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Abstract: Cantonese-Mandarin bilinguals are logographic-logographic bilinguals that provide a
unique population for bilingual studies. Whole brain functional connectivity analysis makes up for
the deficiencies of previous bilingual studies on the seed-based approach and helps give a complete
picture of the brain connectivity profiles of logographic-logographic bilinguals. The current study is
to explore the effect of the long-term logographic-logographic bilingual experience on the functional
connectivity of the whole-brain network. Thirty Cantonese-Mandarin bilingual and 30 Mandarin
monolingual college students were recruited in the study. Resting state functional magnetic res-
onance imaging (rs-fMRI) was performed to investigate the whole-brain functional connectivity
differences by network-based statistics (NBS), and the differences in network efficiency were in-
vestigated by graph theory between the two groups (false discovery rate corrected for multiple
comparisons, q = 0.05). Compared with the Mandarin monolingual group, Cantonese-Mandarin
bilinguals increased functional connectivity between the bilateral frontoparietal and temporal regions
and decreased functional connectivity in the bilateral occipital cortex and between the right sensori-
motor region and bilateral prefrontal cortex. No significant differences in network efficiency were
found between the two groups. Compared with the Mandarin monolinguals, Cantonese-Mandarin
bilinguals had no significant discrepancies in network efficiency. However, the Cantonese-Mandarin
bilinguals developed a more strongly connected subnetwork related to language control, inhibi-
tion, phonological and semantic processing, and memory retrieval, whereas a weaker connected
subnetwork related to visual and phonology processing, and speech production also developed.

Keywords: Cantonese-Mandarin bilinguals; Mandarin monolinguals; resting state fMRI; network-
based statistics (NBS); graph theory; functional network connectivity

1. Introduction

With the development of globalization, an increasing number of people have become
long-term bilingual (BG) individuals. Researchers believe that long-term BG experience
results in changes in the brain’s functional network, as the brain is a highly adaptive
system [1–4]. It is well known that language processing requires cooperation among
multiple brain regions, which depends on functional connectivity among different brain
regions [5]. This synchronization between anatomically distinct brain regions might be
equally important or even more important than the amplitude of activation in single regions
for behavior and cognition [6]. Resting state functional magnetic resonance imaging (rs-
fMRI) can detect the coherent activity of related regions that are task-independent and
thus provides an effective way to explore the long-term influence of BG experiences on the
brain’s functional networks [7,8].
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To date, most rs-fMRI studies of BGs have used a seed-based approach to assess
changes in functional connectivity patterns. Luk et al. [9] chose the bilateral inferior
frontal gyrus (IFG) as yjr region of interest (ROI), which is important for BG language
switching, and found that there was stronger long-range frontal-occipital and frontal-
parietal functional connectivity in alphabetic BGs and stronger intrafrontal connectivity in
monolinguals (MGs). By including the posterior cingulate cortex (PCC) as a seed for the
default mode network (DMN) and the anterior insula–frontal operculum (aIFO) as a seed
for cognitive control networks, Grady et al. [10] found stronger functional connectivity
in the frontoparietal control network (FPN) and DMN in alphabetic BGs than in MGs. In
another study, the dorsal anterior cingulate cortex (dACC) and the left caudate nucleus
(LCN) were chosen as language control ROIs, and the bilateral superior temporal gyrus
(STG) and bilateral rolandic operculum (RolOp) were chosen as the language-processing
ROIs. The results showed that the functional connectivity between the dACC and the
left STG and between the dACC and the RolOp decreased in bimodal BGs compared
with MGs [11]. Generally, the current functional connectivity analysis focused only on
seed regions, mainly limited to language switching and control, and thus failed to give a
complete picture of the brain connectivity profile.

In fact, numerous studies have found that language processing involves regions be-
yond the classic reading network, such as low-level visual regions, high-level executive
function regions, and limbic and subcortical regions [12–14]. Therefore, whole-brain anal-
ysis might be a more informative method for understanding the effect of long-term BG
experience on brain functional networks. Graph theory, a method extensively used recently,
makes it possible to understand functional connectivity in a large-scale network. In addi-
tion, network-based statistics (NBS) analysis can identify components formed by a series of
connections of nodes that were significantly different between the two groups, which can
be called subnetworks instead of merely pairs of regions, thus providing information about
the whole-brain functional organization [15]. Garcia-Penton et al. [16] investigated the
whole-brain structural network of BGs, and found that, compared with MGs, two structural
subnetworks related to language processing and monitoring had stronger connectivity in
BGs. In addition, compared with BGs, MGs had higher global efficiency of the whole-brain
structural network [16]. Although brain structural connectivity has been shown to be a
physical substrate of resting-state functional connectivity [17–19], studies have shown that
structural and functional networks are not completely consistent [17,20]. Unfortunately,
the manner in which long-term bilingual experience affects the whole-brain functional
network remains unclear, and it needs to be further clarified.

Moreover, previous studies on BGs [9,10] mainly used alphabetic languages. Several
differences in orthography, phonology, semantics, and syntax have been found between
alphabetic and logographic languages [21]. Meta-analyses of fMRI studies have also
showed differences in brain activation when processing alphabetic and logographic lan-
guages [22,23]. Chinese is a logographic language with complex visual-spatial structure,
which requires more holistic visual analysis and map orthography to phonology at the
whole character level than an alphabetic language [23]. In addition, some researchers
believed that a Chinese character was a kind of whole-brain character, and the processing
of a Chinese character requires the participation of a wide range of brain regions, such
as phonological processing, visual processing, and the perception, motion, and executive
control brain regions [23–25]. Unfortunately, up to now, there has been no whole-brain func-
tional connectivity research on logographic BGs. Our previous study showed that the brain
mechanisms of bilingual phonological processing in Cantonese-Mandarin bilinguals were
different from that of alphabetic bilinguals [25]. Therefore, we speculate that logographic
BGs would have different whole-brain functional networks compared with MGs.

Cantonese and Mandarin, as two major Chinese languages, are both logographic
languages. The two languages share the same writing system, but they differ in lexicons,
grammar, and especially phonology. The difference in pronunciation and rhyme between
Cantonese and Mandarin is more than 76%; thus, a person with knowledge of the two
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languages is generally regarded as BG [26,27]. Therefore, Cantonese-Mandarin BGs provide
a unique population to explore the effect of logographic BG experience on the whole-brain
functional network. In mainland China, Cantonese mainly serves as a spoken language
acquired and used by listening and speaking, but it is seldom used for reading and writing
since Mandarin is the official language. In the current study, Cantonese-Mandarin BGs
acquired the two languages before the age of 7 years old and were proficient in both
languages, so we hypothesize that the Cantonese-Mandarin BGs might have a significant
difference in the brain network in terms of phonological and semantic processing, visual
processing, and perception, motion, and language control compared with MGs.

In order to test the above hypothesis, we used NBS analysis [15] to investigate the
differences in whole-brain functional connectivity between Cantonese-Mandarin BGs and
Mandarin MGs based on rs-fMRI. In addition, to assess the configuration properties of
the whole-brain functional network, we employed graph theory analysis [28,29], which
allowed us to explore differences in network efficiency between BGs and MGs in terms
of quantitative parameters. Our results will provide new insight into how the brain’s
functional network reorganizes to adapt to BG management.

2. Materials and Methods
2.1. Participants

Thirty-one Cantonese-Mandarin BGs and 31 Mandarin MGs were recruited in
Guangzhou, Guangdong Province, China. All the participants in this study were un-
dergraduates and postgraduates. After fMRI scanning, one MG participant was discarded
because the scanned image was blurred, and one BG participant was discarded due to
the maximum value of the head translation (rotation) of their functional brain data being
over 3 mm (3◦). Finally, 30 Mandarin MGs and 30 Cantonese-Mandarin BGs who learned
Mandarin as their L2 between the ages of 3 and 7 were included in analysis. The Cantonese
and Mandarin proficiency of all participants was evaluated according to the Language
and Social Background Questionnaire (LBSQ). Developed by York University, the LBSQ
has been proven to be valid and reliable for diverse language proficiency assessments
by self-reporting and self-assessment [30]. To assess the proficiency of speaking, writing,
understanding, and reading in Cantonese and Mandarin, a self-rating scale from 0 to 10,
representing the lowest to highest proficiency, was applied. All BG participants were deter-
mined to be proficient in both languages (Table 1). In addition, since English education
is universal in China, all participants in this study had English learning experience. To
minimize the potential confounding effects, we matched the English proficiencies of the
two groups by recruiting subjects who had passed the College English Test Band 4 (CET-4,
a national English level test in China). We also measured the participants’ non-verbal
intelligence quotient (IQ) with Raven’s Standard Progressive Matrices Test, given the link
between non-verbal IQ and brain organization [31–34].

All subjects were right-handed according to the Edinburgh Handedness Inventory
(EHI) [35], and none of them had experienced a head attack nor had any hearing impairment
or neurological disorders. All participants signed the informed consent form before the
study. The study was approved by the medical ethics committee of Sun Yat-sen University,
and the ethic approval code is [L2016] No.036.
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Table 1. Demographic characteristics and self-reported language assessment form the Language and
Social Background Questionnaire (LBSQ) for participants in each group.

BG MG p Value

N 30 30 –
Gender (male/female) 7/23 9/21 0.559 a

Age (years, M ± SD) 21.00 ± 1.93 21.43 ± 2.05 0.402 b

IQ (M ± SD) 122.50 ± 11.92 124.07 ± 14.10 0.644 b

Education (undergraduate/postgraduate) 22/8 20/10 0.573 a

District of residence (city/suburb) 20/10 19/11 0.787 a

Father’s education
Junior high school or below 13 12 0.957 a

Senior high school or technical secondary
school 7 7

College or above 10 11
Mother’s education

Junior high school or below 11 14 0.542 a

Senior high school or technical secondary
school 7 8

College or above 12 8
Cantonese proficiency (M ± SD)

Speakingc 9.40 ± 0.77 -
Writingc 5.77 ± 2.13 -

Understandingc 8.87 ± 0.94 -
Readingc 7.87 ± 1.33 -

Mandarin proficiency (M ± SD)
Speakingc 8.53 ± 1.17 8.83 ± 1.18 0.326 b

Writingc 8.67 ± 1.12 8.73 ± 1.26 0.829 b

Understandingc 8.83 ± 1.12 8.77 ± 1.17 0.822 b

Readingc 8.93 ± 0.98 9.00 ± 0.91 0.786 b

English level (CET-4/CET-6) 14/16 13/17 0.795 a

BG = Cantonese-Mandarin bilinguals; MG = Mandarin monolinguals; N = number of participants; M ± SD =
mean ± standard deviation. a The p value was obtained using an χ2-test. b The p value was obtained using a
two-sample t-test. c 0 = no proficiency; 10 = high proficiency.

2.2. Data Acquisition

During rs-fMRI scanning, the subjects were asked to stay still, remain awake, and
keep their eyes closed while not thinking about anything. All MRI datasets were acquired
through a SIEMENS TRIO 3-T MRI scanner with the use of a 12 channel, phased-array,
receiver-only head coil at the Center for the Study of Applied Psychology at the School
of Psychology in South China Normal University. The resting-state data was collected
in the same participants that were recruited for the project in our previous study [25].
In this project, resting-state fMRI data acquisition was collected before task-based fMRI
during the same MRI session. For each participant, 240 functional images were obtained
using weighted, single-shot echo planar imaging, and the parameters were set as fol-
lows: repetition time (TR) = 2000 ms, echo time (TE) = 30 ms, slice thickness = 3.5 mm,
voxel size = 3.5 × 3.5 × 3.5 mm, flip angle = 90◦, matrix size = 64 × 64, field of view
(FOV) = 224 mm, number of slices = 32, and the slices were acquired interleaved. The 256
T1-weighted 3D images were acquired using magnetization-prepared rapid gradient-echo,
and the parameters were set as TR = 1900 ms, TE = 2.52 ms, slice thickness = 1.0 mm, voxel
size = 1.0 × 1.0 × 1.0 mm, flip angle = 9◦, matrix size = 256 × 256, FOV = 256 mm, and
number of slices = 176.

2.3. Data Preprocessing

Data preprocessing was performed using GRETNA (Version 2.0.0, http://www.nitrc.
org/projects/gretna/ (accessed on 30 October 2020)) based on MATLAB R2016a. Before
preprocessing, the first 10 volumes of each subject were discarded, considering adaptation
to the environment. Then, we performed slice timing for the remaining 230 volumes to

http://www.nitrc.org/projects/gretna/
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determine the differences among slices and realigned them to the first volume to correct the
inevitable head movement during scanning. The subject was discarded if the maximum
value of the head translation (rotation) of their functional brain data was over 3 mm (3◦).
Statistical analysis showed no significant differences between the BG and MG groups
in head motion (p > 0.082 in any direction). Next, individual functional images were
normalized to the Montreal Neurological Institute (MNI) space using the T1 structural data
and resampled to 3 × 3 × 3 mm3 isotropic voxels. Finally, we performed linear detrending
and bandpass filtering (0.01–0.08 Hz) and removed several nuisance signals from each
voxel’s time series to reduce the effects of nonneuronal fluctuations, including head motion
profiles from the Friston 24 parameters, the white matter signals, and the cerebrospinal
fluid signal. Owing to the controversy of regressing out global signals in rs-fMRI [36,37],
our study did not regress out the global signal.

2.4. Brain Network Construction

Based on graph theory, the human brain network was modeled as a graph, and the
undirected weighted network of the whole brain was created for each participant. First,
we constructed the brain functional network for each subject based on the Automated
Anatomical Labeling (AAL) atlas template [38]. The template consists of 90 ROIs (45 for
each hemisphere) (Table S1) and is widely used in brain network studies [39–41], thus
improving comparability across studies [42]. A node was used to represent a region,
and using this configuration, we could then extract the time series of the 90 regions.
Second, Pearson’s correlation coefficient r between each brain region was calculated as
the strength of the functional connectivity between the pair of brain regions according
to the extracted time series, so a 90 × 90 correlation coefficient matrix was obtained. To
test whether functional connectivity was significantly different between the BG and MG
groups, correlation coefficients were further converted into z values by using Fisher’s r-to-z
transformation. This transformation generated values that were approximately normally
distributed, and a Z statistic was then used to compare these transformed z values to
determine the significance of the between-group differences in the correlations [43]. The
functional connectivity between nodes i and j was considered as an edge, and the positive
values were retained as weighted network connectivity.

2.5. Network-Based Statistic (NBS) Analysis

First, to reduce spurious correlations, a one-sample t-test was performed for every
correlation in each group. We retained those correlations whose corresponding p values
passed a statistical threshold of p < 0.05 after Bonferroni correction for each correlation
matrix; otherwise, the correlations were set to zero. In addition, we obtained a union
mask containing connectivity that was significant in either of the two groups. Then, we
performed two-sample one-tailed t-tests (after controlling for the effects of age and sex)
within this mask to determine group differences in functional connectivity, similar to
previous studies [39,44,45]. A primary threshold (p < 1 × 10−4) was applied to identify
suprathreshold links, among which the connected components and their size (the number
of links included in the components) were detected. To estimate the significance of each
component, a nonparametric permutation approach was used to derive the null distribution
of the size of the connected component (5000 permutations). Briefly, all subjects were
randomly reallocated into two groups in each permutation, and two-sample one-tailed
t-tests were performed for the same set of links as mentioned above. The same primary
threshold (p < 1 × 10−4) was subsequently used to produce suprathreshold links, within
which the size of the maximal connected component was identified. Finally, for the
connected component of size M identified in the real grouping of BGs and MGs, we
calculated the proportion of the 5000 permutations, for which the maximal connected
component was larger than M, to determine the corrected p value.
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2.6. Graph Analysis

Graph theory was used to characterize the topological properties of the human brain
functional networks [28,29]. As there would be different connection densities of graphs
when applying different sparsity thresholds, we tested 36 sparsity thresholds ranging from
5% to 40% with an increase of 1%—as in a previous study [46]—to ensure the stability of
network properties [47].

We computed five global network metrics, including the clustering coefficient (Cp),
characteristic path length (Lp), small-worldness index, global efficiency (Eg), and local
efficiency (Eloc). The Cp measures the extent of local interconnectivity or cliquishness of a
graph [47]. The Lp between each possible pair of nodes is the number of edges in the shortest
path between them, divided by all possible pairs of nodes in the network. It measures the
extent of overall routing efficiency, where a high Lp represents less efficient information flow
due to long routes [48]. The small-worldness index is the ratio between the normalized Cp
and normalized Lp, which are standardized by dividing their values by random networks
preserving the same degree distribution and connections with the original brain network.
Those combining high local clustering with short paths, representing an effective system,
show features of a small world network [48–51]. Eg is the average inverse shortest path
length and captures the extent of information propagation in the network [52]. The Eloc is
the local efficiency computed on node neighborhoods, describing the extent of information
transfer of the respective node with all other nodes in the network [52].

2.7. Statistical Analysis of Network Properties

NBS analysis and network property calculations were conducted in the network anal-
ysis toolbox GRETNA (Version 2.0.0, http://www.nitrc.org/projects/gretna/ (accessed on
30 October 2020)), based on MATLAB, while the brain was visualized using the BrainNet
Viewer toolkit (http://www.nitrc.org/projects/bnv/ (accessed on 30 October 2020)). When
comparing the differences between global topological properties between two groups, a
nonparametric permutation test [53] (permutation = 10,000) was used. Age and sex were
entered as nuisance covariates to regress out any potential mixed effects [44]. In addition,
we used false discovery rate (FDR) correction (at q = 0.05) to reduce false-positive errors
caused by multiple comparisons [54,55].

3. Results
3.1. Demographic Characteristics

The study included 30 Cantonese-Mandarin BGs (23 women and 7 men, mean age
= 21.00 years, standard deviation = 1.93 years) and 30 Mandarin MGs (21 women and
9 men, mean age = 21.43 years, standard deviation = 2.05 years). There were no significant
differences in age, sex, or non-verbal IQ between the two groups, and the two groups
had comparable educational and socioeconomic backgrounds. We also compared the pass
rate of the CET-4 and College English Test Band 6 (CET-6, a national English level test
higher than CET-4 in China) between the two groups and found no difference in English
proficiency (Table 1).

3.2. Alterations of Functional Brain Connectivity in Bilinguals

The NBS approach identified two differentially interconnected subnetworks. One
was more strongly connected in the BG group (component size = 69 edges, p < 0.0001,
corrected), and the other was more strongly connected in the MG group (component
size = 72 edges, p < 0.0001, corrected). We refer to the BG > MG subnetwork as simply the
BG network and the MG > BG subnetwork as the MG network. The full BG (red) and MG
(blue) networks involving the bilateral frontal, parietal, temporal, and occipital cortices are
shown in Figure S1.

Since the number of edges in the subnetworks was large, visualization and explanation
were challenging. To focus on brain regions with maximally different connectivity between
groups, we identified nodes with a high sum of edge differences of at least 10, as in previous
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studies (Figure 1) [56,57]. The sum of the edges of a node was identified by counting the
total number of its edges in both the BG and MG networks. This method enabled us to
detect nodes that were most likely to be altered by a long-term BG experience. Table 2
lists the nodes that had a sum of at least 10 edges, including the right inferior parietal
lobule (IPL), right postcentral gyrus (PoCG), right posterior cingulate gyrus (PCG), and
left inferior frontal opercular part (IFGoperc). Figure 2 and Table S2 show these nodes as
well as their functional partners in the BG and MG subnetworks, which have been selected
for discussion.
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Figure 1. Whole-brain connectivity differences between the two groups. These components were
thresholded for visualization to show nodes with a sum of edges differences ≥ 10 with all the nodes
to which these suprathreshold nodes were connected. Red lines denote the subnetwork of bilinguals
(BG) > monolinguals (MG) at p < 0.0001 after network-based statistics (NBS) correction (A). Blue lines
denote the subnetwork of bilinguals (BG) < monolinguals (MG) at p < 0.0001 after NBS correction (B).
Note that all figures are shown in neurological convention (subject’s left is the image’s left), and axial
views are top-down.

Table 2. Node-Level Analysis of Brain Connectivity Differences between Bilinguals and Monolinguals.

Node Region Coordinate (x, y, z) BG > MG Edges MG > BG Edges Sum of Edges

A a IPL.R (46.46, −46.29, 49.54) 9 2 11
B a PoCG.R (41.43, −25.49, 52.55) 0 11 11
C a PCG.R (7.44, −41.81, 21.87) 6 4 10
D a IFGoperc.L (−48.43, 12.73, 19.02) 7 3 10

BG = bilinguals; IFGoperc = inferior frontal gyrus, opercular part; IPL = inferior parietal lobule; L = left; MG = monolinguals; PCG =
posterior cingulate gyrus; PoCG = postcentral gyrus; R = right. a Shown in Figure 2.



Brain Sci. 2021, 11, 310 8 of 18Brain Sci. 2021, 11, x FOR PEER REVIEW 9 of 19 
 

 
Figure 2. Cont.



Brain Sci. 2021, 11, 310 9 of 18Brain Sci. 2021, 11, x FOR PEER REVIEW 10 of 19 
 

 
Figure 2. Visualization of selected nodes with the highest sum of edges in both the BG and MG subnetworks. In each 
figure, the selected node is shown in yellow (see Table 1 for the coordinates of selected nodes), while nodes more strongly 
connected to the selected node in the bilinguals (BG) > monolinguals (MG) (i.e., BG) network are shown in red, and nodes 
more strongly connected to the selected node in the MG > BG (i.e., MG) network are shown in blue (see Table S2 for the 
coordinates of all MG and BG partner nodes). Red and blue lines simply schematize connectivity between the selected 
node and each of its functional partners. (A) Connectivity between the right inferior parietal lobule (IPL) and all MG and 
BG partner nodes; (B) connectivity between the right postcentral gyrus (PoCG) and all MG and BG partner nodes; (C) 
connectivity between the right posterior cingulate gyrus (PCG) and all MG and BG partner nodes; (D) connectivity be-
tween the left inferior frontal opercular part (IFGoperc) and all MG and BG partner nodes. Note that all figures are shown 
in neurological convention (subject’s left is image’s left), and axial views are top-down. 

3.3. Small-Worldness and Efficiency of Brain Functional Networks in Bilinguals 
Figure 3 shows the global parameters between Cantonese-Mandarin BGs and 

Mandarin MGs. We found that there were no significant differences between the two 
groups for all global network metrics at all network sparsity thresholds, which means 
that there was no difference in network efficiency between the BGs and MGs. Both BGs 
and MGs had the small-worldness property in view of γ > 1 and λ ≈ 1, or σ > 1. 

Figure 2. Visualization of selected nodes with the highest sum of edges in both the BG and MG subnetworks. In each
figure, the selected node is shown in yellow (see Table 1 for the coordinates of selected nodes), while nodes more strongly
connected to the selected node in the bilinguals (BG) > monolinguals (MG) (i.e., BG) network are shown in red, and nodes
more strongly connected to the selected node in the MG > BG (i.e., MG) network are shown in blue (see Table S2 for the
coordinates of all MG and BG partner nodes). Red and blue lines simply schematize connectivity between the selected
node and each of its functional partners. (A) Connectivity between the right inferior parietal lobule (IPL) and all MG and
BG partner nodes; (B) connectivity between the right postcentral gyrus (PoCG) and all MG and BG partner nodes; (C)
connectivity between the right posterior cingulate gyrus (PCG) and all MG and BG partner nodes; (D) connectivity between
the left inferior frontal opercular part (IFGoperc) and all MG and BG partner nodes. Note that all figures are shown in
neurological convention (subject’s left is image’s left), and axial views are top-down.

3.3. Small-Worldness and Efficiency of Brain Functional Networks in Bilinguals

Figure 3 shows the global parameters between Cantonese-Mandarin BGs and Man-
darin MGs. We found that there were no significant differences between the two groups
for all global network metrics at all network sparsity thresholds, which means that there



Brain Sci. 2021, 11, 310 10 of 18

was no difference in network efficiency between the BGs and MGs. Both BGs and MGs had
the small-worldness property in view of γ > 1 and λ ≈ 1, or σ > 1.
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4. Discussion

In the current study, widespread differences in functional connectivity in bilateral
hemispheres were found between Cantonese-Mandarin bilinguals (BGs) and Mandarin
monolinguals (MGs). Compared to the Mandarin MG group, Cantonese-Mandarin BGs
showed increased functional connectivity between the bilateral frontoparietal and temporal
regions and decreased functional connectivity in the bilateral occipital cortex and between
the right sensorimotor region and bilateral prefrontal cortex. In addition, no significant
differences in network efficiency were found between the two groups.

4.1. Alterations of Functional Network Connectivity in the Cantonese-Mandarin Bilinguals

It is well-known that the left hemisphere is dominant for language. However, in the
current study, we found that, compared with the Mandarin monolinguals, the significant
differences of the functional connectivity were not only in the left hemisphere but also
in the right hemisphere of the Cantonese-Mandarin bilinguals (see Figure 1), including
the right inferior parietal lobule (IPL), postcentral gyrus (PoCG), and posterior cingulate
gyrus (PCG) (see Figure 2). Two meta-analyses showed that the right hemisphere works
in an inter-hemisphere manner during language processing, and mainly participates in
lexical–semantic processing [58,59]. Hull et al. [60] found that bilinguals who acquired both
languages before the age of six showed bilateral hemispheric involvement for processing
both languages. Liu et al. [61] defined a language network for the Cantonese-Mandarin
bilinguals who acquired a second language before the age of six and found that bilateral
brain regions were involved. In this study, most of the Cantonese-Mandarin bilinguals
acquired both languages before turning 6 years old, so the altered functional connectivity in
bilateral frontal, parietal, temporal, and occipital cortices further confirmed the involvement
of bilateral hemispheres in early bilinguals.
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4.1.1. Brain Networks with Stronger Functional Connectivity in
Cantonese-Mandarin Bilinguals

First, we found that, compared with Mandarin MGs, Cantonese-Mandarin BGs had
stronger functional connectivity in the frontoparietal regions (see Figure 1). Specifically,
functional connectivity between the right posterior cingulate gyrus (PCG) and the left
inferior frontal gyrus opercularis part (IFGoperc), left inferior frontal gyrus triangular part
(IFGtriang), and bilateral supplement motor area (SMA) was stronger in the BGs compared
with that in the MGs (Figure 2C); both the right inferior parietal lobule (IPL) and left IFG of
BGs showed stronger functional connectivity with the left anterior cingulate gyri (ACG)
and right medial superior frontal gyrus compared with MGs (see Figure 2A,D). The right
PCG is a part of the default mode network (DMN), which is associated with internally
oriented thoughts and protects the execution of long-term mental plans from distraction
and from immediate environmental demands [62–65]. The left IFGoperc and IFGtriang are
the classic left inferior frontal language regions that are particularly related to phonological
processing [66,67], semantic decisions and choices [68], and control of interference from a
nontarget language [66,67,69]. The right IPL participates in cognitive control [70,71] and
language selection [72]. The SMA [73,74], left ACG [75–77], and right medial superior
frontal gyrus [78] have been identified as important areas of inhibitory control in BG
processing. Similar to this study, Grady et al. [10] found stronger functional connectivity in
the DMN and between the bilateral frontal and parietal regions in alphabetic BGs than in
MGs, which indicates that both alphabetic and logographic BGs are more dependent on
the brain network of language control and inhibition than MGs.

Second, compared with Mandarin MGs, Cantonese-Mandarin BGs had stronger func-
tional connectivity between the bilateral frontoparietal and temporal regions (see Figure 1).
Specifically, both the right IPL and left IFG of the BGs showed stronger functional connec-
tivity with the temporal regions, including the left middle temporal gyrus and bilateral
hippocampus, compared with MGs (see Figure 2A,D). Additionally, functional connectivity
between the right PCG and right Heschl gyrus (HES) was stronger in the BGs than in the
MGs (see Figure 2C). The left IFG participates in phonological and semantic processing [79].
As a key component of the ventral stream that processes speech signals for comprehen-
sion, the left middle temporal gyrus plays an important role in phonological–semantic
mapping and semantic information retrieval [62,80–82]. In addition, as a structure con-
taining the human primary auditory cortex, the right HES is related to the processing of
phonological information [83,84]. The bilateral hippocampus is mainly responsible for
memory retrieval [79,85]. Therefore, we guessed that, compared with Mandarin MGs,
Cantonese-Mandarin BGs were more dependent on the brain network of phonological
and semantic processing and memory retrieval. In fact, using a seed-based approach,
Luk et al. [9] also found bilinguals had stronger functional connectivity between the left
IFG and the bilateral middle temporal gyrus and right IPL, and researchers attributed
the more long-range frontal-parietal functional connectivity to the need for bilinguals to
recruit a more distributed and bilateral functional network. In addition, task modality fMRI
studies found that BGs showed increased activation in the middle temporal gyrus during
semantic tasks compared with MGs [86,87]. Moreover, increased gray matter volume of
the anterior temporal cortex, hippocampus [88,89], and HES [90] has been reported in
BGs. Garcia-Penton et al. [16] reported that BGs had more structural connectivity between
the left frontal and the parietal and temporal regions than MGs. Therefore, we believed
that BG experience strengthened functional connectivity between the frontoparietal and
temporal regions.

In summary, our results seemed to indicate that, compared with Mandarin MGs,
Cantonese-Mandarin BGs had stronger functional connectivity in the brain network of
language control, inhibition, phonological and semantic processing, and memory retrieval.
Our correlation analysis suggested that stronger brain network connectivity in the BG
network was related to the better interference inhibition control ability of bilinguals (see
Table S3), which supported our partial conjecture. Studies have indicated that when
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processing one language, BGs need to constantly select words in the target language
and suppress interference from the nontarget language, which requires the participation
of language control and inhibition [91–94]. In Guangdong Province, China, Cantonese
mainly serves as a mother tongue acquired and used by listening and speaking. It is
the main spoken language but is seldom used for reading and writing, since Mandarin
is the official language. Cantonese and Mandarin share the same writing system but
differ in phonology, lexicon, and grammar [26,27]. In this study, Cantonese-Mandarin BGs
recruited from Guangdong Province are very proficient in speaking and understanding
both languages (see Table 1). Therefore, compared with Mandarin MGs, no matter which
language Cantonese-Mandarin BGs speak, there will be strong phonological and semantic
interference from the other language. To control interference of the nontarget language,
BGs need more participation of brain regions related to language control, inhibition, and
phonological and semantic processing. As a result, Cantonese-Mandarin BGs developed
stronger connectivity in the brain’s functional networks of language control, inhibition,
phonological and semantic processing, and memory retrieval.

4.1.2. Brain Networks with Weaker Functional Connectivity in
Cantonese-Mandarin Bilinguals

First, compared with Mandarin MGs, Cantonese-Mandarin BGs showed weaker
functional connectivity in the bilateral occipitoparietal cortex (see Figure 1). Specifically,
compared with MGs, BGs had weaker functional connectivity between the right IPL and
right inferior occipital gyrus (IOG) (see Figure 1) and between the right PCG and occipital
regions, including the bilateral superior occipital gyrus (SOG) and IOG (see Figure 2C). The
right IPL participates in cognitive control [70,71]. The bilateral IOG and SOG are related
to high-level visual analysis and word recognition [95] and might engage in the visual
phonological and semantic processing of Chinese characters [96,97]. Moreover, the left
occipital region is more involved in feature analysis, while the right occipital region is more
involved in holistic visual processing [98,99]. Therefore, our results seemed to indicate
that, compared with Mandarin MGs, Cantonese-Mandarin BGs had weaker functional
connectivity in visually processing written language. Both Cantonese and Mandarin are
logographic languages and use the same writing system: Chinese characters. Chinese
characters involve certain sequences of strokes with complex visual-spatial configurations,
thus requiring great visual analysis of spatial information [100]. Previous studies found
that visual analysis of Chinese characters engaged bilateral occipital regions [98,101]. In
addition, Ma et al. [25] found that the visual word recognition of Mandarin involved more
visuospatial analysis of the occipital cortex than that of Cantonese. In the Guangdong
Province of China, as a mother tongue, Cantonese is mainly learned through listening
and speaking, so it is a spoken language. However, all children begin to learn Mandarin
in school. In school, they read and write in Mandarin, so Mandarin is only a teaching
language for Cantonese-Mandarin BGs. However, for Mandarin MGs, Mandarin is not
only a spoken language but also a teaching language. Therefore, compared with Mandarin
MGs, Cantonese-Mandarin BGs are less proficient at obtaining the phonetic and semantic
information of written words through visual analysis but are more adept at phonological
analysis, which leads to weaker functional connectivity in the brain network of visual
processing of a written language.

Second, compared with Mandarin MGs, Cantonese-Mandarin BGs showed weaker
connectivity between the right postcentral gyrus (PoCG) and the bilateral prefrontal cortex
(PFC) and right caudate nucleus (see Figure 2B). Specifically, compared with MGs, BGs
had weaker functional connectivity between the right PoCG and the bilateral superior
frontal gyrus (SFG), middle frontal gyrus (MFG), IFG, and right angular gyrus (ANG) (see
Figure 2B). Tan et al. [102] found that a large neuroanatomical network involving the right
PoCG, bilateral SFG, MFG, and IFG was activated during a visual phonology task of written
Chinese. The dorsal lateral frontal system involving the bilateral SFG and MFG is respon-
sible for the visuospatial analysis of Chinese characters and orthography-to-phonology
mapping, and it is supposed to create a long-term storage center of phonological representa-
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tions of Chinese words [23]. In addition, as a crucial region responsible for skilled Chinese
reading, the left MFG is related to the representation and working memory of visuospatial
information and cognitive resource coordination [97]. The right ANG was found to be
involved in visual-spatial attention [103]. The ventral prefrontal system comprising the
bilateral IFG contributes to the phonological processing of Chinese words [23,104] and
might be involved in BG speech planning and production [72]. Moreover, the right PoCG is
related to the sensorimotor control of the lips, tongue, jaw, and larynx [105,106], as well as
speech production [107]. The right caudate nucleus is associated with speech production
and sensory-to-motor coupling [108]. Therefore, our results seemed to indicate that, com-
pared with Mandarin MGs, Cantonese-Mandarin BGs had weaker functional connectivity
in the brain network of visual and phonology processing and speech production. The weak
functional connectivity was evidently related to the less frequent use of Mandarin in daily
life, according to the Hebbian learning rule that neurons working together through a great
deal of experience would strengthen their connectivity [109–111]. The reduced frequency
hypothesis indicates that words in each language used by BGs were less effectively used
than the same words in the language used by MGs because MGs adopted the same lan-
guage to express themselves, whereas BGs allocated their time between two languages [86].
Behavioral studies also showed that BGs had less efficient visual word recognition and
speech production than MGs [25,112–114].

4.2. Small-Worldness and Efficiency of the Brain Functional Network in Bilinguals

Finally, the current study showed that both Cantonese-Mandarin BGs and Mandarin
MGs had small-world properties. The small-world property means that the whole-brain
functional network has high efficiency in information processing and transference [50].
Our results indicated that the long-term BG experience did not affect the efficiency of
information processing of the whole-brain functional network. Until now, there has been
no report on the difference in network efficiency of the whole-brain functional network
between BGs and MGs. However, Garcia-Penton et al. [16] found that, compared with
MGs, BGs had lower global efficiency in the whole-brain structural network. Although
brain structural connectivity has been shown to be a physical substrate of resting-state
functional connectivity [18,19], studies have found inconsistencies between the structural
and functional networks [17,20]. We speculate that the acquisition of two languages from
early childhood results in specialized brain functional subnetworks but has no influence
on network efficiency for proficient BGs.

5. Limitations

There are several limitations in this study. First, since English education is universal
in Chinese, all participants in this study had English learning experience. To minimize
the potential confounding effects, we matched the English proficiencies of the two groups
by recruiting subjects who had passed the College English Test Band 4 (CET-4, a national
English level test in China). Second, the choice of brain region definitions in the AAL atlas
template might affect brain network parameters and functional connectivity [115]. How-
ever, the AAL atlas template [38] has been widely used in brain network studies [39–41],
thus ensuring that the results are comparable with previous studies. Third, the behavioral
measures in the study were inadequate, making it hard to know what exactly the brain
network differences mean. In the future, in accordance with the results, we will add more
related behavioral measures to make this clear.

6. Conclusions

In conclusion, compared with Mandarin MGs, Cantonese-Mandarin BGs had stronger
connectivity in the brain network related to language control, inhibition, phonological
and semantic processing, and memory retrieval, whereas weaker connectivity in the brain
network was related to visual and phonology processing and speech production. However,
Cantonese-Mandarin BGs and Mandarin MGs had the same network efficiency in the
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whole-brain functional network. This study provides a global insight to brain functional
network reorganization resulting from bilingual experience.
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