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ABSTRACT

Proteins with sequence-specific DNA binding
function are important for a wide range of biological
activities. De novo prediction of their DNA-binding
specificities from sequence alone would be a great
aid in inferring cellular networks. Here we introduce
a method for predicting DNA-binding specificities
for Cys2His2 zinc fingers (C2H2-ZFs), the largest
family of DNA-binding proteins in metazoans. We
develop a general approach, based on empirical
calculations of pairwise amino acid–nucleotide
interaction energies, for predicting position weight
matrices (PWMs) representing DNA-binding
specificities for C2H2-ZF proteins. We predict
DNA-binding specificities on a per-finger basis and
merge predictions for C2H2-ZF domains that are
arrayed within sequences. We test our approach
on a diverse set of natural C2H2-ZF proteins with
known binding specificities and demonstrate that
for >85% of the proteins, their predicted PWMs
are accurate in 50% of their nucleotide positions.
For proteins with several zinc finger isoforms, we
show via case studies that this level of accuracy
enables us to match isoforms with their known
DNA-binding specificities. A web server for predict-
ing a PWM given a protein containing C2H2-ZF
domains is available online at http://zf.princeton.
edu and can be used to aid in protein engineering
applications and in genome-wide searches for tran-
scription factor targets.

INTRODUCTION

The ability of proteins to recognize and bind specific DNA
regions is critical in a range of key biological processes,
including transcription, replication, packaging, repair and
recombination. Sequence-specific DNA recognition by
transcription factors is of particular interest due to its

role in dictating when and where proteins are expressed.
Despite recent progress in experimentally mapping
protein–DNA interactions (1,2), there is no organism for
which a near-complete regulatory network is known: high-
throughput experiments are still imperfect and time-
consuming, and it is not feasible in the near future to
apply them in all conditions and/or genomes of interest.
Thus, reliable computational methods for quick but
accurate prediction of protein–DNA interactions are ne-
cessary to help fill this gap (3,4).
Cys2His2 zinc finger (C2H2-ZF) proteins represent the

largest class of DNA-binding proteins in metazoans.
C2H2-ZF proteins have been implicated in several devel-
opmental, cell proliferation and complex disease pathways
(5). Structural studies have revealed a highly conserved
DNA-binding interface (6), with a proposed ‘canonical’
model suggesting that DNA-binding specificity is due to
four amino acid-nucleotide contacts per C2H2-ZF
domain. C2H2-ZF proteins have been intensely studied,
with thousands of experimentally determined examples of
protein–DNA pairs, largely based on the Zif268 model
system, that are known to either bind or not.
Nevertheless, the binding specificities of most C2H2-ZFs
within genomes are not known: for example, in the human
genome, of the �675 proteins annotated with C2H2-ZF
domains (7), specificities have been determined for less
than a hundred (8).
Several computational approaches have been developed

to infer statistical pairwise contact energies between amino
acids in C2H2-ZF domains and the corresponding nucleo-
tides of DNA (9–14). We have previously shown that
inferring these contact energies via support vector
machines (SVMs) yields accurate predictions of whether
a C2H2-ZF protein can bind a specific DNA site and out-
performs previously described approaches (12). Our SVM-
based approach has also been shown by others to be
effective in predicting positional base pair preferences of
yeast C2H2-ZF proteins (15), and has been used to help
implicate the C2H2-ZF protein PRDM9 in meiotic recom-
bination by matching a motif associated with recombin-
ation hotspots with predictions based on our approach
(16). We have also since performed additional statistical
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and structural analysis of C2H2-ZF protein–DNA inter-
faces and have uncovered empirical evidence suggesting
that contacts beyond the canonical ones that we previ-
ously used in our models are important for and improve
predictions of C2H2-ZF protein–DNA interactions (17);
this is consistent with the previously noted limitations of
the canonical binding model (6).
Here we combine our findings on an expanded struc-

tural interface for C2H2-ZF–DNA binding with our
approach for inferring pairwise statistical contact
energies to develop a method for accurate de novo predic-
tion of DNA-binding specificities from protein sequences
alone. We describe how to leverage approaches that
compute empirical energy scores of binding interfaces in
order to build position weight matrices (PWMs) represent-
ing binding specificities for C2H2-ZF domains. We predict
DNA-binding specificities on a per-finger basis and then
merge predictions for C2H2-ZF domains that are arrayed
within sequences. The described approach is implemented
as a front-to-end online webform (http://zf.princeton.edu)
that first uncovers C2H2-ZF domains and then predicts a
PWM describing the binding specificities of these
domains. In order to benchmark our approach, we
gather a diverse data set of 143 non-redundant naturally
occurring C2H2-ZF proteins with known specificities. We
note that to date most approaches for predicting C2H2-
ZF binding sites have been tested either on artificial zinc
fingers where the binding interface is known or on natural
proteins limited to a few (e.g. at most 4) canonically linked
C2H2-ZF domains (10–13); in contrast, our test set
contains proteins with a diverse set of architectures that
may contain numerous C2H2-ZF domains, only some of
which are responsible for the reported binding specificities.
We present an evaluation framework based on PWM
alignment and demonstrate good agreement between our
predicted PWMs and those known from experiment.
Further, we show via case studies that our predicted
PWMs can be used with alignments to experimental
PWMs to identify which fingers or protein variants are
mediating the observed DNA-binding specificities.

MATERIALS AND METHODS

Structural model and prediction algorithms

Structural studies have revealed that each ‘finger’ in a
C2H2-ZF protein consists of a bba structure, with four
amino acids in the a-helix (referred to as positions -1, 2, 3
and 6) largely determining DNA-binding specificity (6).
Each finger binds a 4-bp region and previous structural
analysis has suggested a canonical binding model with
four contacts: a6b1, a3b2, a-1b3 and a2b4 (Figure 1).
However, we have recently found that up to three add-
itional contacts may be important for C2H2-ZF binding
specificity: a2b3, a-1b4 and a6b2, with the importance of
contact a2b3 supported by several lines of evidence (17).
Thus, in the current study, two structural models are con-
sidered and tested: the canonical binding model assuming
four amino acid–nucleotide contacts and the expanded
binding model with seven contacts (the canonical model
plus the a2b3, a-1b4 and a6b2 contacts). We also include a

second degree polynomial kernel based on the canonical
model, which implicitly takes higher order interactions
into account (12,17).

We previously built a literature-derived experimental
database including 1312 positive and 8081 negative
examples of C2H2-ZF protein–DNA binding (12).
Assuming the binding models described above, every
protein–DNA interface can be represented in a per-
finger manner as a vector x with dimensionality either
320 (for the canonical binding model: 4� 4� 20) or 560
(for the expanded binding model: 7� 4� 20), where
xabc=1 if amino acid a and base b comprise contact c
in the finger. Three SVMs are trained using this data set:
a linear and a second-degree polynomial SVM trained on
the basis of the canonical binding model and a linear SVM
trained on the basis of the expanded binding model. We
refer to these methods as the ‘canonical’, ‘polynomial’ and
‘expanded’ SVMs. SVMs are trained using SVM-light
version 6.02 (18), with the constraint that the weight
vector go through the origin. The regularization param-
eter is chosen automatically by SVM-light. We note that
with linear SVMs, the abc-th dimension of the trained
weight vector w represents the empirical contact energy
between amino acid a and base b when they comprise
contact c, and the score for a particular C2H2-ZF
protein–DNA configuration represented as x is
computed as w·x.
Predicting position weight matrices for zinc finger domains

Given any approach for empirically scoring C2H2-ZF
protein–DNA interfaces, we will use it to predict a
PWM for a specific C2H2-ZF protein. We note that in
the formulas that follow, for notational simplicity, we
assume a fixed C2H2-ZF domain and do not explicitly
parameterize on the domain. We begin by assuming that
each C2H2-ZF domain binds independently to a corres-
ponding 4-bp DNA site. There are 256 sequence combin-
ations of such 4 bp binding sites. Therefore, for a given
C2H2-ZF domain, using any of the scoring methods
described above, we can compute an empirical binding
energy Ei for each of the 256 possible 4 bp sequences.
In other words, every potential 4 bp binding site can be
considered as the realization of a statistical-mechanical

Figure 1. Schematic representation of the C2H2-ZF protein–DNA
interaction interface, with 2 successive fingers shown. Amino acids
within the i-th finger are numbered according to their relative
position from the start of the alpha helical domain, with a�1
denoting the residue immediately preceding the helix. Bases b1, b2, b3
and b4 are numbered sequentially from 50 to 30 of the primary DNA
strand, and the complementary bases are primed. The canonical
contacts are shown with solid arrows, and the three additional
contacts in the expanded binding model are shown with dashed arrows.
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system of 256 independent states. The probability that
a given C2H2-ZF domain occupies any of these states i
(i.e. binds the corresponding 4 bp sequence) is assumed to
follow the classical Boltzmann distribution as previously
suggested (4,19):

pðiÞ ¼
1

Z
� exp �

Ei

kT

� �
: ð1Þ

For the specific case when a trained SVM is used
for evaluating a protein’s ability to bind a 4-bp sequence
i, we assume that the SVM score yi (e.g. yi=w·xi in
the linear kernel case, where w is the weight vector,
and xi is the vector representing the protein–DNA inter-
face being considered) is negatively proportional to
the binding energy Ei. Therefore, the probability that
the C2H2-ZF domain binds a certain 4 bp sequence i is
given by:

pðiÞ ¼
1

Z
� exp �yið Þ; ð2Þ

where � is the constant factor that converts SVM scores
into units of kT and Z is the partition function (computed
as a normalization parameter so that a probability distri-
bution is obtained). For the results reported here, we use
�=4 for all three methods; variations in � affect the in-
formation content of the predicted PWMs but do not
otherwise greatly affect our overall findings.

The probability of every given position pos in the 4-bp
DNA sequence to be occupied by a nucleotide b can then
be determined from a summation of probabilities for 4 bp
sequences with nucleotide b in position pos:

pb, pos ¼
1

Z
�
X256
i¼1

�ðb, posÞ � exp �yið Þ; ð3Þ

where b 2 {A,C,G,T} and pos 2 {1,2,3,4}, and �(b,
pos)=1 if site i has nucleotide b in position pos. For
simplicity, we assume that nucleotides are chosen with
equal a priori probabilities (i.e. all four nucleotides are
equally common in the genome). We note that to
address situations with strongly biased genomes (e.g. in
Plasmodium falciparum (20)), background nucleotide dis-
tributions could be incorporated into the formula. Once
per-position nucleotide distributions are predicted,
sequence logos are generated as described elsewhere (21)
using WebLego (22).

Importantly, this method takes advantage of the fact
that SVM scores can be obtained for all 256 4-bp se-
quences. This is in contrast to traditional methods for
building PWMs from experimental data, where a poten-
tially small number of binding sites are uncovered and
used. Our approach instead uses all sites to predict pos-
itional nucleotide probabilities without applying an arbi-
trary cutoff for binding sites. An overview of the
procedure for predicting per-finger PWMs is shown in
Figure 2.

We note that for the linear SVMs, it is not necessary to
enumerate over all possible 4 bp sequences, and instead

the SVM scores for each nucleotide position can be con-
sidered independently.

Combining per-finger PWMs for adjacent C2H2-ZF
domains

The above approach predicts a 4-bp PWM for a single
C2H2-ZF domain independent of any other domain
within the protein sequence. However, successive C2H2-
ZF domains that bind DNA together typically do so in
overlapping subsites of length 4 (Figure 1). In the canon-
ical model, two amino acids affect the overlapping nucleo-
tide position b4: residue a6 from the preceding ZFi-1

domain interacts with the primary DNA chain and
residue a2 of the current ZFi domain interacts with the
complementary strand nucleotide b4

0 (Figure 1). Thus,

Figure 2. Flow chart for per-finger prediction of PWMs. The ability of
every individual zinc finger domain (as predicted by HMMER (32)) to
bind all possible 4 bp DNA sequences is scored; here we show a pre-
trained SVM that used the seven-contact model. The SVM scores for
all possible 256 DNA variants are subsequently used to compute the
final PWM using equation (3). Finally, the PWM is visualized in the
form of a sequence logo.
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for arrayed C2H2-ZF domains, predicted per-finger
PWMs need to be ‘merged’ to account for this overlap.
Further, it may be desirable to weigh the contribution of
each of the contacts differently when computing the
merged PWM. Therefore, to predict the probability distri-
bution for such a ‘junction nucleotide’ position, we intro-
duce a parameter 0��� 1 so that the overlapping
nucleotide probabilities pb can be predicted from the
probabilities pb,i-1 and pb,i computed independently for
the same nucleotide position using the corresponding
ZFi-1 and ZFi domains as:

pb ¼
1

N
� p�b,i�1 � p

1��
b,i ; ð4Þ

where N is a normalization factor that ensures a proper
probability distribution at the overlapping nucleotide.
Note that whereas �= 0 ignores the effect of residue a6
in the ZFi-1 domain and �=1 ignores the contribution of
residue a2 in the ZFi domain, �=0.5 results in an equal
weighting of either domain with equation (4) computing
the geometric means of the probabilities. For the results
described in this article, we use �=0.75 to merge per-
domain PWMs; this parameter is chosen to reflect the
closer proximity of residue a6 to the primary DNA chain
and therefore its likely higher contribution to DNA
binding. However, we note that using �=0.5 does not
significantly alter our findings.

Arrays of C2H2-ZF domains

The total number of C2H2-ZF domains in a single protein
can vary immensely; for example, the human OAZ protein
(NCBI accession no: Q2M1K9) has 30 C2H2-ZF
domains. However, consecutive C2H2-ZF domains are
thought to ‘canonically’ bind the major groove of DNA
only when connected by short linkers (6). Further, in
several studied cases, DNA-binding C2H2-ZF domains
that are far away from each other in sequence appear to
bind DNA independently (23). Therefore, within each
protein sequence, we array C2H2-ZFs together based on
their proximity along the protein sequence, and predict
specificities at the per-array level. Specifically, based
upon the analysis of known co-crystal structures of
C2H2-ZF–DNA complexes, we hypothesize that C2H2-
ZF domains can act together as a single DNA-binding
array if they have a sequential distance between them
from 9 to 12 amino acids (as counted from the last
Histidine and the first Cysteine in the following C2H2-
ZF domain). Therefore, we array C2H2-ZF domains
together if there are at most 12 residues between them,
while those separated by longer linkers are considered as
separate arrays. In our analysis, the total number of
C2H2-ZF domains in a single array has no maximum
limit. For example, the human CTCF protein (P49711)
has an array of 11 C2H2-ZF domains. For each array,
PWMs are predicted per-domain and then merged
within the array using the strategy outlined above. If an
array has i zinc fingers, then the length of the predicted
PWM is 3i+1.

Experimental databases

We gather C2H2-ZF protein specificities obtained
from four resources (described below) and consider per-
formance on the combined data set of all proteins, as
well as on the individual data sets. For each individual
data set, and then for the combined data set, PWMs for
protein sequences that are identical in amino acid pos-
itions from �1 to 6 in each of their ZF domains are con-
sidered together. Further, each experimental PWM in
these databases is trimmed to remove low information
content columns at the ends. Specifically, for each
column m in a PWM, we compute the information
content (IC) as:

ICðmÞ ¼ 2+
X

b2fA,C,G,Tg

mb logmb; ð5Þ

where mb represents the frequency of the base b in column
m (24). We trim columns with IC< 0.5 from both the 50

and 30 sides.

JASPAR database
The JASPAR database (http://jaspar.genereg.net) contains
high-quality data for transcription factor specificities in
the form of PWMs (25). C2H2-ZF proteins are found in
JASPAR under the class ‘Beta-Beta-Alpha-zinc finger,
Zinc-coordinating’ and 66 proteins contain at least one
array of two or more C2H2-ZF domains. Once we
group proteins that are identical in their �1 to 6 C2H2-
ZF positions, we have 57 proteins.

UniProbe database
The UniPROBE (Universal PBM Resource for Oligo-
nucleotide Binding Evaluation) database (26) includes
PWMs determined via the protein binding microarray
(PBM) technology (27). PWMs for 26 C2H2-ZF mouse
proteins (28) and 14 yeast proteins (29), as determined
by the authors via the Seed-and-Wobble algorithm (30),
are available from http://thebrain.bwh.harvard.edu/
uniprobe/. These yield 23 mouse and 13 yeast proteins
that are non-redundant. We note that this database
contains two additional yeast C2H2-ZF proteins (SFP1
and STP2) but their C2H2-ZF domains are not arrayed
so they are not considered here.

Jolma database of human transcription factors
Recently, Jolma et al. determined 830 DNA-binding
profiles for various human transcription factors via high-
throughput SELEX and ChIP sequencing (8). In this data
set, 57 PWMs are reported for 52 clones of 46 human
C2H2-ZF proteins (8). After grouping redundant
proteins, we obtain 36 C2H2-ZF proteins in this data set.

FlyFactorSurvey database
The FlyFactorSurvey database contains PWMs for tran-
scription factors in Drosophila melanogaster, as
determined largely by the bacterial one-hybrid system
(31). This database includes 118 motifs for 55 C2H2-ZF
proteins. Experimental PWMs and the specific protein
fragments used in the experimental screens are available
from http://pgfe.umassmed.edu/TFDBS/. We compare
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the specified protein fragments and obtain 52 non-redun-
dant proteins.

Combined data set
After merging redundant protein sequences, the combined
data set contains 143 proteins. In total, the proteins in this
combined data set contain �1400 columns in their
trimmed PWMs.

Evaluation framework

In order to test our procedure for predicting PWMs, for
each protein we compare our predicted PWMs for these
proteins to those that have been experimentally reported.
We note that the transcription factors in the test set are
independent of those in the experimental data set used to
train the SVMs, as the training data set consists of
examples derived largely from synthetic C2H2-ZF
proteins based on the Zif268 system (12). Further,
whereas it is known which C2H2-ZF domains in our
training set interact with specific DNA subsites, the test
set consists of PWMs corresponding to DNA-binding
specificities at the protein level; that is, these resources
do not specify which C2H2-ZF domains within the
protein are responsible for the reported specificities.

For each transcription factor in our test sets, we
uncover C2H2-ZF domains using HMMER (32), as
described previously (17). We consider only proteins that
contain at least one array of two or more C2H2-ZF
domains. PWM predictions are made for all discovered
arrays of size at least two and these PWMs are
compared to the experimentally determined DNA-
binding specificities. Every C2H2-ZF array is evaluated
independently and a prediction is assumed to be correct
for every protein where at least one C2H2-ZF array
matches the known PWM, as determined by a PWM
alignment algorithm (see below). When multiple experi-
mental PWMs are available for a protein in a database,
the prediction is assumed to be correct if a good match is
observed for at least one experimental PWM.

PWM alignments

We align a predicted PWM with an experimental PWM
using a column score based on the Pearson correlation
coefficient (PCC), but which down weights the contribu-
tions of columns in the experimental PWM that have low
information content. In particular, in the IC-weighted
PCC measure, the similarity of predicted column n and
experimentally determined column m where nb and mb

give their nucleotide frequencies is computed as:

PCCIC
m,n ¼

P
b

ðmb � �mÞðnb � �nÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
b

ðmb � �mÞ2 �
P
b

ðnb � �nÞ2
r �

ICðmÞ

2
: ð6Þ

The maximum scoring local alignment using this meas-
ure between the predicted PWM and the experimental
PWM is determined, where the reverse complement
of the experimental matrix is also considered. Gaps
within the alignment are not allowed. We note that we
have also considered several other column measures for

PWM alignment including Jensen–Shannon Divergence,
Kullback–Leibler Divergence, Pearson Correlation
Coefficient, Euclidean Distance (33–36), and average log
likelihood ratio (37), and the overall conclusions are con-
sistent with what we report here; however, in other appli-
cations, depending upon the overall quality and/or the IC
of the predictions, it may be better to use a measure other
than IC-weighted PCC or to use the ICs of both the pre-
dicted and actual PWMs in computing column scores.
Once the best alignment of the predicted and experi-

mental PWM is obtained, we use several approaches to
assess performance. In the first approach, we consider the
range of IC-weighted column scores obtained in the align-
ments for each column in a trimmed experimental PWM.
In the second approach, we classify each column in the
experimental PWM as correctly or incorrectly predicted,
and compute the fraction of columns that are correctly
predicted. Specifically, we judge an experimental column
to be correctly predicted if the IC-weighted PCC between
it and the predicted column aligned to it is at least 0.25.
(See Supplementary Figures S1 and S2 for ranges and
examples of IC-weighted PCC scores.) In the final
approach, prediction accuracy is evaluated by computing
empirical P-values, where the final alignment score using
the IC-weighted PCC measure is compared with the dis-
tribution of scores calculated for 10 000 randomized
matrices of the size of the original experimental PWM.
Randomized matrices are generated by picking random
columns from PWMs in the Jaspar database; only
PWMs from the organism corresponding to the experi-
mental matrix (fungi, drosophila or vertebrata) are used.
A prediction is considered to be correct for cases with
P� 0.05 for at least one C2H2-ZF array and any experi-
mental PWM for the protein under consideration.

RESULTS

Quality of PWM predictions for natural PWMs

For each protein in our combined database, we predict a
PWM for each array and then determine the best align-
ment of an array for a protein with the experimentally
determined PWM. We first evaluate how well the columns
in our combined test set are predicted (Figure 3A). Our
combined test set contains �1400 columns in their PWMs,
and we find that �55% of the columns in our data set
have IC-weighted PCC scores greater than or equal to 0.25
using either the canonical, expanded or polynomial SVMs.
In fact, while a range of column score are observed, 63.5%
of the columns in experimental PWMs (using either ca-
nonical, expanded or polynomial SVMs) are in at least
weak agreement with their predictions as judged by
having an IC-weighted PCC scores greater than or equal
to 0.
We next evaluate how well individual PWMs are pre-

dicted. For each aligned PWM, we compute the fraction
of its columns that are correct. For this analysis, we
consider a column to be correct if it has an IC-weighted
PCC score >0.25, and consider what fraction of proteins
have an increasing fraction of the columns in their PWMs
correctly predicted (Figure 3B). For all three approaches,

Nucleic Acids Research, 2014, Vol. 42, No. 1 101

3
-
-
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt890/-/DC1
http://nar.oxfordjournals.org/lookup/suppl/doi:10.1093/nar/gkt890/-/DC1
,
greater than 


>85% of proteins have 50% of the columns in their
PWMs correctly predicted, and >30% of proteins have
75% of their columns correctly predicted. Further, using
any of the three methods, half the proteins have at least
60% of their PWM columns correct, and three quarters
have >50% of their columns correct. We note that low IC
columns (IC< 0.5) cannot achieve an IC-weighted PCC
score >0.25 (Supplementary Figure S2), and thus this
approach may give a pessimistic view of performance.

As an alternate approach to evaluate predicted PWMs,
we consider for each of the three methods the empirical P-
value of obtaining a score at least as high as that obtained
by aligning the experimental and predicted PWMs (see
‘Materials and Methods’ section). Then, as we vary the
P-value threshold, we consider the fraction of proteins
with experimental PWMs whose alignments with the pre-
dicted PWM are significant at that level (Figure 3C). The
expanded and polynomial SVMs outperform the canon-
ical SVM, as an increased number of proteins are con-
sidered correctly predicted at a wide range of P-values.
At P� 0.05, the expanded SVM model has statistically
significant matches to 83% of the proteins in the
combined data set, while the canonical and polynomial
SVMs have matches to 75 and 80% respectively.

For each of the individual test sets, we give the fraction
of PWMs correctly predicted at P� 0.05 (Table 1). We
also give, for each data set, the full P-value curves, the
distribution of column scores and the distribution of the
fraction of correctly predicted experimental PWM pos-
itions in Supplementary Figures S3–S7. All SVM
methods exhibit the highest performance on the yeast
data set, with the expanded linear SVM obtaining 12 cor-
rectly predicted proteins (92%) at P� 0.05. Over 87% of
fly transcription factors are predicted at P� 0.05 by all
SVM methods (Table 1). The best overall performance is
shown by the polynomial and expanded linear SVMs, with
90% of the fly proteins correctly predicted. We note that
all the approaches perform significantly better for yeast
and fly proteins than for proteins in other species. In
contrast, the methods have lowest performance on the
mouse PBM data set, where only 61% of the proteins
are predicted correctly by the expanded SVM.
Performance on the JASPAR and Jolma human data
sets are intermediary, with 75 and 81% respectively of
the proteins correctly predicted at P� 0.05 using the
expanded linear SVM. The differing performances of the
methods on these data sets is most likely due to the
varying complexities of the domain architectures found
in each of them. For example, the yeast data set consists
entirely of proteins with two C2H2-ZF domains whereas
the mouse data set has the highest fraction (46%) of
proteins with five or more C2H2-ZF domains.

Using all three evaluation measures, the expanded SVM
outperforms the canonical SVM and in many cases the
polynomial SVM. A larger fraction of experimental
PWM columns have IC-weighted PCC score >0.25 using
the expanded and polynomial SVMs than the canonical
SVM (Figure 3A). For a wide range of thresholds, a larger
fraction of PWMs using the expanded SVM have that
threshold of columns correct as compared to the canonical
SVM (Figure 3B). Further, a larger fraction proteins in

%

%
%

A

B

C

Figure 3. Performance of canonical (red), expanded (blue) and polyno-
mial (black) SVMs in predicting natural C2H2-ZF proteins in the
combined data set. (A) Distribution of IC-corrected PCC scores in
aligned PWMs. For each threshold of IC-corrected PCC score (x-
axis), we plot the fraction of columns in trimmed experimental
PWMs that achieve a score that high in their alignments to predicted
PWMs. (B) Fractions of correctly predicted positions in PWMs. We
give the percent of proteins whose PWMs (y-axis) have at least a given
percent of correct columns (x-axis), using an IC-corrected PCC thresh-
old of 0.25 to determine whether an aligned column is correct. (C) The
percent of correctly predicted proteins at various P-values.
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the combined data set have statistically significant matches
to the PWMs predicted using the expanded SVM than
predicted using the canonical SVM (Figure 3C) or a pre-
viously published method (11) based on the canonical
binding model (Supplementary Figure S8). The
expanded SVM also outperforms the canonical SVM on
all the individual data sets except the mouse PBM data
(Table 1). Overall, the performance of the expanded SVM
supports the importance of the three additional contacts
included in the expanded seven-contact model that are not
part of the canonical model (17).

Factors affecting the quality of PWM predictions

We have previously shown that our training data set has
more examples with C/G nucleotides relative to A/T nu-
cleotides, which are most likely underrepresented (17).
This may lead data-driven methods to not recognize
amino acid positional preferences for A and/or T bases.
In order to test the performance of our methods in pre-
dicting PWM columns with different nucleotide prefer-
ences, we focus on two subgroups of columns in our
experimental PWMs: those whose combined fraction of
C and G nucleotides is >0.75 (‘C/G-rich’) and those
whose combined fraction of A and T nucleotides is
>0.75 (‘A/T-rich’). For each protein in the combined
data set, we compute the fraction of its A/T-rich and
C/G-rich columns in its aligned experimental PWM that
are correctly predicted by the expanded linear SVM, as
judged by an IC-weighted PCC score of at least 0.25
(Figure 4A). Across the proteins, we observe significantly
better performance in predicting positions with high C/G
content than those with high A/T content (median 75%
versus 50%, P< 10�10 using the Mann–Whitney test).
Indeed, over the entire data set, 73% of the C/G-rich pos-
itions are correctly predicted by the expanded SVM,
whereas this number is only 50% for the A/T-rich pos-
itions. The canonical and polynomial SVMs also show a
similar gap in performance in predicting A/T-rich pos-
itions (data not shown).

We also assess the performance of our methods in pre-
dicting C2H2-ZF binding specificities based upon the
number of C2H2-ZF domains within arrays. Using the
expanded SVM, for each protein in our combined data
set, we consider the best alignment between the predicted

and experimental PWMs and determine the number of
C2H2-ZF domains in the array used to make the predic-
tion. We then classify each protein based on this number,
and assess what fraction of its experimental PWM
columns are correctly predicted (Figure 4B). Performance
is highest for arrays with three domains, and decreases
with an increasing number of C2H2-ZF domains; this is

A

B

Figure 4. (A) The fraction of correctly predicted PWM positions based
upon nucleotide composition. For each protein in the combined data
set, we compute the fraction of its A/T-rich and C/G-rich columns that
are correctly predicted by the expanded linear SVM and display this
data with a box plot. Significantly better performance is observed for
positions with high C/G content than those with high A/T content
(P< 10�10 using the Mann–Whitney test). (B) The fraction of correctly
predicted PWM positions based upon the number of C2H2-ZF
domains. For each protein in the combined data set, we classify it
based upon the number of arrayed C2H2-ZF domains yielding the
best alignment with the experimental PWM using the expanded
SVM. For each classification (2, 3, 4 or 5+ C2H2-ZF domains), we
use a box plot to display the fraction of correctly predicted positions
per protein, and give the median value above each box. Performance is
highest for arrays with three C2H2-ZF domains and declines as the
number of domains increases. For both (A) and (B), the bottom and
top of the box plots are the 25th and 75th percentiles (i.e. they give the
inter-quartile range), and whiskers on the top and bottom represent the
maximum and minimum data points within the range represented by
1.5 times the inter-quartile range. Further, in both (A) and (B), pos-
itions are judged to be correct using an IC-weighted PCC score of at
least 0.25.

Table 1. Number and fraction (in parentheses) of proteins in each

data set for which predicted PWMs significantly match at P� 0.05

Database Number
of proteins

SVM models

Linear
canonical
(%)

Linear
expanded
(%)

Polynomial
(%)

JASPAR 57 37 (65) 43 (75) 41 (72)
UniProbe yeast 13 10 (77) 12 (92) 10 (77)
UniProbe mouse 23 14 (61) 14 (61) 16 (70)
FlyFactorSurvey 52 45 (87) 47 (90) 47 (90)
Human 36 25 (69) 29 (81) 28 (78)
Combined 143 107 (75) 118 (83) 114 (80)

The best performing method on each data set is shaded.
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also true for the canonical and polynomial SVMs (data
not shown). The apparent lower performance on arrays
with two C2H2-ZF domains, as compared to three and
four domain arrays, is most likely due to the length dis-
tribution of experimental PWMs. By visual inspection, we
observe that many of the experimental PWMs for proteins
with two C2H2-ZF domains have low IC columns at the 50

and 30 ends even after trimming. Indeed, theoretically,
C2H2-ZF domains that bind in a canonical manner
would have 7, 10, 13 and 16 bases in their PWMs for 2,
3, 4 and 5 domains, respectively; however, experimental
PWMs have on average 9.3, 9.2, 10.2 and 10.8 bases re-
spectively for these cases. Based on this analysis, we
conclude that, as expected, specificity is easiest to predict
for proteins with a smaller number of C2H2-ZF domains.

Description of webpage for predicting PWMs for
C2H2-ZF proteins

We have implemented the described approach for predict-
ing DNA-binding specificities for C2H2-ZF proteins and
have made it available at http://zf.princeton.edu. Our
webserver allows users to input protein sequences, and
C2H2-ZF domains are identified via HMMER (32).
Given the difficulties in predicting DNA-binding
specificities for proteins with multiple C2H2-ZF
domains, we allow the user to specify which domains
comprise the array for which predictions should be
made and which method (expanded or polynomial)
should be used to predict the PWM. Finally, the predicted
PWM is displayed as a sequence logo and can be down-
loaded in matrix form.

Case studies: uncovering C2H2-ZF domains mediating
specificity via PWM alignment

A single C2H2-ZF gene may encode numerous proteins
with differing DNA-binding specificities through the use
of alternative splicing, where different C2H2-ZF domains
are included in various isoforms. Here we show that it is
possible to distinguish isoforms based upon their pre-
dicted DNA-binding specificities by focusing on two
D. melanogaster proteins with more than one isoform
with known specificity: tramtrack and lola.
Tramtrack is a developmental protein (38) with eight

known isoforms (39) that can be subdivided into two
groups whose members have identical C2H2-ZF compos-
itions. Each of these isoform groups has two C2H2-ZF
domains, and their specificities are listed in the
FlyFactorSurvey database as ttk-PF and ttk-PA.
Predictions using the polynomial SVM for each of the
isoforms clearly distinguish between the two isoforms
(Figure 5A). The ttk-PF isoform is well predicted with
six out of seven positions correctly predicted, whereas
the ttk-PA isoform shows an overlap over seven positions,
of which four are considered correct.
Lola, another developmentally important protein in D.

melanogaster (40), has 25 identified transcripts and DNA-
binding specificities have been reported for 13 isoforms
with distinct C2H2-ZF compositions (41). Each of these
isoforms has two C2H2-ZF domains. We predict PWMs
using the expanded SVM and find statistically significant

matches for 6 out of 13 isoforms (Supplementary Figure
S9). Prediction quality for these isoforms varies, with
some isoforms (e.g. PD, PG/PI, PL, PO, PT/PU and
PW) clearly showing agreement in most positions.

PWM alignment can also be used to identify which
C2H2-ZF domains within a multidomain zinc finger
protein are mediating its known binding specificity.
CTCF is a well-known insulator protein that binds
DNA and blocks the interaction between enhancers and
promoters, thereby preventing transcription. CTCF
contains 11 zinc finger domains and has been shown to
recognize a �15 bp-long DNA-binding motif (42).
Alignment of this experimentally determined motif with
the one predicted by the expanded SVM (Figure 5C)
suggests that only predicted nucleotide positions 13–25
(which correspond to zinc fingers 4–7) coincide with the
experimentally observed recognition motif (Figure 5B).
This result is consistent with previous observations
(43,44) that suggests that zinc fingers 4–7 are primarily
responsible for the interaction with DNA.

Hermaphrodite (HER) is a transcription factor involved
in sex determination in D. melanogaster that has four
C2H2-ZF domains that are arranged in two arrays that
each consist of two domains. The experimental PWM
reported for HER is unusual for a C2H2-ZF, as it has a
low IC region in the middle of it (31). PWMs predicted for
both arrays using the expanded SVM are similar to those
experimentally observed (Figure 5C). Interestingly,
however, while the predicted ZF1-ZF2 array matches the
experimental PWM directly, the prediction for the ZF3-
ZF4 array best matches the complementary strand of the
given PWM. Alternatively, a much weaker but still
notable match for the ZF3-ZF4 array is obtained in the
same region without reverse complementing. In either
case, we propose that the unusual DNA-binding specifi-
city experimentally observed for HER reflects the archi-
tecture of C2H2-ZF domains in this protein: four fingers
interacting together with DNA in two paired arrays.

Overall, these examples show that our approach is a
promising way to identify which C2H2-ZF domains are
responsible for DNA-binding function when DNA
sequence motifs are known but structural data are
unavailable.

DISCUSSION

Because C2H2-ZFs are the most prevalent DNA-binding
domain in metazoans, high accuracy predictions of their
DNA-binding specificities would be a great aid in expand-
ing our knowledge of regulatory networks. Further, due to
their ability to bind a wide-range of DNA targets, they
have proven to be a powerful platform for genome engin-
eering (45,46), and tools for predicting their DNA-binding
specificities can be leveraged for designing proteins to bind
specific DNA regions amenable to targeting (47). Previous
approaches, both bioinformatics (10–13) and molecular
mechanics based (15,48–51), have had limited testing, pri-
marily on the Zif268 model system and a small number of
natural C2H2-ZF proteins. Our goal in this work is to
predict DNA-binding preferences directly from protein
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sequence, and to systematically assess how well C2H2-ZF
specificity can be predicted for naturally occurring
proteins.

We have shown that for �80% of the zinc fingers in our
data set, we are able to predict PWMs that significantly
match their known binding specificities. Further, we find
that the expanded binding model has consistently better
overall performance than the canonical model in predict-
ing the specificities of natural C2H2-ZF proteins, and has
similar performance to (and sometimes even outperforms)
a more complex polynomial model that incorporates
pairwise dependencies between all canonical contacts.

This performance improvement supports our earlier
finding that additional contacts beyond those in the ca-
nonical model are important for C2H2-ZF binding speci-
ficity, and can be used to better predict DNA-binding
specificities (17). Though we have tested our approach
for inferring PWMs using empirical energies derived via
SVMs, we note that alternate scoring schemes may also be
used, including those based on neural networks (13) or
simple biophysical rules (52), both of which have already
been applied towards predicting C2H2-ZF binding sites,
or random forests and other classifiers that have been
applied to predict the DNA-binding specificities for

Figure 5. Comparison of experimental and SVM predicted sequence logos for (A) Tramtrack: experimental (top) and predicted by polynomial SVM
(bottom); (B) CTCF: experimental (top) and predicted by expanded SVM (bottom); and (C) HER: predicted by expanded SVM for the ZF3-ZF4
array (top), experimental (middle) and predicted by expanded SVM for the ZF1-ZF2 array (bottom).
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other classes of transcription factors (53) and may add-
itionally be effective for C2H2-ZF domains.
Despite our progress, many challenges remain in pre-

dicting DNA-binding specificities at the protein level. In
many known cases, only a subset of C2H2-ZF domains in
a protein work together to bind DNA. Most of the well-
studied C2H2-ZF arrays have nine residues between the
last His residue and the first Cys residue of the next finger
(as in the Zif268 protein). However, some C2H2-ZF
arrays have longer linkers that also bind continuous
DNA sequences. In this work, we have assumed that
adjacent C2H2-ZF domains that are within 12 amino
acids of each other bind DNA as a single array.
However, C2H2-ZF domains that are further away from
each other in the sequence may also work together.
Further, when predicting binding specificities at the
protein level, we do not know which of the observed ZF
arrays are actually DNA binding; indeed, many C2H2-ZF
domains are known to bind protein or RNA and may not
bind DNA in a specific manner (54). As yet, no methods
exist for predicting which C2H2-ZF domains bind DNA;
for this reason, in our online tool, we allow the user to
specify the C2H2-ZF domains for which binding
specificities should be predicted.
Another complication is that consecutive C2H2-ZF

domains that bind DNA together in a canonical fashion
tend to do so with an overlapping nucleotide position. In
our current work, we have predicted the nucleotide fre-
quency of the overlap position using a weighted average of
frequencies predicted using each of the fingers individu-
ally. However, it remains possible that longer range inter-
actions, not considered in the protein–DNA interaction
interface models studied here, can affect how adjacent
C2H2-ZF domains cooperate with each other in binding
DNA. For example, it has been observed that many
C2H2-ZF proteins designed via modular assembly do
not have their intended binding specificities (55);
however, these modular assembly approaches have
largely considered 3bp subsites, whereas we are explicitly
taking the overlap position into account.
In order to uncover what types of PWMs are most dif-

ficult for our approaches to predict, we have also assessed
performance based on column-wise nucleotide compos-
ition. We have found that A/T-rich targets are the most
difficult for current methods to predict. This reflects the
lack of A/T targets in our training data sets, and we
believe that as more diverse examples of C2H2-ZF
binding interfaces are uncovered, significant improve-
ments in predicting C2H2-ZF binding specificities will
result. We note however that while experimental PWMs
are being rapidly determined for natural C2H2-ZF
proteins as well as for other transcription factors via a
variety of experimental techniques (8,56), in most of
these cases, it is not known which C2H2-ZF domains
interact with DNA or how the amino acids within these
domains are contacting DNA. Thus, to date it has proved
difficult to use these data to train models for predicting
DNA-binding specificities. Even evaluating when a pre-
dicted binding specificity matches a known one has chal-
lenges, as it is necessary to align predicted and known
PWMs. Though many approaches exist for aligning

PWMs (57), there is not general agreement about which
is the best to use and this introduces some uncertainty in
the evaluation process. Nevertheless, we have shown in a
few case studies that it is possible to use our approach for
predicting PWMs along with PWM alignment to uncover
which domains are responsible for observed experimental
binding specificities. As more large-scale data are obtained
about which fingers in C2H2-ZF proteins are interacting
with DNA, this can be tested more systematically.

In sum, we have developed a general approach for
estimating DNA-binding specificities for proteins contain-
ing C2H2-ZF domains, and have made this tool available
online at http://zf.princeton.edu. We have quantitatively
assessed the accuracy of our predictions on a diverse set of
proteins for which PWMs have been experimentally
determined, and have shown that our predicted PWMs
significantly match experimental PWMs for over 80% of
them. As new high-throughput experimental techniques
are increasingly applied to quantitatively probe large
numbers of C2H2-ZF protein-DNA binding interfaces,
especially in designed systems where domain interactions
are known (58–61), we expect that future models based on
this data will yield even more accurate predictions of
binding specificities.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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