations
between accrued mobility declines and new cases that
occurred in the subsequent week. At 2 weeks, a 1% decline
in population mobility corresponded to 1.20% (95% CI:
0.86%–1.54%) reduction in new cases at the subsequent
week (ie, third week). Even after 6 weeks, the effect was
observed, although small [Figure 3]. No heterogeneity of
effects was observed in this model by city-scale [Supple-
mentary Table 2, http://links.lww.com/CM9/A758].

Discussion

Summary of our findings

Human mobility restriction has ever been used at the
outbreak of fulminating infectious diseases, such as severe
acute respiratory syndrome (SARS) in 2003[23,24] and
influenza A in 2009,[25,26] but with a narrower scope or a
2441
transitory period.[25,27,28] The outbreak of COVID-19 in
China, which coincided with the world’s largest popula-
tion movements surrounding Chinese New Year (ie, Chun
Yun), offered an unprecedented opportunity to investigate
the real-world effects of population mobility restrictions.

By the counter-fact DID model, we found almost one-third
of mobility declines occurred in the first week after the
policy implementation; after 4 weeks, the population
mobility was lowered by 54.8%. Policies’ impacts on
mobility decline varied by the population size of a city and
the effects persisted over time. In our critical analyses that
assessed the effects of mobility declines on the disease
spread, we found that the accrued population declines
were associated with the reduction of both cumulative
COVID-19 cases and new cases across the 6 weeks after
the policy implementation. More interestingly, we found
that its impact on new cases seemed larger in the first
4 weeks and faded after 5 weeks.

So, what do these findings tell us? First, we believe that the
implementation of population mobility restrictions is
appropriate and strongly needed in balancing the serious
pandemic and the fatal consequences it has caused vs. the
economic loss and temporary loss of personal mobility. Up
to March 2020, several documents have been issued from
national governmental authorities. These policy docu-
ments covered nearly all social activities across cities and
rural areas, including healthcare services, education,
transportation, tourism, elderly care, child welfare service,
employment, work at home, and community management.
Accordingly, the continual policies implementation
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Table 1: Relative declines in population mobility index between 2020 and 2019 (%).

Duration of policy implementation Mean (standard deviation) Median (percentile 25–75)

1 week (January 23, 2020–January 29, 2020) �33.54 (13.88) �31.35 (�41.63 to �24.27)
<1 million �22.27 (13.70) �20.57 (�28.39 to �12.18)
≥1 and <3 million �31.03 (11.48) �29.89 (�36.30 to �22.94)
≥3 and <5 million �33.39 (10.71) �32.37 (�39.62 to �22.50)
≥5 and <10 million �39.27 (13.78) �39.49 (�47.24 to �28.48)
≥10 million �52.98 (15.30) �48.89 (�61.46 to �42.60)

2 weeks (January 23, 2020–February 5, 2020) �47.59 (14.75) �45.78 (�56.10 to �37.19)
<1 million �38.38 (15.32) �36.93 (�49.03 to �25.44)
≥1 and <3 million �44.98 (11.53) �42.58 (�51.07 to �36.81)
≥3 and <5 million �46.81 (11.85) �45.56 (�54.59 to �38.08)
≥5 and <10 million �52.81 (16.06) �53.02 (�62.10 to �41.17)
≥10 million �68.76 (14.36) �65.20 (�80.15 to �60.10)

3 weeks (January 23, 2020–February 12, 2020) �53.10 (15.28) �52.38 (�62.51 to �42.10)
<1 million �46.11 (16.75) �46.25 (�57.10 to �35.03)
≥1 and <3 million �50.52 (11.92) �48.16 (�57.40 to �42.01)
≥3 and <5 million �52.00 (12.85) �51.37 (�60.40 to �41.99)
≥5 and <10 million �57.58 (17.21) �56.82 (�67.50 to �46.77)
≥10 million �73.93 (13.16) �71.72 (�82.98 to �66.02)

4 weeks (January 23, 2020–February 19, 2020) �54.65 (15.60) �54.81 (�65.50 to �43.56)
<1 million �50.05 (18.45) �51.24 (�62.01 to �38.43)
≥1 and <3 million �52.07 (12.45) �49.77 (�61.64 to �44.04)
≥3 and <5 million �53.43 (13.62) �52.94 (�73.03 to �42.99)
≥5 and <10 million �58.14 (17.25) �57.95 (�69.71 to �46.60)
≥10 million �75.01 (12.18) �73.87 (�82.78 to �66.97)

5 weeks (January 23, 2020–February 26, 2020) �52.48 (16.20) �52.45 (�64.70 to �40.72)
<1 million �51.21 (20.10) �51.19 (�67.38 to �36.28)
≥1 and <3 million �49.80 (13.61) �48.56 (�60.20 to �39.90)
≥3 and <5 million �50.82 (14.51) �50.35 (�58.05 to �40.03)
≥5 and <10 million �54.89 (17.15) �57.66 (�66.44 to �42.72)
≥10 million �72.85 (11.57) �73.52 (�81.29 to �63.88)

6 weeks (January 23, 2020–March 4, 2020) �49.44 (16.67) �48.76 (�61.18 to �36.91)
<1 million �50.52 (21.38) �49.54 (�68.51 to �32.81)
≥1 and <3 million �46.81 (14.68) �44.38 (�55.85 to �36.25)
≥3 and <5 million �47.44 (15.03) �46.82 (�55.23 to �36.37)
≥5 and <10 million �51.11 (16.82) �53.67 (�62.91 to �38.12)
≥10 million �69.13 (10.91) �70.05 (�79.26 to �59.61)
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resulted in prompt mobility declines, and further led to
effective and rapid reduction of new cases in subsequent
weeks, which would, in turn, rapidly eliminate the impact
of the pandemic. Second, we may also infer from our
findings that the effects of the mobility restriction policies
would be large in the first few weeks, but attenuate over
time. After 5 weeks, their effects became smaller. This
alerts that persistent mobility restrictions are highly
deserved, but flexible mobility restriction policies may
be warranted particularly after several weeks of rigorous
mobility restriction. Third, our study suggested larger
effects among bigger cities over time, which highlighted
that the implementation of mobility restrictions in major
metropolises is particularly important and meaningful.
Fourth, the findings strongly advised that, in resource-
limited settings where healthcare resources are not readily
available, non-medical interventions may be optimal
strategies in containing the disease transmission. We also
believe that these strategies are not only effective in the
early stage of the disease outbreak but also at the stage of
widespread, because of its sheer mechanism to block
2442
population contacts at emergencies. Thus, those nations
amid the disease pandemic may still consider implementing
these strategies.
Comparison with previous studies

As an initial mobility restriction intervention, Wuhan
lockdown was extensively assessed.[3,29-32] Previous stud-
ies showed that the Wuhan lockdown delayed the arrival
of COVID-19 in other Chinese cities by 2.9 days,[3] and
lowered 64.8% of cases in 347 Chinese cities outside
Hubei.[30] However, a large number of movements
actually occurred before Wuhan lockdown, and such
populations were likely infected or even asymptomatic
patients that could lead to outbreak in cities outside
Wuhan.[3]

Several studies investigated the effects of other mea-
sures,[3,11,13-15,33-35] among which simulations were exten-
sively used to quantify the effects of physical distancing,
early case detection or isolation, or combination of multiple
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Figure 2: Linear associations between the relative declines of population mobility (logarithmic transformation) and numbers of cumulative and new COVID-19 cases (logarithmic
transformation) over weeks by population size of cities. COVID-19: Coronavirus disease 2019.

Figure 3: Effects of accrued mobility declines on cumulative cases. Effect size represents the elasticity (ie, %Dy/%Dx) of the number of COVID-19 cases to population mobility decline. CI:
Confidence interval; COVID-19: Coronavirus disease 2019.
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Figure 4: Heterogeneous effects of accrued mobility declines on cumulative cases by population size. Population size was divided into three categories (ie, the number of residents <1
million, ≥1 and<5 million, and ≥5 million; the first category was deemed as reference). Effect size represents the elasticity (ie, %Dy/%Dx) of the number of COVID-19 cases to population
mobility decline. CI: Confidence interval; COVID-19: Coronavirus disease 2019.
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measures.[33-35] These studies provided important insights
about the impacts of mobility restriction measures, but had
limitations given the use of modeling, whereby assumptions
are often employed.

Up to now, empirical studies still fall short.[36] One early
study assessed the impacts of humanmobility restriction on
COVID-19 cases at the first week, and the other suggested
that travel restrictionwasmore useful in the early outbreak,
but attenuated if the outbreak was expanded. However, the
extent towhich themobility restrictionpolicy led tomobility
decline and whether human mobility restriction causally
controlled the spread of COVID-19 were not yet estab-
lished. An earlier study, using mobility data from four
metropolitan areas in the United States, mainly examined
the temporal correlation between the timing of public policy
measures and cumulative cases of COVID-19,[16] but
indicated a lack of causality because of the nature of
descriptive analyses.[16]
2444
Strengths and limitations
Our studyhas several strengths. First, we have used rigorous
methods to assess the causal effects of human mobility
restriction on the spread of COVID-19. We have also
profiled thedeclinesofpopulationmobilitybyusing theDID
model,whichavoided the reverse causality andconfounding
by the usual fluctuation of population mobility over time.
Second, we included important confounders in the models
with precise measurements, such as the number of times
of population movements from Wuhan to imported
regions, number of residents and geo-distance fromWuhan
(kilometers). As a result, good model fitting is achieved
(R2 > 70%). Third, we have used thorough and real-time
population mobility data to assess the impacts of NPIs
during the outbreak of infectious diseases. Real-time
mobility data, such as airline flights data[37,38] and
aggregated human mobility data,[22,39] when combining
with routine epidemiological surveillance, could play a
crucial role during the disease pandemic.
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Our study also had limitations. First, the measurement of
population mobility may not be optimal because not
everyone uses Baidu App in their smartphones and some
subgroup populations (eg, children or elderly) were not
covered. Nevertheless, it covers about 55% of smartphone
users in China,[20] and was well used previously. Thus,
we believe that it may be nationally representative to
some extent. Second, in our analyses, we assumed that the
mobility restriction would be effective 1 week after the
implementation of mobility restriction given the reported
incubation period between 1 and 14 days.[6] This
assumption may affect the resulting estimates and slight
changes may occur. Third, although we have satisfied the
parallel trend assumption before using DID model, the
substantial difference of lockdown strategies and resump-
tion plans might occur among Chinese cities after Wuhan
lockdown. The effect examined by DID model could be
affected by these factors to some extent.

In conclusion, in response to the COVID-19 epidemic,
China has implemented a comprehensive set of mobility
restriction policies, which resulted in >50% population
mobility declines just in a few weeks; the effect was more
pronounced in large cities and remained consistent over
time. The resulting population mobility declines had a
direct impact on the reduction of cumulative and new
COVID-19 cases; this effect particularly had a larger effect
in the first few weeks and attenuated thereafter, and was
also more pronounced in larger cities. Our study confirmed
that strict implementation of comprehensive population
mobility restriction policies was highly warranted, partic-
ularly in large cities.
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