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Simple Summary: Li–Fraumeni Syndrome (LFS) is a rare tumor predisposition syndrome in which
the tumor suppressor TP53 gene is mutated in the germ cell population. LFS patients develop a broad
spectrum of cancers in their lifetime. The risk to develop these tumors is not decreased by any type
of treatment and if the analysis of the TP53 mutational status in the family members was not possible,
tumors are often diagnosed in already advanced stages. This review aims to report the evidence for
novel mechanisms of tumor onset related to germline TP53 mutations and possible treatments.

Abstract: Li–Fraumeni syndrome (LFS) is a rare familial tumor predisposition syndrome with
autosomal dominant inheritance, involving germline mutations of the TP53 tumor suppressor gene.
The most frequent tumors that arise in patients under the age of 45 are osteosarcomas, soft-tissue
sarcomas, breast tumors in young women, leukemias/lymphomas, brain tumors, and tumors of
the adrenal cortex. To date, no other gene mutations have been associated with LFS. The diagnosis
is usually confirmed by genetic testing for the identification of TP53 mutations; therefore, these
mutations are considered the biomarkers associated with the tumor spectrum of LFS. Here, we aim to
review novel molecular mechanisms involved in the oncogenic functions of mutant p53 in LFS and to
discuss recent new diagnostic and therapeutic approaches exploiting TP53 mutations as biomarkers
and druggable targets.

Keywords: Li–Fraumeni syndrome (LFS); TP53; biomarker; cancer predisposition; germline mutation

1. Introduction

Li–Fraumeni syndrome (LFS) was first described in 1969 by Frederick Pei Li and
Joseph Fraumeni Jr., who observed in some families a high frequency, even at a young
age, of some types of cancer [1]. To date, it is estimated that around one thousand families
from 172 different countries are affected worldwide [2]. LFS is a rare autosomal dominant
familial cancer syndrome characterized by the early onset of multiple tumors, particularly
soft-tissue sarcomas, osteosarcomas, breast tumors, brain tumors, adrenal cortical carcino-
mas, and leukemia [2,3]. In 1990, David Malkin identified a TP53 germline mutation closely
associated with LFS [4]. Subsequently, the germline mutation of the TP53 gene was identi-
fied in about 70% of LFS families [5,6]. Along with numerous studies linking some TP53
missense mutations as carriers of gain-of-function oncogenic activities (GOFs) in sporadic
(unfamiliar) kinds of cancer, genetic studies in LFS have suggested that inherited TP53
mutations may be responsible for the increased susceptibility to cancer [7–9]. Interestingly,
recent genome-wide studies have shown that TP53 germline mutation carriers have 80%

Cancers 2022, 14, 3664. https://doi.org/10.3390/cancers14153664 https://www.mdpi.com/journal/cancers

https://doi.org/10.3390/cancers14153664
https://doi.org/10.3390/cancers14153664
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0002-8524-7402
https://orcid.org/0000-0003-3730-1125
https://doi.org/10.3390/cancers14153664
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers14153664?type=check_update&version=2


Cancers 2022, 14, 3664 2 of 14

penetrance by age 70, showing the onset of distinct groups of cancers across age groups.
For example, in the childhood phase (0–15 years, 22% of all cancers) the most characteristic
tumors are adrenal cortical carcinoma, rhabdomyosarcoma, and medulloblastoma; the
phase of early adulthood (16–50 years, 51%) includes breast cancer, osteosarcoma, soft-
tissue sarcomas, leukemia, astrocytoma, glioblastoma, colorectal, and lung cancer; in the
stage of late adulthood (51–80 years, 27%) pancreatic and prostate cancers are the most
prevalent [10,11].

Before the diffusion of next-generation sequencing (NGS) into clinical diagnostics, the
detection of germline TP53 mutation has been limited to patients who met clinical criteria
for LFS. Multigene panel tests (MGPT) can simultaneously evaluate multiple hereditary
cancer genes for cancer predisposition [12–14]. The increasing use of multiple genetic panel-
based analyses allowed considering mutp53 genetic testing in patients that do not meet the
LFS single genetic test criteria (SGT), leading to the detection of TP53 variants associated
with a less penetrating phenotype. This interesting point opened a debate regarding the
relationship between the TP53 genotype and the LFS phenotype. To date, the mechanisms
that allow differentiating the phenotypic expression of TP53 mutations identified by using
MGPT from those identified by SGT triggered by classical phenotypic presentations are not
known [14,15].

In the past 30 years, there was a lack of a generally accepted definition that re-
flects the evolving phenotypic spectrum of LFS and, increasingly, individuals with a
pathogenic/probable pathogenic variant of TP53 are found who do not meet the criteria
of the LFS single genetic test. In 2001, the Chompret criteria first defined the TP53 test for
childhood cancer cases and patients with early onset breast cancer [16,17]. These criteria
are constantly evolving, especially with the recent adoption of MGPT [15,18,19].

The major aim is to find the basis of associations between TP53 genotype and tumor
phenotype and to stratify clinical management depending on TP53 status. Furthermore,
there is no type of cancer exclusively associated with specific mutation classes or peculiar
variants of TP53. For example, the p53-R337H protein mutation was believed to predispose
to adrenocortical carcinoma. However, it has recently been revealed that this mutation is
also related to the onset of choroid plexus carcinoma and breast cancer [20,21].

Certainly, in the future NGS approaches in the analysis of tumors from individuals
with LFS will make it possible to identify numerous factors such as copy number variations,
non-coding differentially expressed RNAs, or others.

2. The TP53 Gene and Role of Mutant p53 Proteins in Cancer

The nuclear phosphoprotein p53 has a long and fascinating history. It was first
discovered in 1979 as a transcriptional factor associated with the large T antigen SV40
in virally transformed cancer cells, considered a proto-oncogene able to increase cell
growth [22–25]. The p53 protein works as a tetramer, each monomer consists of an N-
terminal transactivation domain (TAD), a proline-rich domain (PRD), a core DNA-binding
domain (DBD), a tetramerization domain (OD), and a C-terminal regulatory domain (RD)
(Figure 1) [26].

After a few years of study, it became clear that p53 acts as a tumor suppressor and it is
the most important decision maker of cell fate that earned it the appellation of “the guardian
of the genome”. Different sources of stress such as DNA damage, oncogene activation,
nutrient deprivation, oxidative stress, and others induce post-translational changes in p53
that lead to its activation, stabilization, and accumulation in the cells (Figure 2) [25,27].
The tumor suppressor activity of p53 is attributed to its transcriptional regulation of genes
involved in numerous cellular processes, such as cell cycle arrest, apoptosis, senescence,
DNA repair, and cell differentiation (Figure 2) [27].



Cancers 2022, 14, 3664 3 of 14Cancers 2022, 14, 3664 3 of 14 
 

 

 
Figure 1. Protein domains of p53. Human p53 protein has 393 aminoacidic residues and is composed 
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of target gene promoters. (B) On the other side, mutant p53 forms oncogenic complexes with other 
transcription factors, usually not bound by wild-type p53, resulting in the aberrant activation of 
genes that promote GOF activities. Notably, when TP53 mutations occur in one of the alleles, mutant 
p53 co-exists with wtp53 acting as a dominant negative (DN) factor in the heterodimer complexes, 
until the loss of the wild-type allele by loss-of-heterozygozity (LOH). 

The TP53 gene appears to be mutated in about 50% of all human cancers. About 80% 
of these mutations are missense and produce a full-length, very stable protein that tends 

Figure 1. Protein domains of p53. Human p53 protein has 393 aminoacidic residues and is com-
posed of a transactivation domain (TAD), proline-rich domain (PRD), DNA-binding domain (DBD),
tetramerization or oligomerization domain (OD), and a C-terminal regulatory domain (RD).
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Figure 2. Mechanisms of action of wild-type and mutant p53 protein in response to different stresses.
(A) In response to diverse types of cellular stress signals, the wild-type p53 protein is induced to
activate different pathways by its recruitment onto specific DNA consensus sequences of target gene
promoters. (B) On the other side, mutant p53 forms oncogenic complexes with other transcription
factors, usually not bound by wild-type p53, resulting in the aberrant activation of genes that promote
GOF activities. Notably, when TP53 mutations occur in one of the alleles, mutant p53 co-exists with
wtp53 acting as a dominant negative (DN) factor in the heterodimer complexes, until the loss of the
wild-type allele by loss-of-heterozygozity (LOH).

The TP53 gene appears to be mutated in about 50% of all human cancers. About 80%
of these mutations are missense and produce a full-length, very stable protein that tends to
accumulate at high levels in cancer cells [7,9]. Some of these mutations act as a dominant
negative (DN) of wild-type p53 (wtp53), affecting tumor-suppressive pathways. Often,
loss-of-heterozygozity events (LOH) of wild-type alleles occur [25,27]. The spectrum of
TP53 mutations in human tumors is intriguing for its variegation and tissue specificity.
TP53 is mutated in more than 90% of ovarian cancers while less than 15% in acute myeloid
leukemias, suggesting that there may be some tissue-specific requirements [28].



Cancers 2022, 14, 3664 4 of 14

Most of the TP53 mutations are recapitulated in six “hotspots” in the DBD (R175, G245,
R248, R249, R273, and R282) and abrogate the conventional transcriptional activity of the
wtp53 protein [29]. Usually, mutations of p53 are divided into two groups: DNA contact
mutations, such as p53R248Q and p53R273H, which affect the domains of the protein
that are directly involved in DNA binding, and the conformational mutations, such as
p53R175H and p53H179R, which cause a distortion of the correct DBD folding of the p53
protein [9,30].

A growing number of studies support the idea that wtp53 activities must be lost to
promote tumorigenesis and metastasis [31]. Furthermore, missense mutations determine
the acquisition of mup53 GOFs that are exercised in various oncogenic activities such
as increased proliferation and invasion, dysregulation of metabolic activities to support
tumor progression, drug resistance, induction of genomic instability, and many others,
all participating in the patient’s poor prognosis and survival (Figure 2) [9,32–36]. The
molecular mechanisms through which mutp53 exerts its novel oncogenic transcriptional
deregulation have been the subject of extensive studies and new ones are still discovered
today [37–42]. Interestingly, different mutp53s appear to have different GOFs by acting
with distinct mechanisms depending on the tumor tissue context, suggesting that genetic
background and the influence tumor microenvironment could be responsible for some of
the inconsistencies in the diverse mechanisms [9,43–46].

Studies on murine in vivo models provided valuable information on the understand-
ing of mutp53’s mechanisms of action, protein stabilization, and the related cellular path-
ways that are affected during tumorigenesis and metastasis [47–49]. The development of
further in vivo models provided insight into the role of the tumor stroma in the events
leading to the GOF activities of mutp53 [48,50]. In vivo and mutp53 PDX models could be
employed to study the effects of new drugs in addition to the therapies used in clinical trials
that are being developed based on the reactivation of mutp53 protein towards wild-type
activities [48,51–55].

Currently, at diagnosis, patients are stratified into wild-type and mutant p53; however,
we could imagine a functional classification based on the activities of the mutp53 allele
that has been characterized in basic research. This could influence the therapeutic choice
based on the functional activities of the mutp53 rather than on genetic modification. This
approach in the study of sporadic tumors with TP53 mutations may be translated to the
study of the LFS phenotypes.

3. Mutational Landscape of TP53 in LFS

The interpretation of germinal variants associated with genetic diseases was standard-
ized by the guidelines provided by the American College of Medical Genetics (ACMG),
based on various criteria that take into consideration a series of features characterizing ge-
netic variants [56]. Recently, these criteria have been refined, tailoring them for classifying
TP53 germline variants [57].

In LFS, the distribution of germline TP53 mutations is similar to that identified in
sporadic tumors, with some exceptions in some populations around the world which we
will describe later. Many of these mutations are in the DBD and six are hotspots com-
mon to those of sporadic tumors: p.Arg175His, p.Gly245Asp, p.Gly245Ser, p.Arg248Gln,
p.Arg248Trp, p.Arg273Cys, p.Arg273His, and p.Arg282Trp (Figure 3A) [58,59]. Both in
LFS and in sporadic tumors, these hotspots are associated with a poorer prognosis for the
patients. However, their interpretation remains challenging. TP53 variants can act either
with a loss of function (LOF) or a DN effect. Nonsense and frameshift variants are easier
to interpret because they impair the protein function in an obvious manner, generating
a premature stop codon. Although rarer than missense, these variants were found in a
significant proportion of patients with LFS [60–62]. However, the type and location of
the TP53 variants in LFS, even if they are the same as in sporadic tumors, influence the
biological activity of the mutp53 protein and the development of different types of tumors,
with differences determined by the family history (Figure 3B) [60]. On the other hand, the
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penetrance of the disease and the risk of developing secondary tumors are influenced by the
type of TP53 germline mutation. A detailed analysis of 214 LFS families reported that 96%
presented point mutations, 67% harbored missense mutations, and 35% dominant-negative
mutations, distributed along DBD [60].
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The penetrance of truncating variants (frameshift and nonsense) in comparison with
missense variants remains debated and still unclear [60,63,64]. Two studies with an exten-
sive genotype–phenotype correlation analysis have been recently published [63,64]. The
first one [63] classified TP53 variants in truncating (with premature stop codon), missense
with or without DN, as also previously reported by Giacomelli and colleagues [65], and
missense in relevant TP53 hotspots: p.Arg175His, p.Gly245Asp, p.Gly245Ser, p.Arg248Gln,
p.Arg248Trp, p.Arg249Ser, p.Arg273Cys, p.Arg273His, and p.Arg282Trp [58,59]. The results
of this study showed that truncating and hotspot variants have higher effects on cancer
severity. The second study described TP53 variants also following the criteria of Giacomelli
et al., but considering either possible DN or LOF mechanisms. In both studies, there was a
subclass of missense variants that have a small but significant lowering effect on cancer than
other variants [63,64], and the presence of a mutp53 LOF could be relevant to increasing
the severity of the disease.

The concept that different TP53 germline alterations confer a preferential association
with a tumor phenotype is supported by the evidence that carriers of the founder mutation
TP53 p.R337H in southern Brazil exhibit mainly adrenocortical tumors (ACT) in children,
although ACTs are rare cancers [66]. The 377 aminoacidic residues of the p53 protein are
located inside the tetramerization domain and it is interesting to point out that this is the
only type of mutation so far significantly associated with LFS [60].
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However, it has recently been documented that mutp53R337H has a low penetrance,
but the aggressiveness of ACT differs depending on the age of the groups in which the
tumor has been diagnosed [20]. The predominance of maternal mutated allele inheritance
was demonstrated in the LFS Brazilian families. Furthermore, it is very important that
in some families, nine malignant neoplasms are diagnosed in asymptomatic carriers by
applying the Toronto screening protocol that we will describe in the following chapters [20].
Importantly, additional genetic alteration in ACT includes somatic mutations in ATRX that
encodes a helicase that is involved in remodeling and telomere structure maintenance. In
Pinto et al.’s study, 37 ACTs were analyzed by WGS and WES, germline TP53 mutations
were present in 25 of the 37 patients (68%). ATRX somatic nonsense mutations and SVs
deleting multiple exons were identified in 6 of the 19 ACTs (32%), all of which were associ-
ated with germline TP53 mutations. The ATRX R2164S somatic missense mutation was also
identified by WES in the case with somatic homozygous deletion of TP53, both germline
TP53 and somatic ATRX mutations were associated with genomic abnormalities [67].

An interesting study related TP53-R337H with the XAF1 factor. DNA from 203 patients
with cancer and 582 relatives were analyzed with NGS and WES. The authors reported
that wild-type XAF1 enhances transactivation of wtp53, whereas XAF1 E134* attenuates
regulatory activity. In conclusion, haplotype R337H and E134* could modulate cancer
phenotype [68].

In addition to the Brazilian-specific mutation, a rare p53 tetramerization domain
missense mutation (c.1000G>C; p.G334R) has been identified in nine individuals from four
independent family descendants from Ashkenazi Jewish ancestors, suggesting that this
is a founder mutation [69]. These individuals were characterized by multiple late-onset
LFS-spectrum cancers and available tumors showed biallelic somatic inactivation of TP53.
The in vitro experiments showed that mutp53G334R fails to transactivate a part of the
target genes of wtp53, conferring increased cell proliferation activity and ability to form
colonies [69]. These data suggest that descendants of this ethnicity and c.1000G>C carriers
should undergo screening and preventive measures to reduce cancer risk.

There are some important gene alterations that influence the LFS phenotype, such as
the single-nucleotide polymorphism (SNP) within the first intron of MDM2
(NM_002392.3:c.14+309T>G; SNP309; rs2279744); TP53 polymorphisms, such as a du-
plication within intron 3 (PIN3), Pro72Arg; telomere length; differential methylation or
variant alleles in miRNAs that modify p53-mediated cell regulation, and the accumula-
tion of copy number variations (CNV) [70]. The impact of the more common Pro72Arg
polymorphism remains controversial and MDM SNP309 T>G was shown to be associated
with accelerated tumor formation in mutp53 carriers. The results of a French study based
on 61 individuals with or without germline mutations in TP53 from 41 families with LFS
confirmed that MDM2 polymorphism had an impact on the age of tumor on set, this effect
may be amplified by Pro72Arg polymorphism and the differences between the groups also
showed a cumulative effect of these two polymorphisms [71].

Recently, a second MDM2 polymorphism, SNP285G>C (rs117039649), was docu-
mented to be in correlation with the SNP309G allele [72,73]. In a large study of 195 LFS
patients, this haplotype was shown to influence cancer onset with tumors occurring 5 years
earlier [73]. Other genetic factors have been reported as potential modifiers of the LFS
phenotype, such as an SNP within the hsa-miR-605 (rs2043556) [74,75].

The extent of the knowledge of how these modifiers consistently influence LFS pheno-
type remains to be assessed.

4. Role of Non-Coding RNAs in LFS: Novel Mechanisms and Hypothesis

To date, MDM2 SNP309 and p53 Arg72Pro polymorphism as well as DNA copy
number variations (CNVs) have been associated with cancer risk in LFS further serving as
a marker for clinical monitoring of these patients [71,76,77]. Recently, it was highlighted
that non-coding RNAs could be useful for the same purpose.
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Wt and mut p53 expression have been correlated with the expression of microRNAs
(miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) whose main
function is to refine the regulation of a plethora of genes correlated with cell proliferation
and metabolism [78–82]. From the point of view of LFS, a common single nucleotide
polymorphism (SNP) within miR-605 (rs2043556) was associated with gastrointestinal
cancer risk and one of its most important reported functions is to target MDM2 mRNA, one
of the major regulators of protein stability of both wt and mut p53 [83,84]. E3 ubiquitin-
protein ligase MDM2 establishes a negative feedback loop to limit the function of p53,
nevertheless, high levels of miR-605 act to inhibit p53/MDM2 interaction leading to p53
accumulation [83]. Consistent with this, it was reported that miR-605 rs2043556 (G-allele
variant) was significantly associated with an earlier mean age of LFS tumor onset compared
to the common homozygous AA genotype [74].

Exploring an LFS cohort of 238 Brazilian individuals carrying TP53 p.R337H, miR-605
rs2043556 G allele was present in 57.1% of patients where 10.5% were homozygous [75].
Interestingly, in this cohort of LFS patients, the presence of miR-605 rs2043556 was signifi-
cantly associated with the onset of multiple primary tumors [75].

These findings, which should be further investigated into different aspects of the LFS
phenotype and genotype, strongly suggest that SNP-mediated miR-605 deregulation could
affect cancer risk in LFS by inducing some changes in the p53/MDM2 levels. Furthermore,
they shed light on a new scenario where non-coding RNA modifiers exist and could act to
predispose TP53 mutation carriers to a spectrum of susceptibilities in LFS.

Recently, it was reported that the mutp53/HIF1α/miR-30d axis induced several al-
terations of secretory pathway components in sporadic breast cancer, such as the increase
of the endoplasmic reticulum membranes, increase in the number of COP-I and COP-II
vesicles, stabilization of microtubules, and vesicular-tubulation of the Golgi apparatus [85].
Together, these modifications influenced the secretion of soluble factors and the deposition
and remodeling of the extracellular matrix (ECM), affecting the signaling network of the
tumor microenvironment [85]. In the same paper, the authors have also shown that in
adult primary fibroblasts from two LFS TP53 p.R248Q patients, mutp53 expression was
associated with higher HIF1α and miR-30d levels, and higher protein secretion, compared
to fibroblasts from two wtp53 healthy donors [85]. These results sustain the fascinating
hypothesis that the mutp53/miR-30d axis leads to increased secretion of ECM remodel-
ing factors playing a role in promoting cancer progression and metastasis via an altered
secretome also in LFS.

While in sporadic tumors, the search for predictive biomarkers of the disease or the
efficacy of the therapy is constantly being explored in the field of non-coding RNA, not
only in tumor tissues and metastases, but also in fluids such as blood, saliva, and urine,
after the aforementioned studies, this kind of research never blossomed in the field of LFS.
In contrast, in recent years, the number of papers linking mutp53 with non-coding RNA
signatures, traced from liquid biopsies of cancer patients and endowed with the predictive
power of disease and/or efficacy of therapies is increasing [86–88].

Up until today, we have learned that the dysregulation of non-coding RNA interactions
within cancer molecular pathways contributes to neoplasia and shows important novel
druggable targets. In sporadic cancer, the onset of a gene mutation often does not involve
just the mutated gene but can also destroy the non-coding RNA networks that change the
balance of the downstream targets of those ncRNAs.

It would therefore be very advantageous to identify any non-coding RNAs that are
correlated with Li–Fraumeni tumor genotypes and phenotypes both for basic knowledge
and for implementing better therapeutic and active surveillance strategies.

5. Tumor Prevention and Treatments

Approximately one thousand multigenerational families worldwide have been esti-
mated to be affected by LFS with no ethnic or geographic disparity in occurrence, although
an exceptionally high prevalence of LFS has been documented in Southern and Southeast-
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ern Brazil [15,89]. Disease onset is known to commonly occur in children and young adults
who develop several multiple cancers, most notably soft-tissue and bone sarcomas [18]. The
proportion of individuals with a de novo germline TP53 pathogenic variant is estimated
to be between 7% and 20% [3]. Importantly, not all individuals who have mutp53 will
develop cancer, but the risks are significantly higher than in the general population. Once a
patient has been diagnosed with LFS, it is important that all family members have genetic
counseling and surveillance for early cancer [3,70].

What are the criteria used to decide whether to ascertain that an individual (proband)
has LFS? There are diverse published criteria to test individuals for a heterozygous germline
pathogenic variant in TP53, including the most recently revised Chompret criteria [17,60].
In a proband, the classical LFS diagnosis is established following three fundamental criteria:
the diagnosis of sarcoma before the age of 45; a first-degree relative, (a parent, sibling,
or child) with any cancer before age 45; a first-degree relative or second-degree relative,
meaning a grandparent, aunt/uncle, niece/nephew, or grandchild, with any cancer before
age 45, or a sarcoma diagnosed at any age [90]. Recently, the Chompret Criteria have been
strongly proposed to identify affected families beyond the classic criteria described above.
A diagnosis of LFS and testing TP53 gene mutation is considered for anyone with a family
history that meets one of the following three updated criteria which can be read in a detailed
way in Frebourg et al. [90]. Importantly, diagnostic criteria assessed by Chompret increased
the sensitivity of TP53 pathogenic germline variants detection by including patients with
core LFS tumors even without a family history. Classic and Chompret criteria together
increased the diagnostic sensitivity to 95%, therefore, the National Comprehensive Cancer
Network (NCCN) and other guidelines recommend using both the Classic LFS criteria and
the revised Chompret criteria to recommend TP53 germline genetic testing [60,91].

Li–Fraumeni-like syndrome (LFL) is a pathology related to LFS where a set of criteria
has been drawn up for affected families who do not meet classic criteria [90]. There are
two suggested definitions for LFL called the “Birch” and “Eeles” definitions that introduce
the concept of a Li–Fraumeni spectrum that includes the detection of variants with lower
penetrance, a broader classification of hereditary cancer-related syndromes TP53 (hTP53rc),
and those who have “phenotypic LFS”, that means patients who show cancer incidence
and the family history but without a known genetic driver [16,90,92,93].

Unfortunately, there is currently no specific treatment or standard guidelines for LFS
or specific therapy for a variant of the germline TP53 gene. Therefore, as a rule, the types of
tumors are evaluated from time to time and the therapies used for classic cancer patients are
adopted. Several studies have shown that active surveillance of LFS patients is significantly
associated with improved survival by tracking presymptomatic malignancies compared
to LFS patients who were diagnosed with cancer because the symptoms arose [15,94–97].
Overall, these studies propose clinical surveillance protocols using physical examination
and frequent biochemical and imaging studies for instance consisting of whole-body
magnetic resonance imaging (MRI), specific MRI of brain breast, mammography, abdominal
and pelvic ultrasound, and colonoscopy. All these very important findings should be
material for preparing a common LFS surveillance and treatment registry, from genetic
counseling to active surveillance.

Diverse associations of families with LFS have been formed in some countries to
inform as much as possible about this rare hereditary disease. We can mention the LFSA
(Li–Fraumeni Syndrome Association) in the US, the George Pantziarka TP53 Trust in the
UK, or hospitals all over the world that are highly specialized in the detection of germline
TP53 mutations and in the active surveillance of members of the families involved such
as the team at the University of Toronto which has developed guidelines, “The Toronto
Protocol”, which have proved effective for early detection [94].

Therefore, over the years, scientists have focused their studies mainly on two areas
of intervention, namely, on the one hand, the elucidation of the mechanisms underlying
the relationship between specific variants of TP53, the penetrance and other epidemio-
logical variables, the time of onset and incidence of tumors, and, on the other hand, the
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experimentation of preventive therapies to avoid the risk of cancer onset. Many of these
therapeutic interventions to decrease the incidence of cancer in LFS are based in part on
the development of therapies in sporadic cancers expressing high levels of mutp53, such
as high-grade ovarian cancer, triple-negative breast cancer, colorectal cancer, or squamous
head and neck carcinoma [98–101]

Some studies reported that the use of radiotherapy is associated with the onset of
radiation-induced tumors in LFS patients. Furthermore, many patients are still resistant to
radiotherapy, a condition conferred by the gain-of-function activity conferred by some p53
mutations [102,103]. For this reason, when not strictly necessary, computed tomography
scans and other diagnostic techniques involving ionizing radiation should be limited.

Interestingly, some clinical trials have been launched in LFS patients, not only with the
aim of obtaining results from a therapeutic point of view but also with the aim of exploring
drug candidates for cancer prevention in people with LFS (https://clinicaltrials.gov/ct2
/home accessed on 15 June 2022).

To date, seventeen studies are reported on ClinicalTrial.gov accessed on 15 June 2022,
nine of which are in the recruitment phase, and only one completed with the results
available. This latest study reported encouraging data regarding the use of nicotinamide
riboside (NR) (vitamin B3) as a dietary supplement in LFS patients (NCT03789175) to
improve the mitochondrial function of skeletal musculature and respiratory functions [104].

Among these clinical trials, “A Pilot Study of Metformin in Patients With a Diagnosis
of Li-Fraumeni Syndrome” (NCT01981525) supported by the National Cancer Institute
(NCI), proposed the repositioning of an existing drug [105]. Metformin (Met) is the most
commonly used drug for type 2 diabetes mellitus, it is inexpensive, safe, and efficient in
ameliorating hyperglycemia and hyperinsulinemia. Several epidemiological studies have
shown that diabetic patients treated with Met have a lower risk of developing cancers [106].
There are therefore many clinical trials that have used Met as an adjuvant in the treatment
of many types of cancer [107,108]. From the point of view of the molecular mechanism,
Met can affect a large number of molecules and cellular signalings such as influencing
gluconeogenesis, metabolic pathways, and mitochondrial cellular respiration [109].

The NCT01981525 trial starts from the experimental data that Met inhibits oxidative
phosphorylation, reducing available energy for cancer cell proliferation, to assess the safety
and tolerability of Met in nondiabetic LFS patients and to evaluate the modulation of
metabolic profiles compared to LFS patients who have not taken the drug [105]. The
results of this study reported excellent tolerability of Met and the suppression of hepatic
mitochondrial function as expected in these individuals. Updates on the possible onset
of tumors in the two groups of patients are desirable in the future. Similar trials in
Canada, Germany, and the United Kingdom are planned with the idea of following the
groups of patients treated and not treated with Met for 5 years and monitoring the onset
of tumors (https://www.oncology.ox.ac.uk/clinical-trials/oncology-clinical-trials-office-
octo/prospective-trials/mili accessed on 15 June 2022).

Interestingly, genomic profiling of tumors is becoming a routine practice in trans-
lational research and is useful to identify actionable molecular targets for personalized
medicine [110,111].

These findings inspired a new approach where the use of a comparative transcriptomic
analysis identified a group of genes precisely overexpressed in LFS glioblastoma multiforme
(GBM) patients among a cancer compendium of 12.747 tumor RNA sequencing data
sets, including 200 GBMs, opening the way for the identification of personalized drug
treatments [112]. STAT1 and STAT2 genes are identified to be overexpressed in LFS patients
and ruxolitinib was the JNK inhibitor, which could be used as a potential therapy to block
the JNK/STAT1,2 pathway [112]. The research of actionable targets by using genomic
and transcriptomic approaches and patient-derived organoids could represent the basis of
many therapeutic trials in cancer.

https://clinicaltrials.gov/ct2/home
https://clinicaltrials.gov/ct2/home
ClinicalTrial.gov
https://www.oncology.ox.ac.uk/clinical-trials/oncology-clinical-trials-office-octo/prospective-trials/mili
https://www.oncology.ox.ac.uk/clinical-trials/oncology-clinical-trials-office-octo/prospective-trials/mili


Cancers 2022, 14, 3664 10 of 14

6. Conclusions

The close connection between LFS and the TP53 germline mutations has made this
hereditary cancer syndrome a unique and useful paradigm for the study of mutated p53
proteins. Furthermore, much has been learned about the molecular mechanisms of action of
mutp53 in sporadic tumors. However, it is impossible to predict in carriers of the mutation
when the tumors will arise and how to treat these LFS people.

Certainly, collaborative studies between different disciplines that integrate clinical
practice, and the results of genomic, metabolomic, and biological analyses will be advan-
tageous in developing the understanding of this cancer predisposition syndrome to find
coding pathways.

This information may be an important source for explaining the different manifesta-
tions of LFS, such as differences in disease and penetrance and the heterogeneity of the
tumors that arise. The dream would be to identify the driving factors of the phenotype of
the disease to fine-tune the development of an individualized monitoring protocol.
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