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Abstract

Neural networks, despite their highly interconnected nature, exhibit distinctly localized and
gated activation. Modularity, a distinctive feature of neural networks, has been recently pro-
posed as an important parameter determining the manner by which networks support activ-
ity propagation. Here we use an engineered biological model, consisting of engineered rat
cortical neurons, to study the role of modular topology in gating the activity between cell
populations. We show that pairs of connected modules support conditional propagation
(transmitting stronger bursts with higher probability), long delays and propagation asymme-
try. Moreover, large modular networks manifest diverse patterns of both local and global
activation. Blocking inhibition decreased activity diversity and replaced it with highly consis-
tent transmission patterns. By independently controlling modularity and disinhibition, experi-
mentally and in a model, we pose that modular topology is an important parameter affecting
activation localization and is instrumental for population-level gating by disinhibition.

Author Summary

The capacity to transmit information between connected parts of a neuronal network is
fundamental to its function. The organization of network connections (the topology of the
network) is therefore expected to play an important role in determining network transmis-
sion. Since modular topology characterizes many brain circuits on multiple scales, investi-
gating the role of modularity in activity gating is clearly desirable. By engineering such
modular networks in vitro, we were able to perform such an investigation. Under these
experimental conditions, we can independently control the degree of modularity, as well
as inhibition in the network. We show that a combination of these two properties is highly
beneficial from a communication perspective. Namely, it equips connected modules and
large modular networks with the capacity to gate and temporally coordinate activity
between the different parts of the network.
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Introduction

Activity gating and control over propagation are fundamental capacities of neural circuits. It is
widely accepted that population-level gating is strongly affected by changing the balance
between excitation and inhibition in connected sub-populations of neurons [1-6]. However,
while the role of excitation-inhibition has been widely investigated, the contribution of circuit
topology to activity gating has received much less attention. Modular topology is of particular
interest, as it is a fundamental feature of biological neuronal circuits [7-11]. Modular circuits
are composed of highly connected groups of neurons (modules) which are loosely connected
to other groups. Such a network organization is found at many spatial scales, ranging from
anatomically defined brain regions to groups of neurons [7,8,12,13].

Experimental investigation into the contribution of modular topology to gating phenomena
is faced with major challenges. While large brain areas have well-documented connectivity and
activity maps [12,14,15], accessing complete brain circuits at smaller scales is still limited. Fore-
most, the connectivity maps are highly untraceable in the three-dimensional architecture of the
tissue. In addition, since cell assemblies are often dispersed in space, their simultaneous identi-
fication and recording are still beyond the reach of contemporary technologies [16]. Finally, as
neuronal circuits are not prone to design, systematic studies are impossible. Consequently,
studies aimed to relate activity propagation and gating to network architecture (such as modu-
lar networks) are mainly restricted to theoretical investigations [17].

Indeed, theoretical studies indicate that modular organization greatly impacts network
functionality [18]. Modular circuits provide control over activity propagation [9,10,19,20],
time-scale separation [21], dynamical complexity and the computational capacity of the net-
work [10,22-25].

In this study we experimentally address, for the first time, the relation between circuit mod-
ularity and activity gating. To overcome the inherent limitations associated with studying
intact tissues, we utilized a cell patterning technique to induce self-organization of modular
networks in culture. We found that pairs of connected modules support conditional propaga-
tion that is dependent on the activity intensity in the sending module. In large networks of
many connected modules, conditional propagation enhances the diversity of activation pat-
terns, and is manifested as events initiated at different modules which then propagate to differ-
ent distances. Interestingly, blocking network inhibition decreased the activity diversity and
replaced the conditional propagation with highly reliable transmission. These features are
absent in the activity repertoire of uniform networks. Thus, we show how a combination of
modular circuit architecture and disinhibition supports gating.

Results

For the sake of clarity, the results are organized according to systems with growing complexity.
We begin by addressing the properties of connected cluster pairs. We then address chains of
more than two clusters. Next, we look at the activation repertoires of larger systems (networks
of connected clusters). Finally, we attempt to explain our results with a computational model
addressing the accumulative effects of disinhibition and modular topology.

Engineering modular networks in vitro

To investigate how activity propagates through modular neuronal networks, we used a unique
biological model system of engineered clusters in vitro. Control over circuit architecture was
achieved using heterogeneous surfaces with different degrees of adhesiveness (see Materials
and Methods). Specifically, islands of highly adhesive surfaces were realized on a non-adhesive
background. Due to their innate propensity to cluster, neurons self-organized into modular
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Uniform

Fig 1. Uniform versus engineered circuits in culture (left-schematics, right—in vitro model). (A)
Uniform network. Cells (inhibitory, red, and excitatory, blue) are uniformly distributed and their probability to
connect to other neurons is the same. (B) A simple, two cluster modular network. Neurons are divided into
two distinct cell populations. (C) A large network of many connected modules. Electrode-electrode (center to
center) distance is 500 pm.

doi:10.1371/journal.pcbi.1004883.g001

circuits within several days in culture (Fig 1), in accordance with previous work [26-28]. Each
of the clusters comprised of several tens to hundreds of neurons (S1A Fig), connected through
a bundle of fasciculated neurites (Fig 1). The number of cells per cluster was estimated from
the cluster area using N = 0.0079S-1.9, where N is the number of cells and S is the cluster area
in um?. This relation was calculated in a previous publication in which clusters were grown
under the same experimental conditions [29]. In contrast to previous methods [30-33], our
procedure allows the formation of small-scale sub-networks of different sizes, ranging from
cluster chains (Fig 1B) to two-dimensional networks of many connected clusters (Fig 1C). The
position of each cluster was aligned with a micro electrode, allowing local electrical recording
from each cluster (Fig 1B and 1C-right).

Synchronized bursts in modular networks

Using the embedded electrodes (Fig 2A), the simultaneous activity of all clusters was recorded.
The vast majority of measured clusters were found to be spontaneously active after several days
in culture. A typical voltage trace recorded from one electrode is shown in Fig 2B. Each elec-
trode recorded the superimposed activity of many neurons within each cluster. It was previ-
ously shown that voltage traces represent spike summation and correspond to the increase and
decrease in population activity [29,34]. Accordingly, to represent the activity intensity of such
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Fig 2. Recordings from a modular network in culture. (A) A bright field image of a three cluster chain. (B)
A voltage trace recorded from electrode 1 in (A) during a network burst. (C) The voltage trace from (B) is
represented by the activity intensity (see Materials and Methods) and is shown in a color code. (D) Activity
intensity raster plot recorded from the network in (A). The blue rectangle marks the network burst in (C).
Electrode-electrode (center to center) distance is 500 uym.

doi:10.1371/journal.pcbi.1004883.9002

clusters, we averaged the rectified voltage traces over short time windows and color coded
them (Fig 2C) (see Materials and Methods for details). Spontaneous activity of individual clus-
ters was characterized by typical features previously observed in developing networks
[29,35,36]. We observed the activation of network bursts (NBs) which are short epochs of net-
work intense firing, separated by longer periods of sporadic activity (Fig 2D). To verify that
these events represent the collective activity of many neurons that synchronize within the NB
time window, we performed recordings from single clusters using dense electrode arrays

(30 um spacing) with a smaller electrode surface area (314 um? in contrast to 2827 um? in our
regular electrodes) which pick up activity from more local populations of neurons. The vari-
ability in the spiking profiles across different electrodes exemplified the synchronized nature of
spiking within NBs of single clusters (S2 Fig). While the activity within clusters appeared to be
synchronized, between connected clusters the synchrony was transient.
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Conditional propagation

We begin by examining the activity of connected cluster pairs (Fig 3A). NBs were found to be
either confined to a single cluster or spread over nearby connecting clusters (Fig 3B). To inves-
tigate whether the activity propagation between connected clusters was related to the activity
intensity in the clusters, we examined the propagation between pairs of adjacent clusters. For
each pair, we defined one cluster as the "sending cluster” and detected all NBs occurring in this
cluster (see details in Materials and Methods). From this NB pool, we selected only NBs which
were activated in the sending cluster before the neighboring cluster, defined here as the "receiv-
ing cluster". This selection process consisted of rejecting NBs according to the delay calculated
from the peak position of the cross-correlation function of the smoothed (convoluted with a
Gaussian kernel, o = 10ms) activity intensities of the sending and receiving clusters. Positive
offset delay was attributed to propagation from a receiving to a sending cluster. Fig 3A-3C
illustrates activity propagation in a representative cluster pair. 300 consecutive NB traces,
recorded from cluster 1 (the sending cluster) in Fig 3A, are shown in Fig 3C-left. These NBs
were reordered according to increased NB intensity (sum over the NB activity intensity trace)
in the sending cluster. The receiving cluster responses to these NBs are shown in Fig 3C-right.
The total intensity of these responses (averaged over all NBs) were only slightly lower than in
the sending cluster (Z-score of the difference in AI was 0.083), but significant (PV = 0.013,
Mann-Whitney-Wilcoxon test). Low intensity NBs did not propagate to the receiving cluster,
while strong NBs did. It should be noted, however, that a small fraction of strong NBs failed to
propagate. We termed this selective activation of NBs in the receiving cluster following an NB
in the sending cluster as conditional propagation.

To quantify this behavior over many cluster pairs, we calculated for each NB in the selected
pool, and for each cluster pair, the probability of having different normalized NB intensities
(intensities divided by the intensity standard deviation) in the receiving cluster as a function of
normalized NB intensities in the sending cluster. Data of the cluster pair in Fig 3A are presented
in Fig 3D-left. This representation further illustrates that low intensity NBs did not yield strong
responses in the receiving cluster, while NBs stronger than a certain value successfully propagated
to the receiving cluster. It is important to note that in the example shown here, a distinct threshold
between non-propagating and propagating NBs is apparent (Fig 3D-left). To quantify this thresh-
old-like behavior, we calculated the bi-modality measure [37] on the distribution of normalized
NB intensities projected on the identity line (S4A Fig) for the cluster pair in Fig 3D-left (S4B Fig),
and for all cluster pairs (S4C Fig). Most clusters showed values larger than (0.555) corresponding
to a tendency to bi-modality over uni-modality (S4C Fig). We verified these results by performing
visual inspection of the distributions and determined that nearly half (48%) of the pairs showed a
clear intensity threshold in the propagation probability. However, taking into account also pairs
that did not show strong bi-modality, the general rule was that strong activations in the sending
cluster yielded strong responses in the receiving cluster and vice versa. This effect was quantified
by calculating the correlation between the normalized NB intensity of the receiving and sending
clusters for all NBs in 163 cluster pairs, from 26 cultures (Fig 3D-right). Two types of cluster net-
works were considered in the analysis: The first type is one dimensional chain of clusters and the
second involves a cluster chain with one of the clusters connected to a larger network (of many
connected clusters). Within these networks, only pairs connected exclusively through a neurite
bundle (and not through any other pathway) were analyzed. The data in Fig 3D-right exhibits a
clear preference towards positive values, further suggesting that information about firing intensity
is utilized by neuronal networks to control propagation between connected sub-populations. No
significant correlation was observed between NB intensity correlation strength and the normal-
ized difference in cluster cell numbers (C = 0.084, PV = 0.28).
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Fig 3. Conditional propagation between clusters. (A) A Bright field image of a cluster pair (500 pm
distance between electrode centers). (B) Activity intensity traces recorded from the two clusters in (A) (color
code as in Fig 2). (C) 300 consecutive smoothed activity intensity traces recorded during NBs, detected in
cluster 1 (left) and their responses as recorded from cluster 2 (right). NBs propagating from cluster2 to 1 are
not shown. Traces were rearranged according to increasing total NB activity intensity. High intensity NBs
propagated to the receiving cluster at much greater probability. (D-left) Color coded probability of the NB
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intensity in the receiving cluster as a function of the NB intensity in the sending cluster (calculated for 1634
consecutive NBs). (D-right) The correlation between the NB intensity in the receiving and sending clusters for
different cluster pairs. 163 pairs were included in the analysis. 15 pairs had a correlation with a P-Value (t-
test) higher than 0.005 and were excluded. (E-left) Delay distribution between the sending and receiving
clusters for the cluster pair in (A). The average delay is marked by a red line. (E-right) Distribution of the
average delays of 178 cluster pairs. The average delays were in the order of tens of milliseconds and
reached values as high as 200 ms.

doi:10.1371/journal.pcbi.1004883.g003

Sparse connectivity between sub-populations increases propagation
delays

We next sought to investigate how modularity affects propagation delays. Delays in our engi-
neered networks were evaluated by extracting the location of the peak in the cross-correlation
function of every pair and every NB (as previously described). Only NBs propagating from the
sending cluster to the receiving cluster were considered. The delay distribution across all NBs is
shown in Fig 3E-left. The average delay was several tens of milliseconds (red line in Fig 3E-left)
and the maximal value reached was 250 ms. With a distance between clusters of 500 pm, a
delay of 100 ms corresponds to a propagation speed of 5 um/ms. Long delays were also
observed in other cluster pairs, as shown by the distribution of average delays (Fig 3E-right).
We did not find a significant correlation (C = 0.060, PV = 0.43) between the average delay and

IN; =Ny |
2(N1+Ny)’

each cluster). Interestingly, a weak positive correlation was found between average delay and
the number of cells in the receiving cluster (C = 0.202, PV = 0.007)(S1C Fig), but not in the
sending cluster (C = 0.098, PV = 0.19), suggesting that the delay is associated with the network
recruitment time in the receiving cluster. Correspondingly, the average recruitment time for all
NBs in a cluster, measured as the time between NB onset and NB peak (see NB detection in
Materials and Methods), had similar time scales to the observed average delays (S3 Fig).

the normalized absolute difference in cell numbers (

N; being the number of cells in

Modularity supports asymmetric activity propagation

Fig 4A shows an example of 100 consecutive NBs recorded from a three cluster chain (only
NBs in which all three clusters were active are shown). Visual inspection clarified that most of
the time cluster 2 fired before cluster 3, indicating that propagation in cluster chains is asym-
metric. To examine the different propagation patterns and their abundance in this network, we
clustered them by calculating the similarity matrix between NBs using a dendrogram [38] (see
Materials and Methods) (Fig 4B). For clarity, only NBs in which at least two clusters were active
are presented. Interestingly, clear NB groups with high similarity are observed (marked by
solid line rectangles in Fig 4B). These different groups correspond to different propagation pat-
terns as indicated by the average NB profile within each group (Fig 4C). Propagation in this
modular network, although bi-directional, is rarely symmetric.

The non-uniformity of the similarity matrix within each rectangle represents NB pattern
variation within each group, as seen by examining the coefficient of variation of off-diagonal
terms within a group (0.21, 0.04, 0.21, 0.03 and 0.07 in groups 1 to 5 respectively). The higher
coefficient of variation in groups involving the activation of cluster 1 suggests that specific links
in the network are more variable than others. For example, groups 2A and 2B (see Fig 4C) are
characterized by the same propagation directions, but with a different average delay (between
clusters 1 and 2). The activation probability of different propagation patterns vary considerably
(P =0.137,0.673, 0.103, 0.005, 0.082 for groups 1 to 5 respectively). Such variability can be rep-
resented by the pattern entropy (E = —%,;Plog,P; = 1.006 for this example) as discussed in detail
in the next section.
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Fig 4. Asymmetry in modular networks. (A) Activity intensity of 100 consecutive NBs for each of the clusters in a three cluster chain. Inset: a schematic
drawing of the network under investigation. (B) Reordered similarity matrix (see Materials and Methods for details) between 1000 consecutive NBs in this
cluster chain. Only NBs in more than one cluster were considered. A clear separation of NB patterns into similarity groups is seen. (C) Average NB activity
patterns are marked by the solid line rectangles in (B). Pattern number 2 was divided into two groups (2a and 2b, dashed lines) to exemplify variability within a
group. (D) A schematic representation of the functional asymmetry calculation. Long-term asymmetry is calculated from the cross-correlations function as the
integral over its positive side subtracted from its negative side and divided by the sum of both. (E) Distribution of asymmetry values between pairs of clusters
(n=48) in which only one cluster (marked as c2 in the inset) is connected to additional clusters (marked as x in the inset). c2 is connected to the rest of the
network through one link (white bars), or more than one link (black bars). Negative asymmetry corresponds to activity propagation from c2 to c1. Inset:
Network schematics. (F) Activation delays as function of time between two specific coupled clusters. Delays were calculated from the location of the cross-
correlation function peak, for consecutive NBs during a ten-hour recording (only NBs activating both clusters were analyzed). The black line represents the
average delay in one-hour windows. Color coding represents the asymmetry for consecutive NBs.

doi:10.1371/journal.pcbi.1004883.9004

Clustering into propagation groups existed in all network examined (69 chains form 26 cul-
tures). However, this grouping was highly variable between networks both in terms of separabil-
ity between groups and the number of groups. Consequently, to reliably quantify asymmetry, we
needed a measure that reduces the complexity of patterns to simple asymmetric relations
between pairs. To do so, we used the cross-correlation function between connected clusters over
long recordings of eight hours (Fig 4D). We subtracted the integral over the positive side of the
cross-correlation function from its negative side and divided it by the total sum. We analyzed
only positive correlations between clusters, thus negative cross-correlation values were not
included in the integral. The resulting long-term asymmetry is a measure between -1 and 1 with
the sign determining the propagation direction and the value corresponding to the asymmetry
magnitude. For example, in Fig 4A-4C, propagation pattern 2 dominated the network's activity
(Fig 4B). This pattern represents events initiated in cluster #2 and propagated to the neighboring
clusters. Correspondingly, the asymmetry measure for cluster 1 and 2 is -0.21 and for cluster 2
and 3 is 0.31. Pooling over all cluster pairs (n = 89) we find that the average absolute asymmetry
was 0.26+0.21 (mean * standard deviation). Such asymmetry is in accordance with previous
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reports indicating that activity asymmetry exists between connected sub-populations, even if
they are very similar to each other [32]. We next examined if asymmetry is affected by the relative
differences in cell number between connected clusters. Although the differences between cell
numbers were not large (S1B Fig), we found a small positive correlation between the normalized
cell count and the asymmetry value (C = 0.331, PV = 0.001) (S1D Fig).

An interesting question that arises from these results is whether and how activity asymmetry
is affected by asymmetry in the cluster pair, and by the manner in which this cluster pair is con-
nected to the rest of the network. To address this question, we applied the asymmetry measure
to pairs of clusters in which only one of the clusters was connected to a larger clustered net-
work. Such pairs had a clear structural asymmetry. A schematic drawing of such pairs is shown
in the inset of Fig 4E, where c1 and c2 are the two clusters and x denotes a group of connected
clusters. We differentiated between two connectivity patterns according to the number of links
(connections to other clusters), n, cluster c2 had. The asymmetry statistics forn =1 and n>1
are shown in white bars and black bars respectively in Fig 4E. In most networks, the long-term
activity asymmetry was negative (Fig 4E), corresponding to activity propagation from the clus-
ter group towards the chain's end (x towards c1 in the schematic drawing in Fig 4E). This result
suggests that the structural asymmetry of the embedding network contributed to the functional
asymmetry of the cluster pair. Thus, if a cluster in a pair is connected to other clusters, it will
more likely drive activity in this pair. Interestingly, the average asymmetry of pairs connected
through more than one link was more negative than that of pairs connected through one link
(-0.26 and -0.10 respectively, PV = 0.07, t-test), suggesting that the drive is stronger when the
structural asymmetry is stronger. We note that asymmetry was calculated on long time series
to represent a gross averaged estimation in a valid manner. When inspecting the delay of the
cross-correlation function (or the asymmetry) on a single cluster pair, we find that asymmetry
is modulated in the network (Fig 4F). This is observed in the ratio between propagation to one
and to the opposite direction calculated on one hour windows (black line in Fig 4F). Despite
this dynamic change, the average values of asymmetry were mostly negative (Fig 4E).

Control over conditional propagation by disinhibition

We further examined whether we can gate activity propagation by global disinhibition. Specifi-
cally, whether we can dramatically increase the probability that NB propagates between clusters
by applying inhibitory synaptic blockers (Fig 5). Under control conditions (normal growth
media), cluster chains exhibited a large spectrum of activation profiles from confined bursts (in
single clusters) to network-wide activation (Fig 5A). Upon disinhibition, using a GABA 4 (y-
aminobutyric acid) channel antagonist (Bicuculline, 30uM), the conditional propagation was
replaced by network-wide synchrony (Fig 5B). Careful examination of the propagation pat-
terns within the NBs under disinhibition revealed that not only did the network synchronize to
operate as a single unit (Fig 5B), but also the synchrony was characterized by highly ordered
propagation patterns (Fig 5D). To monitor these patterns over consecutive NBs, we repre-
sented each NB as a vector (as shown in Fig 5C and 5D-right) and plotted it, for consecutive
NBs, under control conditions (Fig 5E) and under disinhibition (Fig 5F). In Fig 5E and 5F, blue
dots correspond to cluster activation during an NB, and the arrows correspond to the activity
propagation direction (extracted from the peak lag of the cross correlation function). Under
disinhibition, the network’s activity collapsed to a stereotypic pattern in which the entire net-
work was fully activated and cluster number 5 functioned as an activation focus. Under disinhi-
bition, 95% of the NBs (N, = 4097) were initiated by cluster 5, in contrast to only 4% (Nsta
=7206) under control conditions. Such a repeated propagation pattern is in contrast with the
much wider repertoire observed under control conditions (Fig 5E).
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Fig 5. Gating by disinhibition in modular networks. (A, B) Activity intensity raster recorded from a chain of
five clusters during control and disinhibition conditions respectively. (C, D) A zoom into (blue rectangles) one
of the NBs in (A) and (B) respectively. Each pattern is represented by a schematic drawing, where a blue dot
corresponds to the activation of the cluster during the NB, and the arrow corresponds to the propagation
direction (red-upwards, black-downwards, green-simultaneous activation). (E, F) A schematic representation
of 50 consecutive NB patterns under control and disinhibition conditions respectively. (G) A pie plot of the
probability of occurrence of different NB patterns (4097 consecutive NBs) during control (left) and
disinhibition (right). The entropy is calculated for each of the pie plots (the same number of consecutive NBs
was analyzed under control and Bicuculline conditions). (H) Average normalized entropy in control (Ctr)
versus disinhibition (Bic) conditions. Error bars represent the standard errors (n = 6).

doi:10.1371/journal.pcbi.1004883.9005
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The variability in NB patterns was further quantified over long-term recordings by defining
the NB pattern entropy. Each NB was reduced to a binary series of zeros and ones correspond-
ing to the activation of different clusters (blue dots in Fig 5E and 5F). The occurrence probabil-
ity for every binary pattern, P;, was calculated and presented as a pie chart for control and
disinhibition conditions (Fig 5G). The entropy, E, was calculated from these probabilities as
E = -%;Pilog,P;. Under control conditions, a wide NB pattern distribution and relatively high
entropy value (E = 2.32) were observed. However, after disinhibition, the number of patterns
dramatically decreased, corresponding to a lower entropy (E = 0.94). For entropy calculations,
we used only long enough chains (three or more active clusters) that can support a high enough
variability in NB patterns. Since every chain was of a different length and consequently had dif-
ferent potential entropy values, the entropy was normalized to the maximal possible entropy in
the chain, E,,,,, = log>(2" — 1) (the term -1 was added to subtract the case in which no cluster
was activated). Five out of six chains exhibited a decrease in normalized entropy following dis-
inhibition (Fig 5H). This transition from a wide to a narrow pattern distribution following dis-
inhibition suggests that under control conditions, networks maintain a certain relation
between inhibition and excitation. This relation, in combination with the modular architecture,
allowed each cluster to be activated autonomously while still being connected to other clusters,
and thus also having the potential to activate them. When disinhibited, the network lost its
diversity and collapsed into stereotypic global activation. Disinhibition (implemented here
using Bicuculline) served as a gating mechanism, altering signal propagation.

Functional properties of modularity are maintained in large networks of
connected clusters

As illustrated above, modularity introduces new features to the activity repertoire of uniform
networks. To explore whether these features are preserved in networks of many connected
clusters, we examined large, two-dimensional networks of connected clusters (Fig 1C) and con-
trasted their activity with that of large uniform networks (Fig 1A). The most conspicuous dif-
ference appeared to be the degree of synchrony. While uniform networks mostly showed
network-wide activation that spanned a large fraction of the cell population (Fig 6A-bottom;
S5 Fig), clustered networks exhibited NBs of different sizes that propagated to different dis-
tances (Fig 6A-top; S5 Fig). This diversity is the direct result of the conditional propagation
inherent in the modular bridge between clusters. In large modular networks, the camulative
number of such bridges between any two clusters increased with the distance between them.
We next examined whether co-activation of clusters depended on distance. This effect was
quantified by measuring the average Pearson correlation between the activity of cluster pairs
for long time periods (>8 hours). A decrease in correlation with distance was evident (Fig 6C-
top), highlighting the locality of the activation in large modular networks. Neighboring clusters
had a higher probability to fire in synchrony. The tendency for local activation was found to
coexist with epochs of global activation (Fig 6A and 6B-top) exemplifying the network's poten-
tial for activation diversity.

Large clustered networks were also characterized by long delays. Delays between cluster
pairs were calculated from the peak of the smoothed cross-correlation function and averaged
over all NBs (see Fig 3). These delays accumulated during burst propagation, and in many
cases the last cluster to be activated during an NB began its firing long after the first cluster
already ceased bursting (Fig 6B-top). Delays ranged from tens to hundreds of milliseconds
(corresponding to an average propagation speed of 6.5+0.2 um/ms, mean+SE), and increased
with the number of bridges between clusters (Fig 6C-middle). Time delays partially affected
the decrease in correlation with distance (Fig 6C-top). Conditional propagation was also
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Fig 6. Activity in large modular networks. (A) Activity intensity raster plots recorded from a clustered network (top) and a uniform network (bottom).
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and the average profile was calculated for all electrode pairs within the bin. Right column is an average over the average profiles of all networks (15 clustered
networks and eight uniform networks). Shaded areas correspond to standard errors.

doi:10.1371/journal.pcbi.1004883.9g006

quantified by calculating the transfer probability. Namely, given the occurrence of an NB in
one cluster, the probability that an NB occurred within one second in the other cluster. This
probability was also found to decrease with distance (Fig 6C-bottom).
Finally, we note that conditional propagation, long delays and high diversity in the network
degree of activation and synchrony are much less pronounced in the activity repertoire of large
uniform networks. Uniform networks are characterized by large scale network events (S5 Fig).
Once a network event is initiated, it quickly propagates (with an average propagation speed of
22.1£1.2 um/ms, mean+SE) and recruits most of the network (Fig 6A, 6B-bottom; S5 Fig). Uni-
form topology appears to lead to uniform activation which does not vary much with distance
(Fig 6C). Previous studies showed that uniform networks support a mode of partial network
activation called aborted bursts, during which only a subset of the population is active [39].
Owing to these aborted bursts (which are also observed in our data) the average transfer proba-
bility in uniform networks is well below unity (Fig 6C-bottom). However, in uniform networks
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such aborted bursts are not confined to a local area in the network and are always activated in
the same sub-population of neurons [39]. Consequently, neither the transfer probability nor
the delays in uniform networks depend dramatically on distance (Fig 6C-middle).

Disinhibition in large networks collapses activity to network-wide
stereotypic patterns

As shown above, disinhibition drastically increased propagation between the modular units and
induced global network synchronization with defined propagation patterns. In large clustered
networks, clusters are connected through multiple pathways which may lead to different disinhi-
bition effects. To test the propagation patterns in large clustered networks before and after disin-
hibition, we examined the cross-correlations function between clusters over single NBs. Since
these are two-dimensional networks (unlike the one-dimensional cluster chains discussed
above), we extended our propagation analysis by calculating the propagation vector for every
cluster. We first identified NB windows in the network (see Materials and Methods), and calcu-
lated the cross-correlations of smoothed (convolution with a Gaussian, o = 50ms) activity traces
between every cluster and all of its neighbors, corresponding to the fact that long range connec-
tions between the clusters were rare due to the grid-like organization of the clusters. Clusters
with very weak activity during the NBs (active for less than 10 ms) were not analyzed and only
NBs with at least five active clusters were considered. The cross-correlation between every cluster
pair was represented by a vector with a magnitude corresponding to the location of the peak of
the cross-correlation function, and a direction determined by the physical direction between the
clusters (Fig 7A—gray arrows). The propagation vector was calculated by averaging the cross-
correlation vectors over all active clusters during each NB (Fig 7A—blue arrow). The angle of
this vector with the positive x-axis was marked by 0 (Fig 7A). The propagation vector for each
cluster during 20 consecutive NBs is plotted in the physical space of the network in Fig 7B (mag-
nitude was set to be the same for all clusters). In agreement with the high diversity of activation
patterns in clustered networks, different NBs propagated to different directions. This was also
evident by examining a larger pool of NBs (Fig 7D-left). Here the angle of the propagation vector,
X, was presented in color code for every cluster during consecutive NBs.

As in the case of the cluster chains, following disinhibition (application of 30 uM Bicucul-
line), the high NB pattern diversity was replaced by stereotypic patterns. This shift (or gating)
in activation profile is represented by the narrow distribution of propagation directions for dif-
ferent clusters over consecutive NBs (Fig 7C and 7D-right). Furthermore, the propagation pat-
terns revealed the emergence of a clear activity initiation focus, similar to the case of the cluster
chains discussed above (Fig 5E and 5F). Under disinhibition, 42% of NBs (N = 366) were
initiated in the lower left cluster (marked by a white dot in Fig 7C), in contrast to only 0.4%
(Ntotal = 2345) under control conditions. The propagation variability of the network was quan-
tified by calculating the standard deviation of X for all NBs in the recording, followed by aver-
aging over all clusters. Under control conditions the propagation variability was 1.367 radians,
and after disinhibition it decreased to 0.775 radians. The mean propagation variability for dif-
ferent networks is presented in Fig 7E-left. In all analyzed networks (six out of six) a similar
reduction in angle distribution was observed. Reduced variability was also observed in the
number of participating clusters during NBs. While in control conditions, the NB sizes varied
considerably from activation of single clusters to activation of the whole network (Fig 7F-
right); after disinhibition, most of the NBs were synchronized over the entire network (Fig 7G-
right). The variability in cluster activation was quantified by calculating the entropy of cluster
activation patterns, as previously described for cluster chains. All analyzed networks (six out of
six) showed a decrease in activation entropy following disinhibition (7E-right).
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doi:10.1371/journal.pcbi.1004883.9007

In Fig 7F and 7G, we explored the number of participating clusters in NBs with different
intensities. We plotted the number of active clusters as a function of NB intensity for control
(Fig 7F-left) and disinhibition (Fig 7G-left) conditions. In these plots, the intensity of each NB
was normalized to the number of active clusters during this NB. Both in control and disinhibi-
tion conditions, the total normalized network intensity increased with the number of partici-
pating clusters. Thus, the extent of global activation (the number of clusters recruited during
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the NB) affected the local degree of activation (NB intensity in single clusters). However, under
disinhibition most NBs recruited the entire network, while in control conditions, different NBs
recruited a different number of clusters (Fig 7F and 7G-left). This is further illustrated by plot-
ting the distribution of the number of recruited clusters over all NBs in control (Fig 7F-right)
and disinhibition (Fig 7G-right) conditions.

Gating by disinhibition requires modular topology

The results described above demonstrate that modular topology support gating by disinhibition.
To better understand this effect, we developed a computational model based on two coupled clus-
ters in which different network parameters could be systematically modified. As cortical cultured
networks exhibit complex organization of dynamical patterns, we adopted a previously published
model that reproduced the main features of these patterns [32,40]. Neurons (N = 50 in each clus-
ter) were modeled as Morris-Lecar elements with modified Tsodyks-Markram synapses and syn-
aptic noise (see Materials and Methods). One out of every five neurons is an inhibitory neuron.
For isolated clusters, the connectivity probability within clusters (intra-connectivity) was 0.25
and 0.2 for clusters 1 and 2 respectively, and the connectivity between clusters (inter-cluster con-
nectivity) was initially set to zero. Intra-cluster connections were then replaced with inter-cluster
connections with a probability A which is defined as the modularity of the system. At the limit of
A = 0.5 the two clusters converge to a large uniform network. The model parameters (see Materi-
als and Methods) were chosen to fit experimental data.

When the inter-connectivity was set to zero (isolated clusters), expectedly, each cluster
exhibited short epochs of network bursts that were separated by sporadic single neuron activa-
tion, similar to activity patterns of isolated clusters in culture [29]. For slightly larger inter-clus-
ter connectivity (A = 0.02), some NBs successfully recruited the connected cluster, while others
failed to elicit an NB in the connected cluster (Fig 8A). To quantify this property, we calculated
the transfer probability for different modularity values. To do so, we detected NBs in the two
clusters. An NB was considered as transmitted if following the activation of cluster 1, an NB
peak was detected in cluster 2 within a time frame of 200 ms (see Materials and Methods).
Since both clusters were spontaneously active, the transfer probability was non-zero even if the
clusters were disconnected (A = 0). To compensate for this, the number of “transferred” NBs at
A = 0 was subtracted from the measured number of transferred NBs and the total number of
fired NBs before calculating the transfer probability.

We further examined how the transfer probability depends on the strength of inhibitory
synapses [41]. For low inhibition levels, the transfer probability (Fig 8B) was highly dependent
on the inter-cluster connectivity and changed between 0 and 1 (full transmission), indicating
that modularity directly controls transmission probability. However, this modulation occurred
over a narrow A range and was insensitive to disinhibition (eliminating inhibitory synapses
analogous to globally applying Bicuculline to the in vitro network) (Fig 8B). Increasing the
decay time constant for inhibitory synapses (14), or the inhibitory synaptic strength (A) two-
fold, increased both the transition range and the sensitivity to inhibition block (Fig 8C). This
suggests that various mechanisms that increase inhibition within the time scale of an NB, such
as selective increase in synaptic strength, or neuromodulation of synaptic decay dynamics, can
support gating by disinhibition.

We next tried to identify other putative mechanisms which can increase disinhibitory effects
in modular networks by focusing on the properties of the bridge connecting the two clusters
[4]. We set the inter-cluster connection probability between pre-synaptic excitatory and post-
synaptic inhibitory neurons to be as high as the excitatory to excitatory probability. This dra-
matically increased the range over which transmission was modulated (Fig 8D). Furthermore,
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doi:10.1371/journal.pcbi.1004883.g008

following disinhibition, the transfer probability dramatically increased (Fig 8D—red curve),
opening the gate between the two clusters. Thus, under these settings, our model captured the
conditional propagation between sub-populations in a modular network and the gating of this
conditional propagation by disinhibition.

An alternative to increasing inhibition strength is targeting inhibition, for example, by selec-
tively directing inhibition to excitatory neurons. The existence of such targeting was verified
both in the cortex and other brain regions [42,43]. Specifically, we examined whether it is pos-
sible to control transmission by selectively directing the output of inhibitory neurons, which
receive inter-cluster input, to excitatory neurons (see detailed connectivity schemes in Materi-
als and Methods). Indeed, doing so increased the control over transmission to almost the same
extent as when increasing the feed-forward inhibition (Fig 8E). Interestingly, the two mecha-
nisms described above were largely insensitive to the elimination of inhibitory connection
through the bridge (Fig 8D and 8E-gray line), congruous with the notion of local inhibition.

Similar to the in vitro modular networks described above, the propagation of activity
between connected sub-populations in the model was characterized by long delays (calcu-
lated as the time lag between the locations of NB peaks in both clusters, see Materials and
Methods). Delays of several tens of milliseconds decreased with the connectivity between
clusters (Fig 8F—blue curve). These delays were independent of the strength of inhibitory
drive or whether it was removed altogether, as in the case under inhibitory block, suggesting
that they are a consequence of the modular organization (see Discussion).

Finally, we examined whether information about the firing rate is transmitted through the
bridge between the two sub-populations, as in our in vitro experiments. We analyzed the corre-
lations between the total firing rates in the sending cluster as a function of the firing rate in the
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receiving cluster (similar to Fig 3D). We found that the correlation increases as a function of
modularity (Fig 8G) and begins to saturate for A = 0.1.

Discussion

In this study, we systematically examined, experimentally and theoretically, the effect of net-
work modularity on activity transmission between neuronal assemblies. A clear hallmark of
the modular networks we studied is their capacity to support long delays in the order of 100
milliseconds (corresponding to a 5 um/ms velocity between connected clusters) (Figs 3E and
6C-middle). Since axonal propagation speeds in culture are fast (>200 um/ms, [44]), the
observed delays are likely to be associated with the time it takes the receiving cluster to generate
a network response due to multiple synaptic delays (recruitment time) (S3 Fig; for a more elab-
orate discussion see [39]). These delays are shorter on average in large networks of connected
clusters, presumably due to the increased number of pathways between any two clusters, but
are still much longer than in uniform networks.

Why is the capacity to support long delays useful? Foremost, long delays give rise to time
scale separation between the activities of different modules and are a means to dissociate the
intra-module from the inter-module processing [21]. Interestingly, our networks (Fig 3E-right)
showed high variability in the average delays between different networks. This variability may
stem from network architecture variability, and implies that modularity has the potential to
support variable delays. Indeed, our model shows that delays can be controlled by modifying
the coupling between sub-populations (Fig 8F). In a previous report (performed under the
same experimental conditions as here) we showed that increasing the coupling in modular net-
works resulted in shorter delays [45]. We also observed variability in delays within specific net-
works over time (Fig 3E-left), implying that delays may be dynamically regulated to control
transmission, for example by short- term plasticity [46].

An additional property of modular circuits is their activation asymmetry. Asymmetry may
be important for controlling transmission directionality. In cluster chains, asymmetry was
manifested by propagation patterns which were more probable than others (Fig 4A-4C). It was
previously reported that coupled networks of similar sizes exhibit inherent asymmetry, and
that this asymmetry is associated with the structural asymmetry of the connecting bridge [32].
Accordingly, a small subset of neurons at the bridge controls the propagation between net-
works. Our results support these previous findings, but suggest that functional asymmetry is
also affected by the manner by which the coupled network is embedded within a larger net-
work. When a network of coupled clusters was connected to a larger network, activity mostly
propagated from the cluster connecting the large network to its neighbor (Fig 4E). Further-
more, higher asymmetry in the embedding network resulted in higher asymmetry between
coupled clusters (Fig 4E). Interestingly, inhibition played a major role in determining asymme-
try. Blocking the inhibition drastically affected the propagation direction between connected
clusters (Fig 5E vs. 5F), suggesting that transmission directionality can be modulated to a large
extent by reducing inhibition. However, further experiments, in which the cluster composition
(e.g. the number of excitatory vs. inhibitory neurons) is monitored, are required to understand
the morphological basis of asymmetry and transmission.

Neural networks have to maintain a fine balance between segregated activation (where
activity is restricted to a specific sub-population) and integrated activation (where activity
spreads to connected sub-populations) [9,47]. In the brain, functional segregation is associated
with the structural modularity of the circuit [10], and the balance between functional segrega-
tion and integration explains the high functional complexity in the network [19,22,48,49]. We
have shown that a similar fundamental property exists in small modular circuits. Namely,
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networks support a wide variety of activations from activity epochs which are confined to one
sub-population to large-scale activation of the entire network. We observed such features both
in one-dimensional cluster chains (Fig 5A and 5E), and in two-dimensional clustered networks
(Figs 6A and 6C-top and 7B and 7F), but to a much lesser extent in uniform networks (Fig 6A,
C-bottom). We found that both the number and intensity of activated clusters (Figs 5E, 5G, 7E
and 7F), as well as the propagation direction (Figs 5B, 5D, 7B and 7E), were highly variable
between consecutive NBs. In addition, due to long delays, this spatial activation variability
resulted in temporal variability of NB durations. Interestingly, both temporal and spatial vari-
ability were previously reported for small-scale circuits in cortical slices. Organotypic slices
show avalanche-like patterns typified by a wide distribution (heavy tail) of event sizes and
durations [50]. The hypothesis that this diversity reflects the transient activation of different
cell assemblies is supported by our results.

We suggest that the activation diversity in our networks is the outcome of the conditional
propagation between sparsely coupled clusters. In small modular networks, activation of one
sub-population does not necessarily lead to the activation of the other (Fig 3B and 3C). Our
model supports this idea and illustrates how conditional propagation can be controlled by
changing the degree or architecture of coupling between sub-populations (Fig 8C-8E). We
note that we focus here only on a specific dimension of activation diversity. Uniform networks
exhibit rich dynamical behavior along many spatial and temporal degrees of freedom
[38,39,51,52]. However, a fundamental property of their activity is network synchrony on a
time scale of ~100 ms [39]. Each of our clusters exhibits similar activity profiles to uniform net-
works [29], but the weak connections between clusters allows to spatially and temporally
decouple their activity on this time scale.

We further suggest that the fact that conditional propagation spontaneously emerges in
modular networks (in contrast to uniform networks) is associated with the networks’ self-regu-
lation. We previously showed that isolated clusters of different sizes, and different connectivity,
sustain moderate activity levels [29]. This corresponds to well-documented reports of struc-
tural and functional self-regulation of excitability in neurons [41,53-55]. Thus, neurons
increase or reduce their propensity to fire when activity levels are low or high respectively.
However, since in modular networks the fraction of connections between sub-populations is
lower than within sub-populations, moderate activity in a cluster may still be below the self-
regulated activation limit in the connected cluster (assuming that all sub-populations employ
similar self-regulation mechanisms), resulting in the threshold-like behavior we observed (Fig
3C and 3D). Thus, one possible mechanism for transient increase in transmission is by increas-
ing firing rates in the sending cluster, which may be one of the components contributing to
transmission under disinhibition. Conversely, the post-synaptic currents to neurons in the
receiving cluster at the time of the burst are another factor determining transmission. In princi-
ple, such currents can be modulated by neuromodulators or by a third cluster impinging on
the receiving cluster. The latter is expected to be more prominent as the number of connections
in the network increase. Indeed, while in one-dimensional chains, activity slightly decayed as it
propagated between connected pairs, contributing to propagation failure, in two-dimensional
clustered networks, a considerable fraction of events still managed to propagate to a large frac-
tion of the network (S5A Fig). This may suggest that transmission in these two-dimensional
networks is enhanced by the fact that each cluster is connected to several clusters, thus increas-
ing the probability that their simultaneous activation recruits the receiving cluster. Further
studies of single clusters receiving convergent input from two or more controlled clusters are
required to explore activity integration in such networks.

By design, our modular networks were spatially regular (Fig 1C). Such a design minimized
the variability in connections between clusters and variability in cluster sizes (S1B Fig), since
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self-organization is constrained by the regular pattern. This allowed us to focus on effects of
modularity while partially avoiding the influences of other topological properties. For example,
it was shown that if clusters freely organize without spatial constraints, cultures drive them-
selves towards assortative topologies with a “rich-club” core [56]. Such an organization equips
modular networks with additional functional features, such as higher resilience to network
damage compared to uniform networks. We previously reported [45] that modular networks
with strong connectivity between modules do not give rise to long delays and conditional prop-
agation. In addition, uniform networks in cultures are rarely uniform [51,52], and the unifor-
mity probably depends on the level of granularity at which connectivity is examined. For this
reason, we focus here on the extreme case of high intra-cluster connectivity with weak inter-
cluster connectivity. Only at this level do we see a marked transition in the network’s activity
profiles.

We showed that disinhibiting networks allows us to control transmission through modular
circuits (Figs 5 and 7). Disinhibiting the network replaced the conditional propagation with
reliable transmission (Figs 5A-5E, 7F and 7G). Not only was the diversity in the number of
activated clusters removed (Figs 5E-5H and 7E-7G), but also the diversity in propagation
directions (Figs 5E and 5F, 7D and 7E). These results were reproduced by our model. Blocking
inhibitory synapses increased transmission, effectively “opening the gate” between connected
modules (Fig 8D and 8E). Interestingly, this effect was weaker when the inter-cluster connec-
tivity scheme was similar to the intra-cluster scheme (Fig 8C), suggesting that either stronger
feed-forward (Fig 8D) or targeted (Fig 8E) inhibition may be instrumental in controlling
propagation.

In addition to increased transmission, blocking inhibition in modular networks led to the
emergence of an activation focus, which was absent before disinhibition (Figs 5F and 7B). The
global disinhibition we induced in our examinations is used to illustrate the capacity of disinhi-
bition to gate the system between different propagation states. In vivo, the inhibition-excitation
ratio can be controlled locally, for example by neuro-modulators [57]. Further studies in which
the degree of inhibition is manipulated in selective clusters (for example using Channelrhodop-
sin and Halorhodopsin) will determine the degree to which such gating can be controlled. Our
global disinhibition was used to establish a proof of principle and is more akin to pathological
conditions, as in the case of epilepsy where inhibition control is suspected to fail in large neuro-
nal populations [58]. Indeed, under such conditions, the emergence of a focus (Figs 5F and
7B), and the repeated activation waves (Fig 5B), are clear hallmarks [59]. Interestingly, in addi-
tion to inhibition deficiency [60], lack of sparse functional connectivity between brain modules
was also associated with epilepsy [61].

We note that in previous theoretical studies, gating was investigated in the context of bal-
anced networks showing asynchronous irregular patterns [3,5]. In contrast, our study targets a
different regime of population activity patterns. Primarily, our neurons are not constantly
driven as the aforementioned model neurons. In such networks, excitatory-inhibitory balance
does not result in persistent irregular patterns, but in synchronized bursting behavior. Never-
theless, excitatory-inhibitory balance does exist in these networks and is vital to the networks’
functionality [41]. Consequently, our model system is relevant for investigating gating during
increased activity transients as occurring during synchronized and/or bursting activity. Such
transient increase in excitability may have a fundamental role in transferring information
between different cell populations [17,62,63].

To conclude, it is widely accepted that structure and function are closely related in neuronal
circuits. However, the contribution of circuit topology to circuit function often remains hidden
due to the difficulty in isolating small circuits in intact tissue. By engineering modular circuits
in vitro, we explored the functional consequences of modularity and demonstrated that
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modular topology and disinhibition are instrumental in gating activity, directly demonstrating
how structure can shape function in small neuronal circuits.

Materials and Methods
Cell cultures

The entire neo-cortex of (E18-19) Sprague Dawley rat embryos of either sex were removed,
chemically digested and mechanically dissociated by trituration, as detailed in a previous publi-
cation [29]. Dissociated cells were suspended in a growth medium and plated onto patterned
substrates at a density of 700 cells/mm”. To promote the long-term cell survivability, a “feeder”
colony of cells was added to the culture chamber [64]. The surrounding feeder culture did not
directly contact the patterned culture. The mitotic inhibitor, FuDr (80uM FuDr, Sigma, Cat.
No. F0503 and 240pM Uridine, Sigma, Cat. No. U3303) was added after four days in culture.
Cultures were maintained at 37°C with 5% CO, and 95% humidity. The growth medium was
partially replaced every three to four days. The procedure was done in accordance with the
NIH standards for care, and use of laboratory animals and was approved by the Tel Aviv Uni-
versity Animal Care and Use Committee. Overall 69 cluster chains (from 26 cultures), 15 large
clustered networks, and eight uniform networks were tested in this study.

Electrophysiology

Extra-cellular recordings were conducted using a low noise pre-amplifier board (MEA1060-BC
amplifier, gain x1,100 with a band-pass filter of 10 Hz to 3 kHz, by Multi Channel Systems,
MCS, Reutlingen, Germany). Signals were sampled at 10 kHz and stored on a personal com-
puter equipped with a 60 channel, 12-bits data acquisition board (MC_Card, MCS GmbH),
and an MC_Rack data acquisition software (MCS GmbH). An additional 200 Hz high pass fil-
ter (2" order Butterworth) was applied to the data stream by the software. Recordings were
performed 12 to 28 days in vitro.

Network patterning

The patterning method was adapted from a previous publication with slight modifications
[27]. Briefly, PDL (Sigma, Cat. No. p7889) islands on top of commercial MEAs (MCS GmbH)
were prepared with a soft lithography process using polydimethylsiloxane (PDMS) stencils. An
SU8-2075 (MicroChem Corp) mold with approximately 150 pm thickness was casted onto a
patterned silicon wafer. The pattern consisted of a rectangular grid (6 x 10) of circles with
diameters ranging between 80 and 200 um with 500 pm spacing. The PDMS stencil was pre-
pared by spin coating the wafer with PDMS. After detaching the PDMS substrate from the
mold, the stencil was placed on commercial MEAs and aligned with the electrode locations.
The PDL solution was applied to the PDMS stencil and the PDL was dried on a hot plate at
37°C for half an hour. The PDMS stencil was removed before cell plating. The probability of
inter-cluster connections depended on island diameter: Larger islands resulted in networks
with a higher degree of connectivity. The network's self-organization lasted up to ten days in
culture, after which the patterns became stable.

Activity representation

To quantify network level activity, we calculated the activity intensity (AI) of each cluster:

M
A, A>0 v
A[:{ A—M—NT

0, A<0 M
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where V is the voltage waveform, M is the number of samples in each activity intensity bin, and
NT is the activity intensity noise threshold. The noise threshold is added to remove the contri-
bution of noise to the Al value and was calculated as follows: The unbiased kurtosis (measuring
Gaussianity) of the voltage trace is calculated in time bins of 20 ms. The kurtosis of a univariate
Gaussian distribution is 3. Active bins were characterized by super-Gaussian distributions;
therefore bins with kurtosis values higher than 3.1 were rejected. The waveforms of the rest of
the bins were used to estimate the average absolute value of the noise voltage, which is the
noise activity intensity threshold, NT. Once NT is obtained, Al is calculated according to the
equation for AI (above). We have previously shown that the activity intensity measure can
serve as a good estimate for changes in firing rate of superimposed spikes [29].

NB detection and parameter extraction

To detect NBs in single channels we used a previously described method [29]. Briefly, we first cal-
culated Al in bins of 2 ms. Next, we counted the number of active AI bins (having non-zero val-
ues) in moving windows of length W = 100 ms (steps of 10 ms). W = 100 was chosen because it
is long enough to achieve a smooth NBs profile (but not longer than a typical NB). In the model
W = 10 was long enough, since the large number of sampled neurons resulted in a smoother pro-
file to begin with. Single sporadic spikes, as well as short threshold crossings, may contaminate
NB profiles. As the rate of these events is well below 10Hz, we eliminated them by zeroing data
points below a threshold value of T (T = 10). For the model, this value was chosen as T = 5 since
the activity is not contaminated by noise. To ensure that the activity near NB edges was included,
a second convolution with the same kernel, followed by thresholding with a value of 1, was per-
formed. In the resulting time series, NBs are represented by a series of consecutive positive values.
Finally, to ensure that short transient decreases did not result in a separation of NBs to two
events, NBs occurring less than G milliseconds apart (end of previous to beginning of next) were
merged into one NB (G was set to 100 ms for single clusters in the experimental data and 50 ms
for the model in which response variability was lower). To increase the accuracy of the NB start
time, end time and peak time detection, the AI function was extracted during the time windows
of the previously calculated NB occurrences. The beginning and end of NBs were taken as the
first non-zero value from left and right respectively. The peak of the NB is determined by
smoothing the Al (using a convolution with a Gaussian, o = 50 ms), and extracting the time of
the maxima. For identifying NBs globally in the whole network, instead of in single channels,
events were counted in all channels instead of only in one, and G was set to 1 s (in accordance
with the large delays in clustered networks). In addition, channels with very weak activity during
each NB (active for less than 10 ms) were not considered. To extract NBs in the computational
model, the spike timings of all neurons were counted instead of activity events. The results of NB
detection and parameter extraction were verified by manual inspection for all clusters.

NB similarity matrix

Detection of correlations between bursts was performed using a hierarchical clustering algo-
rithm [38]. Briefly, Al traces were extracted during a 1000 ms window surrounding the
detected NB peaks and smoothed by convoluting with a Gaussian (o = 10 ms). The time invari-
ant correlation between the i and j™ NBs were calculated as follows: R; = max {(C;(1)),}
where Cj is the normalized cross-covariance between the Al trace during the i"™ and j™ NBs of
the n'™ cluster, and ¢ is the time index of the cross-covariance function. To identify groups of
similar bursts, R;; is reordered using the dendrogram hierarchical clustering algorithm. The

dendrogram is calculated on the Euclidian distance matrix, D;;, between the i and j™ rows in
R: D = S(Ry — Rjp)>.

ijp>
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Computational model

Simulated networks consisted of two clusters, each with 50 Morris-Lecar neurons (see neuron
model for details). Neurons were connected through modified Tsodyks-Markram synapses
(see synapse model for details). Connectivity was defined by the matrix a;;, where a;; = 1/0 cor-
responds to an existing/non-existing connection between the pre-synaptic terminal of neuron i
and the post-synaptic terminal of neuron j. One of every five neurons was randomly selected as
inhibitory. Each network was simulated for 300 s using an Euler integrator with a 0.1 ms time
step.

The modularity of the network was determined by the parameter A as follows. The connec-
tivity probability within cluster 1 (neurons 1 to 50) and cluster 2 (neurons 51 to 100) was ini-
tially set to 0.25 and 0.2 respectively, and the connectivity between clusters was set to 0. Next,
we randomly replaced intra-cluster connections with inter-cluster connections with probability
A. Thus, for A = 0 the network is composed of two isolated (disconnected) clusters, and for A =
0.5 the intra-cluster connectivity is equal to the inter-cluster connectivity, and the initial sepa-
ration to two clusters can no longer be observed.

We simulated three connectivity schemes, which differ by the number and distribution of
inhibitory (I) and excitatory (E) synapses: proportional inhibition, strong feed-forward inhibi-
tion, and direct targeting inhibition. We kept the E/I neuron ratio constant, although in the
experimental conditions some variability may occur. Such a choice is consistent with the self-
regulation of synaptic transmission which compensates changes in the network structure to
maintain E/I balance [41,65].

In general, the connectivity between two neurons can be one of the following: E—E, E—1,
I—E and I-1. These schemes were differentiated by (N,_.,, ._.,) which denotes the expected
value of the number of synapses from cluster v to w, where x and y stand for the type of the pre
and post-synaptic neuron type (E or I). For example, N, .1 g_.;is the number of E — I synapses
from cluster 2 to cluster 1.

1. Proportional inhibition—the distribution of inter-cluster connections is the same as for the
intra-cluster connections. Namely, (Ny_,, x—,) = 1i_A (Ny—wx—sy) for any combination of v

# Wx,).

2. Strong feed-forward inhibition-the number of E — I synapses between clusters is set to the
number of E — E synapses. Namely, (N, ..,z .1):= (N,_,,.gg), for any combination of v #
w. The rest of the synapses are calculated as in the proportional inhibition case.

3. Direct targeting inhibition-inhibitory neurons receiving inter-cluster inputs target only
excitatory neurons. Namely, for every inhibitory neuron having at least one excitatory input
from the other cluster, we replace all synapses to other inhibitory neurons in the same clus-
ter with synapses to randomly selected excitatory neurons from the same cluster.

For the above connectivity schemes, two conditions were used: inhibition block and local
inhibition. For inhibition block (analogues to application of Bicuculline), all inhibitory synap-
ses were disabled by setting A = 0 (see synapse model). For local inhibition, only inhibitory
inter-cluster connections were disabled (A = 0).

Neuron model

Neurons were modeled as Morris Lecar elements [66]:

CmV = Iext _gCaMSS(V - VCa) _gKW(V - VK) _gL<V - VL)
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V-V,

W = ¢(Wy; — W)cosh( 2v, )
V-V
M(V) = 0.5(1 + tanh o)
2
V-V,
W (V) = 0.5(1 + tanh )

4

where V is the membrane potential, I, is the externally applied current, W and M are the fraction of open K*
and Ca*? channels respectively, and C,,,$,V1,V2, V3, Vagugemgr are constants, adopted with slight modifica-
tions from Rinzel and Ermentrout [66] (see Table 1 for a full list). These parameters were selected to simulate
a class I neuron which can generate cellular-level [66] and network-level [40], bursting in accordance with the
activity of isolated clusters [29]. We also examined networks of leaky integrate and fire neurons. Although we
could qualitatively reproduce our results with these neurons, Morris-Lecar neurons gave a much better fit to

the experimental observations (for discussion see [40]). Neurons received both synaptic and noise input: I, =
L+ I,

Noise model

The noise, I,,, fed into every neuron, was selected from a Gaussian distribution (mean, y =

7.55[24] and standard deviation, ¢ = 4 [“4]) (independently identically distributed for each
neuron) for every simulation step. This choice was driven by the assumption that noise origi-
nated from spontaneous synaptic release of neurotransmitter [67]. Such noise could be mod-
eled as an Ornstein-Uhlenbeck process [68]. Considering that for single synapses, the time
between spontaneous releases is a Poisson process [69] and that the number of synapses onto a
neuron is large, the overall spontaneously evoked noise current can be approximated by a sin-
gle Gaussian variable (in accordance with the central limit theorem).

Synapse model

Synapses were modeled as modified Tsodyks-Markram elements [70]:

i z(—tan(1.2z — 1.2))

—uxd(t —t,p)
TTZC

Table 1. Neuron model parameters.

Parameter Excitatory Neuron Inhibitory Neuron
Jca [ﬁ} 1.0 1.0
9k [ 2 2
9. [=5] 0.5 0.5
VealmV] 100 100
Vi[mV] -70 -70
Vi [mV] -50 -50
V4[mV] -1 -1
Vo[mV] 15 15
V3[mV] 10 10
V4[mV] 14.5 14.5
Con [2] [ e

¢ 1/3 1/3

doi:10.1371/journal.pcbi.1004883.1001
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Table 2. Synapse model parameters.

Parameter
A[mV]

u [scalar]
Up [scalar]
TrecIMS]

T4 [MS]
Ttacit [MS]

doi:10.1371/journal.pcbi.1004883.t002

E->E Synapse E->I Synapse I->E Synapse I->1 Synapse
6.25 10 -10/20 -10/20
0.2 0.2 Dynamic Dynamic
- - 0.06 0.06
100 100 800 800
6 6 6/12 6/12
- - 1000 1000
j’ = 71 + uxé(t - tAP)
Ta
s z(—tan(1.2z — 1.2))

Ty Trec

where x, y and z are the fractions of synaptic resources in the recovered, active, and inactive
states of the synapse. 7, and 7, are time constants representing the recovery and decay of
active resources respectively (see Table 2 for a full list). t4p is the arrival time of the last action
potential to the pre-synaptic terminal. u is the fraction of resources activated upon action
potential arrival. In excitatory synapses, u was constant (u = Uy). In inhibitory synapses, u was
a dynamic variable enabling synaptic facilitation during bursts:
u=—"+U(1—u)d(t—t,)

Tfacil

We modified the x and z terms in the original Tsodyks-Markram model by adding a tangent
function to prevent tonic endless spiking. Such tonic spiking was observed when the network
fired in high rates and originated from the linearity between the recovery rate and the amount
of inactive resources. Our modification is in accordance with findings indicating that synapses
do not increase their recovery rate following depletion, but rather decrease it after a certain
level of depletion [71-73].

The synaptic input to a neuron, I, was calculated by summing over synaptic currents

from all connected neurons: I, (t) = ZAiyi(t)

syn

where A; is the synaptic strength. To reflect the non-uniformity of synaptic strengths, they
were selected from a Gaussian distribution (4 = A,,,, 0 = A,,0/2), Where A,,,,,, is the nominal
value of the synapse [70,74] (see Table 2 for a full list). To limit the distribution of strengths,
only values between 0.84,,,, < A < 1.24,,,, were considered (values were redrawn from the
distribution until a value within limits was drawn).

Supporting Information

S1 Fig. Cell number distributions in clusters. (A) A distribution of the estimated number of
cells for different clusters (see main text). (B) The ratio between the number of cells in the big-
ger cluster and the smaller cluster in cluster pairs. (C) The average delay between the sending
cluster and the receiving cluster (see Fig 3E) as a function of the number of cells in the receiving

cluster. (D) The asymmetry in cluster activity (see Fig 4D) as a function of the normalized dif-
2(N1—N2)
N1+N2 2>

receiving clusters respectively. In total, 88 cluster pairs were analyzed (corresponding to 176
data points in (C)). One cluster pair with one very large cluster (~1700 cells) was removed to
not bias the results.

(TTF)

ference in cell numbers: where N1 and N2 are the number of cells in the sending and
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S2 Fig. NBs represent synchronized multi-unit firing. (A) Bright field image of a cluster
grown on an high density MEA (30 um distance between electrode centers, 10 um electrode
diameter). (B) Voltage traces recorded from the cluster in (A) during a network burst (traces of
broken channels were removed). (C) Zoom into Voltage traces in (B) for a subset of ten elec-
trodes (red dots in (B)). The differences in the temporal structure of multi-unit activity suggest
that many neurons in the cluster are synchronously activated during this network event (simi-
lar variability between different electrodes was observed during 100 consecutive network events
recorded from this cluster and for two other clusters recorded with high-density MEAs).

(TTF)

$3 Fig. Recruitment time in clusters. (A) Normalized Al of 500 consecutive NBs from one
cluster aligned by the NB peak (see NB detection in Materials and Methods). (B) The distribu-
tion of the time to peak (peak times minus start times) for all NBs from the cluster in (A). (C)
The average Al over all NBs in (A). The red lines in (B) and (C) show the mean calculated
recruitment time. (D) A distribution of the mean recruitment time for the same population of
cluster pairs as in Fig 3.

(TIF)

S4 Fig. Bi-modality in cluster responses. (A) Normalized Al in the receiving cluster as a func-
tion of Al in the sending cluster for consecutive NB from the cluster pair analyzed in Fig 3D

(first 1000 NBs are shown). (B) The distribution of data points in (A) projected on the diagonal
(red line in (A)). The bi-modality of the distribution is quantified by the Bimodality coefficient

(BC = %, where myj is the skewness of the distribution, m, is the kurtosis and n is the
M3 33

number of samples used for estimation). (C) Distribution of BC over all the cluster pairs ana-

lyzed in Fig 3.

(TIF)

S5 Fig. Differences in NB sizes for uniform and clustered networks. (A) Distribution of the
normalized number of active electrodes during 1000 consecutive NBs from 15 clustered net-
works (different networks are color coded). (B) Distribution of the normalized bounding area
for the NBs in (A). The bounding area is defined as the minimal rectangular area that included
all active electrodes during an NB and represents the spatial spread of the NB. (C) and (D) are
the same as (A) and (B) respectively, but for eight uniform networks. In all plots, the measured
parameter was normalized to the maximal value in all NBs in each network to enable a com-
mon metric for all networks. The distribution for each network was calculated on this normal-
ized parameter (to give the same weight for every network) and divided by the number of
networks in the final stack histogram. The total height of the stack represents the population
average over all networks.

(TIF)
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