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Abstract: Viruses of the Paramyxoviridae family share a common and complex molecular machinery
for transcribing and replicating their genomes. Their non-segmented, negative-strand RNA genome
is encased in a tight homopolymer of viral nucleoproteins (N). This ribonucleoprotein complex,
termed a nucleocapsid, is the template of the viral polymerase complex made of the large protein (L)
and its co-factor, the phosphoprotein (P). This review summarizes the current knowledge on several
aspects of paramyxovirus transcription and replication, including structural and functional data
on (1) the architecture of the nucleocapsid (structure of the nucleoprotein, interprotomer contacts,
interaction with RNA, and organization of the disordered C-terminal tail of N), (2) the encapsidation
of the genomic RNAs (structure of the nucleoprotein in complex with its chaperon P and kinetics of
RNA encapsidation in vitro), and (3) the use of the nucleocapsid as a template for the polymerase
complex (release of the encased RNA and interaction network allowing the progress of the polymerase
complex). Finally, this review presents models of paramyxovirus transcription and replication.

Keywords: paramyxoviruses; nucleocapsid; nucleoprotein; phosphoprotein; polymerase complex;
intrinsic disorder

1. Introduction

Members of the Paramyxoviridae family are enveloped viruses with non-segmented
negative-strand RNA genomes. These viruses share similar gene expression and genome
replication mechanisms to the members of the other ten families of the Mononegavirales
order. Paramyxoviruses are currently divided into 4 subfamilies, 17 genera, and 78 species
(Figure 1) [1] (information as of November 2021, for an update see https://talk.ictvonline.
org/taxonomy/). Paramyxoviruses are found in a broad range of animals, including
mammals, fishes, reptiles, or birds and include several human and animal pathogens
such as measles virus (MeV), mumps virus (MuV), canine distemper virus (CDV), and
Newcastle disease virus (NDV). Some, such as Nipah virus (NiV) and Hendra virus (HeV),
regularly emerge in human or animal populations where they cause deadly epidemics.
Although vaccines exist against some paramyxoviruses, effective antiviral treatments for
post-exposure prophylaxis are urgently needed [2,3].

Viral transcription and replication are both mediated by an RNA synthesis machinery
composed of a viral polymerase complex and its encapsidated template. The polymerase
complex consists of the large protein (L) and its co-factor the phosphoprotein (P) [4–7]. This
complex uses a genome (or antigenome) embedded into a homopolymer of viral nucleo-
proteins (N) as a template [8–10]. The encapsidation of the RNA in this ribonucleoprotein
structure, known as the nucleocapsid, prevents the annealing of positive and negative
RNA strands into double-stranded RNA structures, as well as the folding of genomic RNA
into secondary RNA structures, which helps to prevent recognition by innate immune
receptors [11,12]. It also protects the genome from degradation by nucleases [13,14] and
from being targeted by siRNA [15,16].
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Figure 1. Phylogenetic tree of the Paramyxoviridae family. The phylogenetic tree was generated from an alignment of full-
length L proteins. One sequence per species was used. The 78 sequences were selected based on the GenBank accession 
numbers given by the 2020 taxonomy of the International Committee on Taxonomy of Viruses. The names of the genera 
are indicated in italics. In bold, viruses for which structural data on the N protein is available. Structures of rings or single 
helical turns of the nucleocapsid-like complexes are shown from a top view (Newcastle disease virus (NDV), reconstructed 
from PDB: 6JC3; Sendai virus (SeV), reconstructed from PDB: 6M7D; Nipah virus (NiV), PDB: 7NT5; cetacean morbillivirus 
(CeMV), PDB: 7OI3; measles virus (MeV), PDB: 6h5Q; parainfluenza virus 5 (PIV5), PDB: 4XJN; mumps virus (MuV), PDB: 
7EWQ). For human parainfluenza 3 (hPIV3), PIV5, MeV, and NiV, the structures of the N0-P complexes are shown (hPIV3, 
PDB: 7EV8; PIV5, PDB: 5WKN; MeV, PDB: 5E4V; NiV, PDB: 4CO6). 

Viral transcription and replication are both mediated by an RNA synthesis machin-
ery composed of a viral polymerase complex and its encapsidated template. The polymer-
ase complex consists of the large protein (L) and its co-factor the phosphoprotein (P) [4–
7]. This complex uses a genome (or antigenome) embedded into a homopolymer of viral 
nucleoproteins (N) as a template [8–10]. The encapsidation of the RNA in this ribonucle-
oprotein structure, known as the nucleocapsid, prevents the annealing of positive and 
negative RNA strands into double-stranded RNA structures, as well as the folding of ge-
nomic RNA into secondary RNA structures, which helps to prevent recognition by innate 
immune receptors [11,12]. It also protects the genome from degradation by nucleases 
[13,14] and from being targeted by siRNA [15,16]. 

The mechanisms used by the polymerase complex to access the encased RNA, pro-
gress along the nucleocapsid, and generate new encapsidated products with soluble nu-
cleoprotein monomers are yet to be fully deciphered. However, in the past few years, the 
atomic structures of the nucleoprotein of a number of paramyxoviruses from different 
genera have been solved in either assembled [17–23] or non-assembled form [24–27] (Fig-
ure 1). Moreover, since the atomic structure of the polymerase complex of parainfluenza 
virus 5 (PIV5) has been solved, structural information is now available for all the compo-
nents of the RNA synthesis machinery of paramyxoviruses [28]. Significant progress has 

Figure 1. Phylogenetic tree of the Paramyxoviridae family. The phylogenetic tree was generated from an alignment of
full-length L proteins. One sequence per species was used. The 78 sequences were selected based on the GenBank accession
numbers given by the 2020 taxonomy of the International Committee on Taxonomy of Viruses. The names of the genera are
indicated in italics. In bold, viruses for which structural data on the N protein is available. Structures of rings or single
helical turns of the nucleocapsid-like complexes are shown from a top view (Newcastle disease virus (NDV), reconstructed
from PDB: 6JC3; Sendai virus (SeV), reconstructed from PDB: 6M7D; Nipah virus (NiV), PDB: 7NT5; cetacean morbillivirus
(CeMV), PDB: 7OI3; measles virus (MeV), PDB: 6h5Q; parainfluenza virus 5 (PIV5), PDB: 4XJN; mumps virus (MuV), PDB:
7EWQ). For human parainfluenza 3 (hPIV3), PIV5, MeV, and NiV, the structures of the N0-P complexes are shown (hPIV3,
PDB: 7EV8; PIV5, PDB: 5WKN; MeV, PDB: 5E4V; NiV, PDB: 4CO6).

The mechanisms used by the polymerase complex to access the encased RNA, progress
along the nucleocapsid, and generate new encapsidated products with soluble nucleopro-
tein monomers are yet to be fully deciphered. However, in the past few years, the atomic
structures of the nucleoprotein of a number of paramyxoviruses from different genera have
been solved in either assembled [17–23] or non-assembled form [24–27] (Figure 1). More-
over, since the atomic structure of the polymerase complex of parainfluenza virus 5 (PIV5)
has been solved, structural information is now available for all the components of the RNA
synthesis machinery of paramyxoviruses [28]. Significant progress has also been made on
the use of the nucleocapsid as a template, especially on the complex interaction network at
play between the nucleoprotein and the phosphoprotein. This review summarizes both
structural and functional insights on the nucleocapsid of paramyxoviruses, its assembly,
and its role as a template. Models of transcription and replication are proposed.
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2. Gene Expression and Genome Replication
2.1. The Viral Genome

The genomes of paramyxoviruses contain a single, bipartite, transcription promoter at
the 3′ end, followed by at least six conserved, adjacent genes separated by non-transcribed
intergenic regions (Figure 2A) [29–31]. The lengths of the genomes range from 14 to 21 kb
and must be multiples of six, the so-called ‘rule of six’ [32,33]. The conserved genes encode
for the nucleoprotein, the phosphoprotein, the matrix protein, the fusion protein, the
receptor-binding protein, and the large protein, or polymerase (Figure 2A). While the
N, P, and L proteins are the essential components of the viral RNA synthesis machinery,
the matrix protein and the two glycoproteins are necessary for the formation of the viral
particles and their entry into cells [31].
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Figure 2. Organization and structure of the components of the RNA synthesis machinery. (A) Schematic representation of
the viral genome and the regulatory elements. The genome contains at least six conserved adjacent genes separated by
intergenic regions (IR). These genes encode for the nucleoprotein (N), the phosphoprotein (P), the matrix protein (M), the
fusion protein (F), the receptor-binding protein (RBP), and the large protein (L). The promoters located at the 3′ end of
the genome (transcription and replication) and the antigenome (replication only) are bipartite and made of two promoter
elements (PE1 and PE2). The transcription of each gene starts on a “gene start” signal (GS, in yellow) and ends on a “gene
end” signal (GE, orange). (B) Cartoon representation of the structure of the protein components of the RNA synthesis
machinery of PIV5 (N, PDB: 4XJN; PNTD, PDB: 5WKN; POD, PXD, and L, PDB: 6V85). Disordered regions are represented as
dotted lines. (C) Schematic representation of viral transcription and replication. Encapsidated genomes are transcribed into
a gradient of mRNAs. Replication of the genomes requires the production of encapsidated antigenome intermediates.
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2.2. Components of the RNA Synthesis Machinery

The nucleoproteins of paramyxoviruses are made of a folded domain (Ncore) followed
by a long intrinsically disordered tail (Ntail) [34] (Figure 2B). While Ncore is responsible for
the oligomerization on the RNA and constitutes the main body of the nucleocapsid [35–38],
Ntail mediates the recruitment of the polymerase complex [34,39,40]. The nucleoproteins
self-assemble on the genome due to their affinity for RNA and the interactions between
adjacent protomers, as discussed later.

The L protein is a large, multi-domain protein, made of five globular domains linked
together by flexible linkers [28,41] (for a review see [42,43]) (Figure 2B). It carries all the
enzymatic activities required for transcribing and replicating the genome: RNA synthe-
sis [5,6], mRNA cap addition [44,45], guanine-N-7-methylation of the cap, and ribose
2′O-methylation of the first nucleotide [46,47]. Polyadenylation of the mRNA occurs
when the polymerase stutters on a short poly(U) sequence located in a polyadenylation
signal [48,49].

The phosphoprotein plays several essential roles: it stabilizes the L protein [7,50–52],
recruits the L protein on its template [53], stabilizes the N protein in a monomeric and
RNA-free state [54–56], and provides N proteins for the encapsidation of nascent RNA
during replication [7,55]. The phosphoprotein’s sequence is poorly conserved but its
organization in three modules linked by long disordered regions is shared within the
viral order [57–62] (Figure 2B). The N-terminal domain (PNTD) binds the nucleoprotein
to prevent its self-assembly on RNAs other than viral genomes and antigenomes [55,56].
This interaction forms the N0-P complex, used as a substrate for the encapsidation of
the nascent RNA during genome replication [7]. The central domain, or oligomerization
domain (POD), forms a long, parallel, coiled-coil tetramer for Sendai virus (SeV) [63],
MeV [64,65], NiV [62,66], PIV5 [28], and human parainfluenza virus 3 (hPIV3) [67], but
an antiparallel dimer of two parallel coiled-coil dimers for MuV [68,69]. The C-terminal
domain, or X domain (PXD), interacts with the nucleoprotein and recruits the polymerase
on the nucleocapsid [50,70–75].

2.3. Transcription and Replication

Following fusion of viral and host cell membranes during entry, the polymerase
complexes packaged in virions transcribe the viral genes into capped and polyadenylated
mRNAs (Figure 2C) [31]. The viral genes are separated by short non-transcribed intergenic
regions and contain a gene start (GS) and a gene end (GE) signal at their 3′ and 5′ ends,
respectively (Figure 2A). The current model suggests that RNA synthesis starts at the
3′ end of the genome where the polymerase recognizes the transcription promoter. The
L protein first synthesizes the leader RNA, a short, uncapped RNA, which is released
upon recognition of the first intergenic region. The polymerase then scans the genome
to find the first GS signal and re-initiates RNA synthesis. The nascent RNA is capped
and methylated by the L protein. Upon recognition of the GE signal, the polymerase
adds a poly(A) tail, releases the mRNA, and scans the genome to find the next gene start
signal. As the transcription re-initiation is not perfectly efficient, the polymerase generates
a decreasing gradient of mRNAs (Figure 2C).

Once the concentration of nucleoproteins reaches a certain threshold, the polymerase
can switch from a transcription mode to a replication mode [76,77]. Although the accumu-
lation of N proteins may not be the only trigger, artificially increasing the amount of N
proteins advances the onset of replication [77,78]. Initiation of replication occurs when the
nascent leader RNA is encapsidated by monomers of N and the polymerase ignores the
transcription signals, instead synthesizing a full-length encapsidated copy of the genome
(antigenome) [76,79]. This antigenome is then used as a template to generate full-length
encapsidated copies of the viral genome (Figure 2C).

Viral transcription and replication take place in the cytoplasm in membraneless inclu-
sion bodies. Viral genomes, together with N, P, and L proteins, are concentrated in these
inclusions formed by liquid-liquid phase separations. The disordered regions of the N and
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P proteins play a critical role in the formation of these liquid-like structures (for a review,
see [80–82]).

Finally, viral transcription and replication are also affected by the phosphorylation sta-
tus of N and P. Indeed, both Ntail [83–85] and the disordered region upstream of POD [86–94]
contain major phosphorylation sites targeted by cellular kinases [95–101]. Although the
roles of these phosphorylations are still unclear, data suggest the phosphorylation of
some residues can downregulate [85,92,93,100,102] or upregulate RNA synthesis [83,84,91],
modify the balance between transcription and replication [103], alter the stability of en-
capsidated genomes [104], participate in RNA encapsidation [105], tune the interaction
between N and P [94], or facilitate the growth of the inclusion bodies [106].

3. Structure of the Nucleocapsid
3.1. Overall Architecture

Nucleocapsids extracted from disrupted virions or infected cells form left-handed, rod-
like helical structures with a herringbone appearance under an electron-microscope [107–110]
(Figure 3A). The coiling and rigidity of the helix depend on the conditions of the milieu,
such as the ionic strength [111]. Indeed, while, at low salt concentration, the nucleocapsids
are loose and flexible, and at high ionic strength, the helixes are tight and rigid with a
length of about 1 µm and a diameter of 15–20 nm. The flexibility also varies from one virus
to another, with the nucleocapsids of MuV being more flexible than the nucleocapsids of
MeV, themselves more flexible than the nucleocapsids of SeV or PIV5 [109,112]. Purified
intact nucleocapsids from the same virus, or even sections of a single nucleocapsid, can
also adopt condensed conformations with different pitches ranging from 5.3 to 6.8 nm
for SeV [110], 5.2 to 6.6 nm for MeV [113], or 5.8 to 6.7 nm for MuV [114] (Figure 3C). A
smaller pitch correlates with a more rigid and straight helix [112]. In intact MeV particles,
the nucleocapsids have a higher pitch (7–8 nm), thus raising the question of whether a
preferred pitch exists in physiological conditions and which value it adopts [115]. The
average number of N subunits per helical turn is relatively conserved and varies from
12.3 to 13.4 [18,110,113,114]. Removal of the encapsidated RNA from MuV nucleocapsid
increases the flexibility of the helix but does not affect its helical conformation, indicating
that the nucleocapsid assembly is stable even without RNA [114].
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Figure 3. Conformations of nucleocapsids. (A) Disrupted measles particle by negative-stain microscopy. Republished with
permission of Journal of Virology, from [116]; permission conveyed through Copyright Clearance Center, Inc. (B) Intact
(left) and trypsin-digested (right) nucleocapsid-like complexes (NCLC) of MeV. Republished with permission of Journal of
Virology, from [117]; permission conveyed through Copyright Clearance Center, Inc. (C) Top row: density maps of MuV
nucleocapsid (left, EMDB: EMD-2630) and MuV NCLC (center, EMBD: EMD-31368; right, EMBD: EMD-31369). Bottom row:
cross sections of the density maps shown above with schematic representation of Ncore in green. The pitch and number of N
protomers per helical turn are indicated at the bottom. (D) Top: density map of a clam-shaped structure of NDV (EMBD:
EMD-9793). Bottom: cross section of the density map shown above with schematic representation of Ncore in green.

Expression of the nucleoprotein in avian cells [118], mammalian cells [36], insect
cells [119], or bacteria [120], induces the formation of nucleocapsid-like complexes (NCLC)
containing cellular RNAs. These complexes can form helices [118,121], rings [17,122], or
clam-shaped structures [19,21,22] (Figure 3B–D). The last has been observed for NDV, SeV,
and NiV, and is made of two helical turns interacting in a back-to-back manner (Figure 3D).
The detection of this structure for paramyxoviruses from different genera and its presence
in nucleocapsids extracted from NDV and SeV virions, suggests it may be biologically
relevant [19,21]. The clam-shaped structure has been proposed to play a role in seeding the
assembly of double-headed helices, protecting the 5′ end of the genome from nucleases,
and promoting the encapsidation of multiple nucleocapsids per virion [123–125].

3.2. Structure of the Nucleoprotein

The sequence and the organization of Ncore are well conserved across the Paramyxoviri-
dae family, while the sequence and length of Ntail vary greatly (Figure 4A). The structure
of the N protein in an oligomeric, RNA-bound conformation (i.e., engaged in an NCLC)
have been solved for PIV5 [17], MeV [18,20], NDV [19], cetacean morbillivirus (CeMV) [23],
NiV [22], SeV [21], and MuV [126], while the structure of N in complex with PNTD (i.e., N0-P
complex) was solved for NiV [24], MeV [25], PIV5 [26], and hPIV3 [27] (Figure 1).
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nucleoproteins whose structure has been solved. Boundaries of Nα-MoRE are only known for MeV [71,73], NiV [74,127], and
SeV [128]. (B) Structure of the N protein of MeV in cartoon representations (PDB: 6H5Q). (C) Structure of the N protein of
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7OI3), NiV (PDB: 7NT5), SeV (PDB: 6M7D), PIV5 (PDB: 4XJN), MuV (PDB: 7EWQ), and NDV (PDB: 6JC3). (E) Surface
representations of the structure of the N proteins of MeV (PDB: 6H5Q), respiratory syncytial virus (RSV, PDB: 2WJ8), Ebola
virus (EboV, PDB: 5Z9W), Borna disease virus (BDV, PDB: 1N93), and rabies virus (RabV, PDB: 2GTT). All the structures
shown in Figure 4 correspond to N proteins observed in their assembled form (i.e., in NCLC).

Ncore consists of two globular domains, the N-terminal (NNTD) and C-terminal domains
(NCTD), which form a positively charged cavity to accommodate the RNA (Figure 4B,C).
These domains are preceded and followed by an N-terminal and a C-terminal arm (NNTDarm
and NCTDarm) connected by flexible linkers; these arms are responsible for the self-assembly
of N protomers onto the RNA. The superposition of the structures of the N proteins
of paramyxoviruses shows high conservation of the tertiary and secondary structures
(Figure 4D). The global architecture is also well conserved among members of the Monone-
gavirales order, since the N proteins of respiratory syncytial virus (RSV) [129,130] and
human metapneumovirus [131] (two pneumoviruses), Ebola virus [132–136] and Marburg
virus [137] (two filoviruses), Borna disease virus [138] (a bornavirus), vesicular stomati-
tis Indiana virus (VSIV) [139] and rabies virus [140] (two rhabdoviruses) have similar
structures and modes of self-assembly (for a review see [141]) (Figure 4E).

3.3. Interactions between Protomers

Each N protomer forms tight connections with its neighbors via its two arms protrud-
ing on each side of the N protein (Figure 5A). On one side, the NNTDarm of the Ni protomer
forms an alpha helix that binds a hydrophobic groove on the back of the NCTD of the Ni-1
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protomer (Figure 5B(i)). On the other side, the NCTDarm folds in two alpha helixes interact-
ing with the top of the NCTD of the Ni+1 protomer (Figure 5B(ii)). A third tight connection
has been described between an extended loop of the NNTD of the Ni protomer that enters
into a hole formed by the NNTD and NNTDarm of the Ni+1 protomer (Figure 5B(iii)) [21,126].
In addition to these interactions, there are large contact areas between adjacent protomers
with numerous additional bonds [23].
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Figure 5. Mode of assembly. (A) Structure of the nucleoprotein of PIV5 shown in surface representation, except for the
NNTDarm, NCTDarm, and extended loop, which are shown in cartoon representation (PDB: 4XJN). (B) Surface representation
of three N protomers with the NNTDarm, NCTDarm, and extended loop of the Ni protomer shown in cartoon representation.
The RNA is shown in black. (C) Surface representation of a nucleocapsid-like complex of MeV shown with four different
views (reconstituted from PDB: 6H5Q). Color code is the same as in Figure 4.

These N-N interactions curve the N oligomer so that the RNA is exposed on the
outside of the helix (or ring) and all the tight inter-protomer connections are hidden
inside the helix (Figure 5C) [17,18,117]. This conformation is similar to that observed
in the nucleocapsids of filoviruses [134] and pneumoviruses [130], but opposite to the
one found in rhabdoviruses [142,143] where the RNA is located in the interior of the
helical nucleocapsid.

3.4. Interactions with RNA

The genomic RNA is inserted in a cavity formed by the NNTD and the NCTD (Figure 6A,B).
Each N protomer binds six nucleotides in agreement with the rule of six [17,18]. The RNA
is mainly stabilized by interactions between positively charged residues and the RNA
backbone, thus explaining the low sequence specificity of encapsidation (Figure 6A). The
RNA adopts a regular conformation with a three-base stack oriented outwards to the
solvent (bases “out”) and the following three-base stack facing toward the protein (bases
“in”) (Figure 6B).
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Using recombinant N proteins fused to a cleavable PNTD, NCLCs were generated
in vitro after cleavage of the PNTD and incubation with either a six-nucleotide-long poly(A)
RNA or an RNA corresponding to the first six nucleotides of the viral genome [20,23]. For
both MeV and CeMV, NCLCs adopt a helical conformation with the RNA hexamer in the
same phase register. These structures suggest that the first two nucleotides of the viral
genome point toward the solvent and that the 3′ end of the genome is accessible to the
viral polymerase (Figure 6B). This register is in agreement with data showing that cytidines
at positions 1 and 6, which are both in “out” positions, are more sensitive to chemical
modifications [144].

Paramyxoviruses have bipartite promoters [145–148] (for a review see [30]). The
first promoter element (PE1) contains at least the first twelve nucleotides of the genome
(Figure 2A). The second promoter element (PE2) is composed of three successive hexamer
sequences: 3′-CNNNNN-5′ located at positions 14 to 16 (in the hexamer register) for or-
thoparamyxoviruses [146], and 3′-NNNNCG-5′ at position 13 to 15 for rubulaviruses [147]
and avulaviruses [148]. According to the RNA register described for MeV and the average
of 13 N per turn for native nucleocapsids, PE2 is located in the successive turn of the helical
nucleocapsid just under PE1 in the helical conformation of the nucleocapsid (Figure 6C).
Moreover, the conserved nucleotides of the two types of PE2 are facing the solvent, thus
reinforcing the idea that these bases could be sensed by the polymerase complex and
participate in promoting RNA synthesis.

The side chain of the residue Q202 of the nucleoproteins of PIV5 and MeV interacts
with the base of the nucleotide in position six, and thus the first nucleotide of the pro-
moter [17,20] (Figure 6A). In a cell-based minigenome assay, mutation Q202A of the N
protein of human parainfluenza virus 2 allows the transcription and replication of the
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minigenome, irrespectively of whether its length is a multiple of six and the presence of
the PE2 element [149,150]. The authors suggest that residue Q202 may stabilize the first
nucleotide of the genome, thus inhibiting the initiation of RNA synthesis by the viral poly-
merase. PE2 would then promote RNA synthesis initiation by stabilizing the polymerase
complex on the promoter. Since the function of PE2 depends on its phase register, the
requirement of PE2 would ensure the conservation of the rule of six [149,150].

In addition to its impact on the promoters, the phase of the RNA bases also affects
the transcription signals. Indeed, during transcription, the P messenger RNA of paramyx-
oviruses can be edited by the viral polymerase which adds one or several extra G residues
by stuttering along a short stretch of C residues [151]. Incremental modifications of the
phase register of the editing site modify the efficiency of the editing and the number of
residues added [144]. Moreover, within each genus, the gene start signals are found in a
few preferred phases, suggesting the phasing of the gene start signal may also affect the
efficiency of the re-initiation of transcription at gene junctions [33]. Overall, these results
show that the imprint of the N protomers on the RNA influences how the viral polymerase
uses its template.

3.5. Position and Influence of Ntail within the Nucleocapsid

Ntail belongs to the group of pre-molten globules within the class of intrinsically
disordered proteins [34,57,59]. Although Ncore is sufficient to generate the helical core of
the nucleocapsid [35,36,38], Ntail influences the conformation of the helix. Indeed, treatment
of the nucleocapsid or NCLC by trypsin cleaves off Ntail, reduces the pitch, and tightens
the helix [21,34,113,117,121] (Figure 3B). Moreover, while the expression of the full-length
N protein of MuV generates NCLCs in a ring conformation, the cleavage of Ntail generates
helical structures [126].

In agreement with its disordered nature, Ntail is not visible by electron microscopy [34,113,126].
Nuclear magnetic resonance spectroscopy and small-angle scattering showed that Ntail
escapes from the nucleocapsid core toward the exterior between two helical turns [152]
(Figure 7A,B), in agreement with the location of epitopes recognized by antibodies targeting
Ntail [153]. While the first 50 residues of Ntail are spatially constrained by the helical turns
of the nucleocapsid core, the C-terminal residues have high angular freedom [75,127,152].
This model is further supported by the recently solved structure of the NCLCs formed
by SeV N proteins [21]. After cleavage of most of Ntail, the nucleocapsids were found to
become more rigid and allowed a resolution of 2.9 Å. The atomic model was reconstituted
up to residue 414, thus including the first thirteen residues of the tail (aa 402-414). The
residues bind the surface of NCTD and point toward the exterior of the nucleocapsid core
(Figure 7A).
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Figure 7. Structure and position of Ntail. (A) Structure of the nucleoprotein of SeV in surface representation with the
residues of Ntail shown with spheres (PDB: 6M7D). (B) Surface representation of the nucleocapsid-like complex of CeMV
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Viruses 2021, 13, 2465 11 of 28

Ntail is thought to mediate the contact between the nucleocapsid and its environ-
ment. While Ntail is not required for the encapsidation of the RNA, it is essential for
RNA synthesis [37,154]. Indeed, Ntail contains an α-helical molecular recognition element
(α-MoRE) which folds upon binding to the C-terminal domain of the phosphoprotein
(PXD) and thus participates in the recruitment of the polymerase complex on its tem-
plate [39,40,71,73–75,127,128,153,155–157] (Figure 7C). In addition to its interaction with
PXD, Ntail also binds the matrix protein, thus promoting the packaging of the nucleocap-
sids into viral particles [158–162]. Ntail also mediates the interaction with several cellular
factors [61], including heat shock protein 70 (hsp70) [154,163,164] and peroxiredoxin 1 [165].

4. Formation of the Nucleocapsid

4.1. Structure of the N0-P Complex

The N-terminal domain of the phosphoprotein interacts with the monomeric, RNA-
free form of the N protein (referred to as N0), thus forming the so-called N0-P com-
plex [55,166]. This interaction prevents the formation of NCLCs on cellular RNAs and
recruits the N proteins to the encapsidation site where N0-P complexes are used as the
substrate for the encapsidation of genomes and antigenomes [7,55,56].

The first 50 residues of P (herein referred to as PNTD) of paramyxoviruses contain a con-
served α-MoRE [57,59,62,167] that adopts an alpha-helical structure upon binding to Ncore
(Figure 8). The structures of the N0-PNTD complex of NiV [24], MeV [25], PIV5 [26], and
hPIV3 [27] were solved by X-ray crystallography (Figure 8A–D). To crystallize the complex
in a monomeric and RNA-free state, the NNTDarm and NCTDarm were removed (with the
exception of MeV in which the NCTDarm was included). For all three viruses, PNTD binds to
NCTD in the groove occupied by the NNTDarm of the adjacent Ni+1 protomer in the nucleo-
capsid conformation (Figure 8B). The interactions between the groove and the PNTD or the
NNTDarm are both of hydrophobic nature. For MeV and NiV, the first alpha-helix is followed
by a second alpha-helix segment that binds the top of the NCTD in place of the NCTDarm
of the adjacent Ni-1 protomer (Figure 8B). Contrary to MeV, hPIV3, and NiV, the PNTD of
PIV5 extends on its N-terminus and reaches the RNA cavity, potentially directly inhibiting
binding to the RNA (Figure 8C). Inhibition of the binding of the arms of the adjacent N
protomers by PNTD is a conserved feature among mononegaviruses [131,137,168–172].

For MeV, NiV, and PIV5, the structures of both the RNA-free Ncore in complex with
PNTD and the RNA-bound Ncore engaged in an NCLC (NNUC) have been solved. The
overall architecture of Ncore is conserved between the N0 conformation (or “open” confor-
mation) and the NNUC conformation (or “closed” conformation) (Figure 8D). Although
individually the NNTD and NCTD have very similar structures, their relative orientation
differs (Figure 8D–F). Indeed, the kinked alpha-helix located between the NNTD and the
NCTD acts as a hinge and allows the rotation of the NCTD (Figure 8F). This rotation finalizes
the formation of the RNA cavity. While NiV PNTD has been suggested to maintain the N
protein in the N0 conformation by rigidifying the structure [24], modeling and molecular
simulations suggest that the PIV5 N protein preferably adopts the N0 conformation in the
absence of ligand (PNTD or RNA) [26]. The interactions between the RNA backbone and
residues from both the NNTD and NCTD most likely participate in the stabilization of the
NNUC conformation, even in the absence of adjacent protomers.

In addition to PNTD, another ultra-weak interaction was detected between Ncore and a
fragment of the long, disordered region of P located between PNTD and POD [173]. This
fragment contains a short peptide (δ) with no apparent secondary structure and a transient
short alpha-helix (α4), which both interact with the bottom of NNTD (Figure 8G). The
sequence of α4 has some level of conservation among morbilliviruses and henipaviruses,
and the introduction of mutations in this sequence inhibits gene expression in a minigenome
assay. The homologous sequence in the NiV P protein also adopts a transient alpha-helix
structure in solution [62,174]. Thus, this ultra-weak interaction may be conserved and
essential for maintaining the N protein in the N0 state [173]. The interaction between the
α-MoRE of Ntail (Nα-MoRE) and PXD may also further stabilize the N0-P complex [175].
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Figure 8. Structure of the N0-P complex. (A) Structure of the N0-P complex of NiV (PDB: 4CO6). The NNTD and the
NCTD are in pale orange and pale green, respectively. (B) Superimposition of the structure of three N protomers of NiV
NLPC (PDB: 7NT5) with NiV N0-P (PDB: 4CO6). The NCTD of the N0-P complex was aligned onto the NCTD of the Ni

promoter. The N protomers are presented in surface representation, while the NNTDarm, NCTDarm, and the extended loop of
the Ni protomer are shown in cartoon representation. PNTD is shown in cartoon representation. (C) Structure of the N0-P
complex of PIV5 with PNTD in cartoon representation (PDB: 5WKN). The RNA is shown as a transparent black surface.
(D) Side-by-side comparison of the structures of the N0-P complex (PDB: 5E4V) and of an N protomer of the NCLC of MeV
(PDB: 6H5Q) (NNTDarm and NCTDarm are not shown). The NNTD and the NCTD of N0 are in pale orange and pale green,
respectively. (E) Superimposition of the NCTD (top) and of the NNTD (bottom) of the N0-P complex and of an N protomer of
the NCLC of MeV. (F) Superimposition of the structures of MeV N0 and NNUC (NNTDarm and NCTDarm are not shown). The
structures are aligned based on their NCTD. (G) Structure of the MeV N0-P complex with the disordered region downstream
PNTD shown as a dotted line. The transient alpha-helices (α3 and α4) are shown in cartoon representation.

4.2. Encapsidation of the RNA

The fusion of full-length N protein (or Ncore) to a cleavable PNTD allows the production
of soluble N0-P complexes [20,23,176]. Incubation of these complexes with RNA triggers
the formation of NCLCs in vitro. This experimental setup revealed that the encapsidation
of the RNA is sequence-specific and that the N protein of MeV preferably encapsidates
a poly(A) hexamer (but not poly(U)), as well as an RNA corresponding to the first six
nucleotides of the genome. Similar specificity was observed for other mononegaviruses,
suggesting that the N protein has a higher affinity for poly(A) RNA and the first nucleotides
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of the corresponding genome [177–180]. The formation of long helical NCLCs from short
RNA hexamers indicates that a continuous RNA molecule is not required for the assembly
of N proteins. The kinetics of the encapsidation was analyzed by real-time nuclear magnetic
resonance and fluorescence spectroscopy and revealed a two-step mechanism. The first
step is rapid and could correspond to the binding of N monomers to the RNA, while the
second step consists of the assembly of RNA-bound N proteins [176].

Finally, the local concentration of N0-P complexes seems critical to efficient encapsida-
tion of the RNA and generation of NCLCs. Indeed, the formation of droplets formed by
liquid-liquid phase separation increases both the local concentration of N0-P complexes
and the rate of formation of NCLCs in vitro [181]. For VSIV (Rhabdoviridae family), al-
though dispensable [182], POD enhances genome replication possibly by increasing the
local concentration of N0 at the site of encapsidation [183].

5. The Nucleocapsid as a Template

Unlike the distantly related members of the Articulavirales and Bunyavirales orders
for which the polymerase can directly bind the extremity of the viral genomes, the viral
polymerase of mononegaviruses cannot interact with its nucleocapsid template without its
cofactor P [43]. Moreover, the genomes of mononegaviruses are deeply encased in helical
nucleocapsids, thus raising the question of how the polymerase accesses the RNA.

5.1. Recruitment and Progression of the Polymerase Complex

Since PXD mediates the interaction of L with the nucleocapsid and the polymerase
complex is made of the L protein and a tetramer of P proteins, the polymerase complex
possesses four potential nucleocapsid-binding sites. This architecture is the basis of the so-
called “cartwheeling” model in which the polymerase complex progresses on its template
due to cycles of association/dissociation between PXD and the nucleocapsid [184,185].

The PXD of paramyxoviruses adopts a three-helix bundle structure [71–73,75,186,187].
PXD binds to the α-MoRE of Ntail [73–75,127,128], the L protein [28,188,189], and
Ncore [68,114,190,191] (Figure 9). PXD has a prism-like shape with three faces: α1 + α2
form face 1 (F1), α2 + α3 form face 2 (F2), and α3 + α1 form face 3 (F3) (Figure 9A). Each
interaction is mediated by a different face, with Nα-MoRE interacting with F2 [73], the L
protein with F3 [28,189], and Ncore with F1 [191] (Figure 9).
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The interaction of PXD with Nα-MoRE is weak, with a constant of dissociation (KD) in the
µM range [74,128,157,193]. While the disordered Nα-MoRE folds into an alpha-helix upon
binding to PXD, the flanking regions of Ntail remain disordered [74,75,127,187,194–197].
This phenomenon, called fuzziness [198], affects the interaction between Ntail and its
partners. Indeed, the long-disordered region upstream of Nα-MoRE slows the disorder-to-
order transition of Nα-MoRE upon binding to PXD [199,200]. Accordingly, the deletion of
the disordered region upstream MeV, NiV, and HeV Nα-MoRE increases the affinity for PXD
(and also HSP70 for MeV) [199]. The dampening effect of the disordered regions does
not directly depend on the sequence, but rather on a combination of length and disorder.
Although not directly involved, the poorly conserved disordered region of Ntail upstream
the Nα-MoRE affects the interaction with PXD [199–201].

The low affinity between PXD and Nα-MoRE permits efficient progression of the poly-
merase complex on the nucleocapsid. Indeed, modifications of the binding strength be-
tween MeV PXD and Nα-MoRE alter the activity of the polymerase [202–204]. Indeed, there
is a positive correlation between the PXD/Nα-MoRE interaction strength and the efficiency
of the re-initiation of the transcription at gene junctions [204] (Figure 2A). This effect is
further enhanced when the polymerase crosses long non-transcribed intergenic regions,
suggesting the PXD/Nα-MoRE interaction keeps the polymerase in an active state when
crossing the gap between transcription units.

Although the PXD/Nα-MoRE interaction regulates the activity of the polymerase, it
is not strictly required for RNA synthesis. Indeed, while the truncation of MeV N from
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Nα-MoRE to its C-terminus abrogates gene expression in a minigenome assay, further
deletion of the 43 upstream residues restores activity [205] (Figure 10). This suggests that
the central disordered region (NCDR) upstream of the Nα-MoRE has a negative effect on
the activity of the polymerase and the binding of PXD to Nα-MoRE counteracts this effect.
Accordingly, deletions in the NCDR of CDV and NiV increase activity [206], and when
MeV Nα-MoRE is relocated to a variable region of NNTD, removing NCDR enhances gene
expression [207] (Figure 10). However, a recombinant MeV harboring Nα-MoRE on Ncore
and devoid of NCDR produces more polycistronic mRNAs. Similarly, two recombinant
CDV with deletions in NCDR produce more polycistronic mRNA and show an altered
RNA synthesis balance with enhanced transcription over replication [206]. Therefore, the
central disordered region of Ntail inhibits RNA synthesis, and PXD counterbalances this
negative effect. This interplay would finely tune the polymerase’s activity and ensure
the quality of the generated mRNAs by improving the recognition of the signals at the
intergenic junctions.
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In addition to interacting with the α-MoRE, PXD of CDV was also shown to directly
interact with Ncore [191]. This interaction is mediated by an acidic loop of NNTD (residues
146 to 161) and requires the presence of Nα-MoRE in complex with PXD (Figure 9C–E).
Accordingly, mutations in the homologous region of NiV Ncore were previously shown to
inhibit the P-N interaction [192]. After several passages of a recombinant CDV expressing
a Ntail with a large deletion in NCDR, compensatory mutations appeared in PXD and
NNTD that decreased the affinity between the two domains. Thus, NCDR may inhibit
the interaction of PXD with Ncore. Modeling and molecular docking predict that the
PXD/Nα-MoRE complex binds between two N protomers. On one side the F1 of PXD binds
to the acidic loop of one protomer and on the other side, Nα-MoRE interacts with a different
loop (residues 133 to 142) of the NNTD of the other protomer (Figure 9D,E). The requirement
of Nα-MoRE for this interaction suggests PXD first binds Nα-MoRE and then Ncore. A similar
interaction with the acidic loop may explain the singular behavior of MuV PXD, which can
bind Ncore in the absence of Ntail [68,190]. This atypical phenotype may be linked to the
lower stability of the MuV PXD tertiary structure in solution and to a folding-upon-binding
mechanism [186,190]. The binding of CDV PXD to NNTD also agrees well with the density
map of MuV nucleocapsids bound to PXD [114]. The P protein of the respiratory syncytial
virus (Pneumoviridae family) also binds the nucleocapsid on the same location on NNTD,
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suggesting an ancestral mode of interaction between the polymerase complex and its
template [191,208,209].

P binds the L protein via the C-terminal part of the POD and the third face of the PXD
of one P protomer [28,188,189] (Figure 9F). Using different combinations of mutants in a
minigenome assay, it was shown that at least one PXD of the tetramer must have the ability
to bind the L protein and one different PXD must be able to bind Nα-MoRE [189]. The PXD
that binds L does not have to be able to bind Nα-MoRE and it is unclear whether PXD can
simultaneously bind L and Nα-MoRE. It is also unknown whether the interaction between L
and PXD is stable or undergoes rounds of association/dissociation during RNA synthesis.

Of note, some cellular factors influence the progression of the polymerase complex.
For instance, hsp70 [163] and peroxiredoxin 1 [165] both compete with PXD for the binding
to Ntail and enhance RNA synthesis.

Taken together, these results show that PXD is at the core of an interaction network,
which is more complex than initially anticipated. PXD participates in a finely regulated
dance allowing the progression of the polymerase complex onto the nucleocapsid and the
optimal recognition of the transcription signals.

5.2. Access to the RNA

The viral genome is encased between the NNTD and NCTD of each N protomers,
with only half of its bases facing the solvent. Thus, copying of the genome requires
significant conformational rearrangements to allow the RNA to reach the catalytic site of
the polymerase.

First, in the straight helical conformation of purified nucleocapsids, the RNA is covered
by the N protomers of the adjacent helical turn, leaving an insufficient empty space
above the RNA to accommodate the large polymerase complex (Figure 5C). Therefore,
a local modification of the conformation of the helical nucleocapsid must take place.
Nucleocapsids are flexible and can adopt different conformations [21,109–111]. Such
uncoiling and bending could enable the polymerase complex to reach the RNA cavity.
Although Ntail affects the rigidity and the pitch of the helical nucleocapsids [21,113,117,121],
the addition of monomeric PXD to intact nucleocapsids of HeV or MuV does not affect the
coiling of the helix [75,114]. For HeV, the addition of PXD does not make the RNA more
accessible to nucleases either. Similarly, the binding of the C-terminal domain of VSIV P to
NCLC does not significantly modify the structure of the N proteins [210]. This suggests
that either the binding of PXD does not participate in the uncoiling of the nucleocapsid, or
the oligomerization of PXD is required. Some cellular factors may also contribute to the
uncoiling of the nucleocapsid, such as hsp70, which binds MeV Ntail [154,163], stimulates
MeV and CDV polymerase activity [154,211], and seems to favor the production of “light”
nucleocapsids (versus “dense” nucleocapsids) of CDV [212,213]. Conversely, the PNTD of
MuV can uncoil the helical nucleocapsid and increase gene expression in a minigenome
assay [68,114]. Similar to the binding of MuV PXD to Ncore, the atypical behavior of MuV
PNTD could reflect a possibly common uncoiling mechanism.

Second, the RNA cavity of the N proteins must open to release the RNA upon the
passage of the polymerase. A first model proposes that the N protomers undergo a large
conformational rearrangement reverting from the NNUC to the N0 conformation [24,214].
Molecular dynamics simulations show that in absence of ligands (RNA or PNTD), the N
protein of PIV5, initially in the NNUC conformation, adopts a conformation similar to the
N0 conformation. This suggests that the N0 conformation is the most stable in the absence
of RNA and adjacent N proteins [26]. However, the removal of the RNA from nucleocapsid-
like structures of MuV or VSIV does not significantly change the relative orientation of
NNTD and NCTD [179,215]. Moreover, when the simulations are made on a short RNA-
free nucleocapsid of three N proteins of PIV5, only the conformations of the Ni+1 and Ni
protomers slightly change toward the N0 conformation, with the conformation of the Ni
protomer being modified to a lower extent. Thus, the conformational rearrangement from
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the NNUC to the N0 conformation may partially take place only at the 3′ end of the genome
to facilitate the release of the RNA terminus and the engagement of the polymerase.

Another model proposes that a local conformational change of the α-helix 7 and the
upstream flexible loop is enough to release the RNA [215] (Figure 8E). Indeed, this helix,
which is located at the surface of the protein, constitutes most of the bottom part of the RNA
cavity and contains several amino acids implicated in RNA stabilization. Moreover, when
the NNTD of MeV NNUC and N0 are superimposed, the loop-α7 region is the only fragment
that does not properly align (Figure 8E). Thus, in addition to the rotation of the NNTD, the
transition from the N0 to the NNUC conformation also implies a local rearrangement of
this region. Mutations in this helix affect gene expression, which is in agreement with a
potential role in releasing the RNA during RNA synthesis [215].

PNTD has also been proposed to participate in the release of the RNA. Due to the tight
N-N interactions and the high stability of the nucleocapsid, it seems unlikely that during
the progression of the polymerase PNTD would bind the N protomers in an N0-P-like
manner and sequentially “open” the N proteins. However, the NNTDarm-binding groove of
the last N protomer of the nucleocapsid (or the first protomer on the 3′ terminus) is not
occupied and may therefore be engaged by PNTD to help to release the RNA. Due to the
binding register of the first six nucleotides of the genome and the rule of six, the terminal 3′

nucleotides are positioned such that they are exposed to the solvent and are therefore more
accessible [20]. Therefore, the binding of PNTD only to the terminal N protomer may be
sufficient for the polymerase to access the RNA. However, for SeV and hPIV3, the deletion
of the PNTD abolishes genome replication but not transcription in vitro, thus suggesting
that the potential role of PNTD in releasing the RNA is not essential (at least for members of
the Respirovirus genus) [216,217].

6. Model of Transcription and Replication
6.1. Transcription

Upon fusion of viral and cellular membranes and the subsequent release of the nucle-
ocapsid in the cytoplasm, the polymerase complexes previously packaged in the virion
initiate primary transcription. Given that the nucleocapsid adopts a helical conformation,
the two elements of the bipartite promoter are exposed on the same side. PXD binds Ntail
and recruits the polymerase complex on the nucleocapsid (Figure 11A). When the poly-
merase reaches the 3′ end of the nucleocapsid, it is somehow stabilized by the second
element of the bi-partite promoter (PE2). The phase register of the encapsidation exposes
the 3′ end of the genome to the solvent. The release of the RNA from the first N protein
may be enhanced by the lodging of one PNTD into the empty NNTDarm-binding groove
of the first protomer (Figure 11B). A conformational change of the first two N protomers
from the NNUC to the N0 conformation may also assist the release. When the polymerase
complex passes on an N protomer, a transient local conformational change of the helix α7
of NNTD and the preceding loop allows the release of the RNA (Figure 11C).

The progression of the polymerase along the genome induces a local conformational
change of the helical nucleocapsid (Figure 11D). A dynamic dance is orchestrated by PXD,
which periodically binds the α-MoRE of Ntail and Ncore. The fuzziness of Ntail inhibits
the passage of the polymerase complex, which uses PXD to “clear the way”. First, PXD
binds Nα-MoRE which folds upon binding into an alpha-helix (Figure 11E). Second, the
PXD/Nα-MoRE complex binds the Ncore of the same protomer or an adjacent protomer
(model 1), thus stabilizing the Ntail, decreasing the fuzziness, and facilitating the pro-
gression of the polymerase (Figure 11F,G). As the binding of the PXD/Nα-MoRE complex
to the NNTD of N protomer from the same helical turn would potentially further block
the way (Figure 11F), the complex could alternatively bind the NNTD of a protomer from
the previous helical turn (model 2). In this alternative model, the anchoring of the Ntail
to the previous helical turn would further remove it from the path of the polymerase
(Figure 11H–K).
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This dynamic interaction network regulates the speed of the RNA synthesis and
ensures an optimal recognition of the transcription signals at the intergenic regions (IR)
(Figure 2A). Indeed, upon the recognition of the first IR, the polymerase stops the synthesis
of the leader RNA and scans the genome to find the next gene start signal (GS). Recognition
of the GS triggers the re-initiation of RNA synthesis and capping of the mRNA. If recog-
nized, the gene end signal triggers the synthesis of the poly(A) tail (for more details on the
mechanisms of RNA synthesis, see [218]). The efficiency with which the polymerase crosses
the IR and scans the genome depends on PXD and its interactions with the nucleocapsid. It
is yet to be deciphered if the PXD that binds the L protein can simultaneously bind Ntail
and if it periodically associates with and dissociates from L.
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local conformational change on the helical nucleocapsid. The Ntail are flexible, disordered, and inhibit the progression of
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complex binds the Ncore of the next N protomer. (G) The stabilization of Ntail by PXD allows the polymerase complex to
continue RNA synthesis. (J) In model 2, the PXD/Nα-MoRE complex binds the Ncore of an N protomer from the previous
helical turn. (K) The anchoring of the Ntail to the previous helical turn “clears the way” and allows an efficient progression
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even if the affinity for the RNA sequence is low. For N, the color code is the same as in Figure 4.

6.2. Replication

After new viral proteins have been synthesized, the polymerase complex switches
from a transcriptase mode to a replicase mode. The details of this switch are not fully
understood, but the accumulation of the encapsidation substrate, the N0-P complex, plays
a key role in this process. In the replicase mode, the polymerase complex encapsidates
the nascent RNA and does not recognize any transcription signals. As the N protein has
a higher affinity for an RNA with the sequence of the 5′ end of the genome, the first six
nucleotides of the nascent genome outcompete PNTD for the binding to N (Figure 11L,M).
For the following N protomers, PNTD is outcompeted by both the RNA and the NCTDarm of
the previous N protomer (Figure 11N). This double competition allows the continuous encap-
sidation of any RNA sequences, even with a poor affinity for N, such as poly(U) sequences.

7. Conclusions and Perspectives

In recent years, several significant advances have been made which add to our under-
standing of the structure and mechanisms of the molecular machinery underlying RNA
synthesis of paramyxoviruses. We now have in hand structural information on the N0-P
complex and the nucleocapsid of three and seven viruses, respectively. The determination
of the phase register of the encapsidated RNA further reveals the mechanisms underlying
the rule of six. Moreover, the deciphering of the rich interaction network connecting the
different components of the ribonucleoprotein complex gives us a good overview of the
dynamics of the progression of the polymerase complex. Finally, the resolution of the
atomic structure of the polymerase complex of PIV5 provides a new tool and opens new
opportunities to further elucidate the molecular details of the RNA synthesis.

Except for MuV and its atypical features (antiparallel coiled-coil for POD, unstable
PXD in solution, interaction between PXD and Ncore in the absence of Ntail, and uncoiling of
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the nucleocapsid by PNTD), the molecular machinery and the mechanisms at play during
RNA synthesis appear to be well conserved among paramyxoviruses. The exposure of the
RNA on the outside of the helical nucleocapsid, the binding site of the C-terminal domain
of P to the NNTD, the coiled-coil structure of POD, and the interaction sites between P and L
suggest these mechanisms are shared with pneumoviruses and filoviruses but are quite
different for rhabdoviruses.

Despite these new insights, several questions remain unanswered. The helical nucleo-
capsid must uncoil to allow the progression of the polymerase. What factors induce this
conformational change? It is also still unclear how the nucleoproteins release the RNA
and what signals trigger this release. Although structural information is available on the
individual components, there is little insight into the organization or the structure of the
polymerase complex on the nucleocapsid while synthesizing RNA. In addition, how does
the second element of the bipartite promoter enhance initiation? How does the polymerase
complex add nucleoproteins to the nascent RNA? How does the phosphoprotein orches-
trate its interactions with Ntail, Ncore, and L? How do other viral proteins such as the V, C,
and M proteins interact with the ribonucleoprotein complex and regulate RNA synthesis?

Answering these questions should bring significant insight into the mechanisms at
play and assist the development of safe and potent vaccine vectors, oncolytic viruses,
and antiviral therapeutics. With the momentum provided by the recent advances and
the constant improvement of powerful tools such as cryo-electron microscopy, there is
no doubt our understanding of the viral molecular machinery of paramyxoviruses will
continue to rapidly improve.
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