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Abstract The mechanisms underlying Alzheimer’s disease (AD) onset and progression are not yet eluci-
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dated. The extent to which alterations in the activity of individual neurons of an AD model are sig-
nificant, and the phase at which they can be captured, point to the intensity of the pathology and imply
the stage at which it can be detected. Using a machine-learning algorithm, we present a successful
cell-by-cell classification of intracellularly recorded neurons from the B6C3 APPswe/PS1dE9 AD
model, versus wildtypes controls, at both a late stage and at an early stage, when the plaque pathology
and behavioral deficits are absent or rare. These results suggest that the deficits present in neuronal
networks of both old and young transgenic animals are large enough to be apparent at the level of
individual neurons, and that the pathology could be detected in nearly any given sample, even before
pathologic signs.
� 2016 The Authors. Published by Elsevier Inc. on behalf of the Alzheimer’s Association. This is an
open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/
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1. Introduction

The resolution and the stage in which information on an
Amyloid-b (Ab)–related pathology canbedetected in the brain
are not well studied. An automated detection of neurons and
neural assemblies that provides information about the pathol-
ogy would be valuable for Alzheimer’s disease (AD) research,
and could assess the predictive power of various physiological
features found in these mice, and constitute a set of parameters
indicative of the pathology in the early stages.

Although the accumulation and aggregation of Ab in the
brain are postulated to be a central event in the pathogenesis
of AD, different lines of evidence support the presence of a
preclinical phase in the development of the disease, where
Ab abnormality begins before the onset of the clinical disease
[1–4]. Other studies consider the soluble form of Ab to be a
major factor in cognitive decline [5,6]. Two crucial questions
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that could impact both the progress of the disease and early
detection are whether any information about the pathology
can be retrieved from individual neurons and whether this
information is available in a pre-symptomatic stage.

It was recently shown that the coherence of neural activity
invarious cortical areas of theAPP/PS1 transgenic (Tg1)mice
model in vivo is reduced compared to wildtype (WT) controls
at different stages of AD [7–9]. It was proposed that this
reduction in coherence of the network activity is linked to
the malfunctioning of individual neurons. Recent evidence
also showed a profound disruption of slow oscillations of
cortical assemblies by pathological Ab, that was elevated
either chronically in the APP23 ! PS45 mouse model, or
acutely after exogenous administration [9]. Disruption to
slow oscillations was also linked to tau pathology [10].

Although the aforementioned alterations were statisti-
cally evident at the group level, it is still not known how
robust they are and whether they can be captured in individ-
ual cells at different stages of the pathological cascade. If a
neuron-by-neuron classification based on physiological
differences between APP/PS1 Tg1 and WT mice is
imer’s Association. This is an open access article under the CC BY-NC-ND
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successful, it would imply that the effects are consistent
across neurons, and that the detrimental effects of Ab are
evident in most neurons even before the appearance of sig-
nificant plaque aggregation.

In this article, we describe how electrophysiological activ-
ity can be robustly classified when measured from APP/PS1
Tg1 mice and littermate controls, using a support vector ma-
chine (SVM). Because they are data driven, automated algo-
rithms for classification can be more accurate and more
consistent than classification defined by human rules. Classi-
fication was applied on physiological features from three
levels of cortical recordings in vivo: intracellular recordings,
LFP (local field potentials), and ECoG (electrocorticogram).
Although the LFP and the ECoG recordings reflect summa-
tion of electric activity over neuronal populations, intracel-
lular recordings provide the physiological underpinnings of
such activity. The physiological features used in this study
pointed to reduced coherence and suggest an increased pertur-
bation to neuronal activity. Recordings were obtained from
animals from two age groups: young, before the emergence
of significant Ab plaque pathology and related behavioral
deficits, and old, at an age when the cortex is burdened with
Ab plaques, and when various cognitive and behavioral im-
pairments can be detected.

2. Methods

2.1. Data types

Data for classificationwere collected from recordings in the
B6C3 APPswe/PS1dE9 transgenic mouse model (APP/PS1)
and wildtype (WT) littermates. Supplementary Table 1 shows
the ages of the animals used in all classifications. Classification
results were obtained as elaborated below.

2.2. Data acquisition

Cortical activity was measured by three techniques: intra-
cellular recordings, LFP, and ECoG.

2.2.1. Intracellular recordings
Each recording was made from an individual neuron from

an APP/PS1 Tg1 or WT mouse. Animals were from two age
groups:

2.2.1.1. “Old” group: 9–19 months old
At this age, the cortex of the mouse model is burdened

with Ab plaques. We collected a total of n 5 19 neurons:
13 WT, 6 Tg1, from 12 and 6 animals, respectively.

2.2.1.2. “Young” group: 2–6 months old
This age range is before a significant onset of Ab plaque pa-

thology, whereas soluble Ab is abundant in the cortex. We
collected a total of n5 26 neurons: 15WT (age: 3–6 months),
11Tg1 (age: 2–4months) from13and10animals, respectively.

2.2.2. LFP of old group (9–19 months)
In this method, we recorded multicellular activity from a

relatively small tissue volume in deeper layers of the cortex.
A total of n 5 23 recordings of LFP (12 WT, 11 Tg1) were
collected. After dura removal, LFP electrodes were inserted
up to 300 mm below cortex surface.

2.2.3. ECoG recordings of the old group (9–19 months)
In this method, we recorded the multicellular activity of

larger populations from superficial layers of the cortex. A to-
tal of n 5 23 recordings of ECoG (12 WT, 11 Tg1) were
collected. ECoG electrodes were placed on top of the cortex
above the dura.

LFP and ECoG were recorded in the same animals.
Fig. 1 shows examples of intracellular, LFP and ECoG re-

cordings from APP/PS1 Tg1 and WT, along with represen-
tative images of Ab plaque pathology and cell staining from
the two age groups.

2.3. Feature extraction and selection

We tested a series of features extracted from physiolog-
ical parameters of recordings of APP/PS1 Tg1 and WT
mice in the two age groups. All the physiological features
used by the classifiers are listed in Supplementary Table 2.

Eachof the fourclassifiers usedparameters fromonedataset
with one recording technique for the APP/PS1 Tg1 and WT
mice. These parameters captured different features of the re-
cordings, and included the time-domain, and the frequency-
domain from subthreshold or suprathreshold activity.

2.4. Classification setting

We trained a separate binary classifier on each of the data
sets described in section 2.2 to solve the four classification
“intracellular old”, “intracellular young”, “LFP”, and
“ECoG” problems. Each classification was done on the num-
ber of recordings (neurons/assemblies) in the respective da-
taset. The number of features used by each classifier is
indicated in Supplementary Table 2.

The input for training each classifier was the set of elec-
trophysiological features obtained for each of the examples
(neurons/assemblies) in the respective dataset accompanied
by a binary label indicating whether that example was a pos-
itive (Tg1) or a negative sample (WT).

2.5. Classification algorithm

We used a linear SVM binary classifier [11]. Linear SVM
is a supervised learning method which trains a hyperplane
that maximizes the margin between the positive and negative
samples. SVM inputs a set of labeled samples (xi, yi), where
each sample is represented as a vector of input features
xi˛Rd, and is also labeled as positive (Tg1) or negative
(WT): yi˛f11;21g.

SVM aims to solve the following optimization problem

min
w

1

2
kwk21C

X

i

xi

s.t. yiðwTxi1bÞ � 12xi; xi � 0; i 5 1;.; n



Fig. 1. Examples of recordings and immunostaining of neurons used in the classifications. (A) (i–iii) Intracellular, LFP, and ECoG recordings from old APP/PS1

Tg1 animals, whose cortex is burdened with Ab plaques (right) and WT controls (left). (iv) Recordings of intracellular activity of young mice, before a sig-

nificant appearance of Ab plaques (right), and their age-matched controls (left). (B) Thioflavin-S staining of Ab plaques in APP/PS1 Tg1 animals. Plaques are

absent or rare in the cortex of young animals but abundant in the cortex of the old animals (bottom; left column figure magnification: x10; right column figure

magnification:!40). Recorded cells seen in red (marked by arrows) were filled with Alexa Flour 594 hydrozine for cell visualization. Abbreviations: LFP, local

field potential; ECoG, electrocorticogram; Ab, Amyloid-b.
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To compensate for the unbalanced number of positive and
negative samples in our data, we assigned different costs C1

and C2 (instead of the uniform cost C in the above formula-
tion) to false positive and false negative errors. Specifically,
we tuned the value of a hyperparameter C over the grid
{0.01, 0.1, 1, 10, 100} and set the value of C1 to be C times
the fraction of negatives, and C2 to C times the fraction of
positive samples. We used the implementation of linear
SVMavailable inMatlabR2011b (MathWorks,Natick,MA).
2.6. Performance metrics

The linear classifier was trained for a binary decision
problem predicting a Tg1 versusWT recording.We assessed
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performance using a leave-one-out procedure: the classifier
was trained on all recordings (neurons/assemblies) except
one. Then, we used the learned model to predict the class
of the left-out sample. The procedure was repeated once for
every recording (a total of 26 times for the young intracellular
dataset, and 19 times for old intracellular dataset, and a total
of 23 times for the LFP and ECoG data sets, separately), and
themean error is reported. This generated a contingency table
with four categories: true positives (TP), i.e., recordings
correctly labeled as taken from transgenic animals, false pos-
itives (FP), i.e., recordings incorrectly labeled as transgenic,
true negatives (TN), i.e., recordings correctly labeled as non-
transgenic, and false negatives (FN), i.e., recordings incor-
rectly labeled as nontransgenic. The accuracy of each
classification was then evaluated using sensitivity and speci-
ficity. Sensitivity quantifies howwell the classifiers correctly
identify positive results (recordings from transgenic animals)
and is defined as

Sensitivity5
TP

TP1FN
:

Specificity quantifies how well classifiers identify nega-
tive results (in our experiments, nontransgenic animals)
and is defined as

Specificity5
TN

TN1FP
:

Overall accuracy is the proportion of sensitivity and spec-
ificity of all results, defined as:

Accuracy5
TN1TP

TN1FP1FN1FP
:

2.6.1. Receiver operator characteristic (ROC) curve
To evaluate the performance of each classifier, we plotted

a receiver operator characteristic curve (ROC) [12]. The per-
formance of the classifiers appears as a cumulative distribu-
tion function ranging from false positive (12 specificity) to
true positive (sensitivity) and uses the area under the curve
Table 1

Summary of results for classifications of all data sets

Experiment Intracellular old LFP old

Correct Tg1 100 (6) 83.3 (11)

Correct WT 76.92 (13) 81.8 (12)

Overall 84.2 (19) 82.6 (23)

Overall after bagging 84.2 (19) 73.9 (23)

Hyper parameter C value 0.1 1

AUC of ROC 0.95 0.84

Most predictive features � Failures � R2

� ISI � std troug

� Early-late D of firing rate � Trough f

Abbreviations: LFP, local field potential; ECoG, electrocorticogram; WT, wild

NOTE: Accuracy scores are in percentages (%). Number of cells (for intracellu

bold: reported scores.
(AUC) of each classification as the measurement of the over-
all quality of classification.

2.7. Bagging

To improve classification accuracy, we used bootstrap
aggregation, also known as bagging [13], on all individual
classifiers of the four data sets. Bagging combines the de-
cisions of individual classifiers (voters) for every sample,
to reach an agreement on classification of samples within
each data set. For all data sets but ECoG, a positive vote
was defined as 4 or more positive voters. Owing to the
small number of features in the ECoG class, a positive
vote was defined as �5 individual positive votes.

3. Results

3.1. Classification results

We tested four different types of recordings from APP/
PS1 Tg1 versus WT mice. To evaluate the classifiers, we
computed their sensitivity, specificity, and overall accuracy,
as well as the AUC. A summary of all the results, with the
most predictive features, is presented in Table 1.

Hyper parameter C was chosen for each classification
individually (see Supplementary Table 3 and Supplementary
Fig. 1).

Overall, all four recording methods yielded high classifi-
cation accuracies, achieving a mean sensitivity, specificity,
and accuracy of 0.81, 0.75, and 0.78, respectively, across
the four classifiers. Out of all the classifiers, intracellular
old data achieved the highest sensitivity, specificity, and
overall accuracy scores (0.83, 0.84, and 0.84, respectively).
Performance metrics for classification of the four data sets
are presented in Fig. 2A.

In terms of classification evaluation, classification of the
intracellular old dataset was the most successful, with the
highest yield (AUC 5 0.95). followed by LFP, ECoG, and
intracellular young (AUC 5 0.84, 0.78, 0.69, respectively,
and see Fig. 2B). The fact that the classifier of intracellular
old recordings achieved the highest value implies that intra-
cellular measurements of cells were the most characteristic
of the AD pathology in our model.
ECoG old Intracellular young

72.7 (11) 72.7 (11)

66.6 (12) 66.6 (15)

69.5 (23) 69.2 (26)

82.6 (23) 76.9 (26)

0.1 1

0.79 0.69

� R2 � Failures

h amp. � Integral db � CV Dwell time DS

requency � Kurtosis � Var. in firing rate within up-states

type; Tg+, transgenic; AUC, area under the curve.

lar recordings) or animals (for extracellular recordings) is in parentheses. In
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Fig. 2. Classification results. (A) Support vector machine performance metrics for the four classifiers. Sensitivity, specificity and overall accuracy which eval-

uated the precision of the classification predictions. (B) AUC (area under the curve) for the four classifiers. (C) Bagging voter results for all classifiers.
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3.2. The effect of bagging

The current work operated in a regime where the number
of samples was highly limited. In this regime, it is often hard
to establish robustness with respect to the features used. To
address this issue, we tested bagging [13]. Bagging operates
by aggregating “votes” of classifiers trained on individual
features, yielding a combined decision for each class.
Fig. 2C shows prebagging and postbagging results.

Bagging votes improved the accuracy for the two classi-
fiers with the lowest scores: ECoG (82.6%) and intracellular
young (76.9%), as compared to the classifiers trained on all
features (69.5% and 69.2%, respectively). It worsened, how-
ever, the accuracy of LFP classification (73.9%, comparing
to 82% of all features classification) and did not have an ef-
fect on the intracellular old classification (84.2%).
3.3. Individual feature classifiers

To assess the efficiency of the four classifiers, we then
looked more deeply into the predictive power of individual
features in the four data sets. We trained single-feature clas-
sifiers (SFC) on each data set and compared them to com-
bined feature classification (CFC). Fig. 3 shows the AUC
measurements for classifiers that were trained on individual
features (narrow bars), together with the AUC for classifiers
trained jointly on all features of each dataset.

When comparing CFC and SFC, two effects were
apparent: first, some of the CFCs had a seemingly lower per-
formance than the best SFC for the same dataset. Second,
some of the SFCs had an AUC ,0.5, the performance level
of random classification. Both are most likely a result
of noisy evaluation due to the small number of samples.
We next tested whether any of the CFCs came from a
different distribution than the SFC. Although none of the
SFCs were different from the CFC for each dataset in a sta-
tistically significant way, higher test statistics (and smaller P
values) were obtained for the intracellular old (Wilcoxon
r 5 9, P 5 .22), and LFP (Wilcoxon r 5 11, P 5 .33),
compared to the ECoG (Wilcoxon r5 5, P5 .66) and intra-
cellular young (Wilcoxon r5 6.5, P5 .75). In other words,
the combined classifiers of the intracellular old and LFP had
a performed better than the single-feature classifiers, relative
to the two other data sets (ECoG and intracellular young).

When comparing the SFC of the different data sets across
age groups, it is clear that some classifications shared some
of the most predictive features. As shown in Fig. 3, both
“Failures” and features related to firing rate (“Early-late D
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of firing rate” in intracellular old; “Variance in firing rate
within up states” in intracellular young) are among the
best individual classifiers (see discussion).

3.4. Feature subset selection

To find the most predictive features and to eliminate
redundant features in each classification, we used an L1 reg-
ularization method, least absolute selection, and shrinkage
operator (Lasso, [14]). The sparseness hyperparameter l
was chosen to eliminate all but the three most predictive fea-
tures: intracellular old groups, l5 91; LFP groups, l5 96;
ECoG groups, l 5 88; Intracellular young groups, l 5 93.
Fig. 4 shows the most predictive features for the four
classifiers.
4. Discussion

In this study, we successfully classified data from four
types of cortical recordings from APP/PS1 AD transgenic
mice and healthy controls, using a SVM. Although the
vast majority of AD mouse models report the first cognitive
deficits at 6 months of age at the earliest [15], we show that
most cells of APP/PS1 Tg1 mice can be automatically de-
tected at 2–4 months of age, before any behavioral sign of
the disease occurs, and before the pathological hallmarks
appear in the brain.

This is, to the best of our knowledge, the first successful
cell-by-cell classification of Tg1 and WT neurons from an
AD model. Importantly, we demonstrated a detection of
the pathology during the early stage, when the pathology
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has yet to appear. The fact that a high fraction of individual
neurons can be correctly classified as pathological suggests
that the pathophysiological properties that characterize this
model are consistent across neurons and that AD progresses
in a way where the pathology appears at the level of individ-
ual neurons, starting very early in the course of the disease.

Comparing the performance of the various classifiers that
we trained provides insights into which characteristics are
most informative about the disease (See 3.1). The highest ac-
curacy (84%; area under the ROC curve [AUC]5 0.95) was
achieved in classifying intracellular old recordings from in-
dividual cells of mice with substantial Ab plaque deposition.
Fig. 4. Illustration of the most predictive features for classifying APP/PS1 Tg1 rec

state-transition failures (“failures”; marked in purple arrowheads) than APP/PS1 Tg

of firing rate over the up-state than theWT (“early-lateD of firing rate”). Early and

in the middle of theWT/Tg1 up-states, respectively. (iii) Bar graph that shows high

Examples of LFP recordings from WT and (ii) APP/PS1 Tg1 mice. Recording of

deviation of trough amp.”), as well as higher trough frequency (“trough frequen

APP/PS1 Tg1, than WT. (C) Examples of ECoG recordings from (i) WT and (i

(“R2”) was better for APP/PS1 Tg1 ECoG recordings (red) than WT (gray). (iv

Tg1 than WT. (D) Similar to the old APP/PS1 Tg1 mice shown in (A), intrace

show more failures than WT (i). In addition, down-state duration (marked by gr

DS”). (iii) Variance in firing rate increased for APP/PS1 Tg1 compared toWT cells
A similar accuracy was achieved for LFP classification in the
same age group (82%; AUC 5 0.84). When using bagging,
the overall success was improved for the other classifiers:
ECoG (82.6%) and intracellular young (76.9%). Broadly
speaking, with an exception of the classifier trained on intra-
cellular young data, performance matched the spatial resolu-
tion of the recording involved. This coupling could be
explained as follows: due to differences between neuronal
populations in the cortex, variance of recordings increases
along with the size of the neuronal population. Increased
variance of features in the data set, in turn, might impact
the performance of the classifier of this data set. Effects of
ordings from wildtype (WT). (A) (i) WT intracellular recordings show fewer
1. (ii) In addition, recordings from APP/PS1 Tg1mice show stronger decay

late segments of an up-state are marked by arrows and gray/red vertical lines

er inter-spike-interval (‘ISI’) for APP/PS1 Tg1 compared toWT cells. (B) (i)

APP/PS1 Tg1 shows higher variability of amplitude of troughs (“standard

cy”). (iii) Histogram for trough amplitudes, showing higher variability for

i) APP/PS1 Tg1 mice. (iii) A fit of Gaussians to the amplitude histogram

) The power of the late delta band (“integral db”) is higher for APP/PS1

llular recordings of young APP/PS1 Tg1 mice (purple arrowheads in (ii))
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reduced coherence in the APP/PS1 Tg1 neuronal activity
may act as an additional source of variability in the features
recorded from larger neuronal networks, possibly account-
ing for the decreased classification accuracy in LFP and
ECoG classifiers relative to intracellular young.

In addition to evaluating the performance of classifiers
using combined feature classifiers (CFCs), we also evaluated
single-feature classifiers (SFC). As expected, the AUC of
CFCs was generally higher than that of SFCs for almost
all data sets (Fig. 3), suggesting that the features used
were synergistic and capture different predictive aspects of
the data set, or that they allowed the classifiers to be more
robust to noise. This means that despite the small number
of samples, we generally controlled correctly for over fitting,
and the classifiers operated in a regime where the feature
dimensionality was appropriate. That said, a few individual
features slightly surpassed the AUC of the CFC for LFP,
ECoG, and intracellular young. This exception may be an
artifact of the small number of samples and may disappear
if larger data sets are used. The fact that the better classifiers
(of intracellular old and LFP data sets) had a larger differ-
ence between their CFC and SFC, compared to the two
others (ECoG, intracellular young), suggests that the com-
bined classifiers of intracellular old and LFP better captured
the dimensionality of the data.

Bootstrap aggregation (bagging) is an ensemble method
where classifiers are trained on subsets of the data and
then aggregated. Bagging can improve unstable learning
procedures, with the risk of slightly degrading the perfor-
mance of stable procedures [13]. Here we found that bagging
improved the classification results for ECoG and intracel-
lular young but did not change or even worsened results of
the intracellular old and LFP data sets (see 3.2). As the pro-
cedure is based on votes for the most predictive individual
features, cases that have lower performance of the CFC
than the best SFCs improved more than ones with higher per-
formance of the CFC than their SFCs.

Comparing the most predictive feature triplets (3.4 and
Supplementary Table 2) provides insights into which physi-
ological properties serve as the best predictors. The features
with high predictive power were the following (respective
data sets are in parenthesis):

1. “Failures” (intracellular old, intracellular young), re-
fers to the fraction of uncompleted transitions from
down-states to up-states in an intracellular voltage
trace and was recently described in studies by our
group on both the APP/PS1 Ab model [8,9] as well
as rTG4510, where tau is overexpressed [10]. Reduced
neuronal activity caused by uncompleted transition to
up-states leads to insufficient synchronized firing of
action potentials and eventually to fragmentation of
cortical networks into smaller networks, as signals
fail to propagate to other parts of the network.
Reduced coherence as seen in the recordings of LFP
and ECoG [7] may lead to abnormal information pro-
cessing. The high predictive power of this feature is
further evidence of its robustness in the AD model.

2. “Fit R2” (LFP, ECoG) captures how well the data can
be fit with a bimodal distribution. While normally, the
voltage distribution of neuronal activity is bimodal, re-
flecting the fluctuations between the silent and the
active modes, voltage activity of APP/PS1 Tg1 neu-
rons display a weaker bimodality due to failures to
up-state, and other perturbations to the regular state
transitions. This reduced bimodality is a possible
aspect of the pathology, and may have a greater
impact on larger networks.

3. “Integral db” (ECoG) which quantifies the power in
the d frequency band in the late part (2.5–3.5 Hz).
This feature is of special importance as it is consistent
with the slowing of the EEG found in AD patients,
which was reflected in the high power in the low
frequencies [2,4].

A body of research has pointed to electroencephalog-
raphy (EEG) as a potential early indicative tool in AD pa-
tients [16,17]. Within that framework, characteristics such
as perturbation to the synchrony of neuronal activity have
been suggested as a way to differentiate AD from other
forms of dementia. Based on these synchronization
attributes, various methods for EEG classification and
feature-selection have been reported to be good predictors
of AD [18,19]. Nevertheless, there are several caveats to
EEG as a diagnostic tool, in part due to its low signal-to-
noise ratio. A direct measurement of neural activity from
the mouse brain has a high signal-to-noise ratio and thus
could advance and add reliability to current efforts to use
noninvasive techniques for the detection of AD physiolog-
ical markers among patients.

The features used by our classifiers support human scalp
EEG studies by providing physiological correlates in a high
spatial resolution to phenomena seen in the human EEG.
Other features, such as “Fit R2”, could be modified and
used as features in the classifications of EEG measurements
from human AD patients versus controls.

The successful classification of the intracellular young da-
taset indicates the alterations in neuronal activity of APP/PS1
neurons are present at a stage when both the pathophysiology
and the behavioral changes have yet to emerge. Although
network disruptions and morphological changes are
commonly associated with the late stage of the disease [20–
22], the soluble form of Ab, appearing at a pre-plaque phase
of young mice, has also been linked to physiological changes,
both in vitro [23–26], and in vivo [8], by affecting the intrinsic
properties ofneurons.Earlydetectionofplaque-related pathol-
ogy, even before cognitive and behavioral alterations occur in
humans, could be an asset for AD research and treatment.

The present study relates to another frontier of AD
research: the implementation of neural network models of
AD. Several neural network models of AD have led to ther-
apeutics suggestions, such as slowing down the degeneration
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of synaptic connections [27], or strengthening of synaptic
connections as compensation for the loss of others, at
different stages of the disease [28]. Our results demonstrate
the potential of inferring from a functional fallacy in
one cell, through fallacies in larger networks, and eventually
to the organism. This potential is applicable to computa-
tional models that predict the processes underlying the pro-
gression of the disease.
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RESEARCH IN CONTEXT

1. Systematic review: The authors reviewed the litera-
ture using traditional (e.g., PubMed) sources. Most
attempts to detect the Ab pathology at early stages
are focused on EEG measurements, and the emer-
gence of the first cognitive changes. None of these
studies has been able to detect the pathology before
the pathophysiological or behavioral signs. No study
has detected this pathology using data from a single
neuron.

2. Interpretation: The fact that individual neurons of
transgenic mice can be successfully detected, entails
that the activity of single cells carries significant in-
formation about Ab pathology, which is available
before the onset of significant pathophysiological
and behavioral changes.

3. Future direction: Our results highlight the dominance
of the amyloid pathology in an early stage, which ul-
timately leads to neuronal degeneration and irrevers-
ible dementia. Novel features of the classification
are proposed for AD research, to serve as early assess-
ment, before the appearance of behavioral signs.
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