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Abstract: This paper analyzes the working behavior characteristics of a prestressed concrete trans-
verse large cantilever continuous (PCTLCC) box girder bridge model based on structural stressing
state theory and the numerical shape function (NSF) method. At first, the normalized generalized
strain energy density (GSED) is established to model the stressing state of the bridge model. Subse-
quently, the Mann Kendall (M–K) criterion is applied to detect three characteristic loads, respectively,
elastic–plastic branch load P (200 kN), failure load Q (300 kN), and progressive failure load H (340 kN),
and the failure load Q is found to be the starting load of the damage process of the bridge model,
rather than the ultimate load where the structure has been destroyed. Finally, the NSF method is
adopted to interpolate the test data, and a detailed analysis for the variation characteristics of the
working behavior of the bridge model under loads is performed based on the interpolation results.
The characteristic load detection method and experimental data extension method for PCTLCC box
girder bridge established in this study can provide valuable references for the design and analysis of
such bridges.

Keywords: stressing state; mutation; numerical shape function; large cantilever box girder bridge;
characteristic load

1. Introduction

Prestressed concrete transverse large cantilever continuous (PCTLCC) box girder
bridges are widely constructed for their rational working performance, outstanding span
adaptability, and structural economy to meet the requirements of modern infrastructure
in traffic conditions [1–3]. The box girder section can effectively lighten the self-weight
of the structures and provide high torsional rigidity to resist the torsion under eccentric
load [4,5]. In addition, prestress can not only enhance the spanning capacity of bridges but
also restrain the development of cracks and improve the durability of bridges [6]. At the
same time, the cantilever structure can reduce the width of piers, increase the clearance
under the bridge, and achieve the purpose of saving engineering. Although the PCTLCC
box girder bridge combines the advantages above, they bring researchers and engineers
the difficulty of analysis and design as well.

The structural working behavior of prestressed concrete box girder bridges is relatively
complicated due to the prestress effect as well as different loading cases. Therefore, numer-
ous scholars have carried out considerable experiments and simulations on prestressed
concrete box girder bridges to study the unascertained working characteristics of this type
of bridge and contributed to their application in engineering. Yu et al. [7] analyzed the
spatial stress of long-span prestressed concrete box girder bridges during the construction
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stage and service stage and concluded that the main tensile stress can be calculated more
accurately by using shell cells than beam ones. Zhang et al. [8] discovered that the initial
casting temperature of concrete is the most significant parameter that controls cracking of
prestressed concrete box girders on pier tops at the cement hydration age and increasing the
curing temperature is detrimental to prevent cracking. Based on the genetic optimization
algorithm, Huang et al. [9] found that creep and prestress loss have a significant effect on
the vertical deflection of the main and side spans. Moreover, the prestress loss can change
the ratio of deflection of main and side spans. Yang et al. [10] studied the analysis method
of web cracking probability of prestressed concrete box girder bridges and pointed out that
compared with the traditional prestressing tensioning technique, the doubled tensioning
technique is significantly more effective in reducing the web cracking probability. Undoubt-
edly, these research results greatly promoted the application of prestressed concrete box
girder bridges in engineering projects.

Due to the special structure of the prestressed concrete cantilever bridge, its internal
force distribution and mechanical performance are often more complex than the ordinary
box girder bridge. Hence, a lot of studies have been carried out to explore the unknown
working performance of the prestressed concrete cantilever bridge. Yu et al. [11] analyzed
a prestressed concrete box girder bridge with large cantilevered wings, concluding that
the distributions of the stress and cracks under the load case of asymmetrical load were
asymmetrical and cracks were more likely to appear in the root of the cantilever wing
comparing with the symmetrical load. Chen [12] discovered that transverse prestressing
can effectively reduce the deflection of the section and the transverse tensile stress of the
top plate in the box girder, and the smaller the spacing of the transverse prestressing bars,
the more obvious the reduction effect is. Nie [13] performed finite element simulations
for a PCTLCC box girder bridge and found that the presence of transverse prestress has
little effect on the longitudinal bridge forces of the box girder but has a significant effect
on the transverse stresses in the deck slab. In addition, some researchers conducted
experimental studies on the cracking resistance of the wide-box girder bridge with a large
cantilever [14,15].

To sum up, the existing research can greatly promote the development and application
of the PCTLCC box girder bridge indeed, while there still exist some problems puzzling
researchers, which limits the development of this kind of bridge to some degree. Due to
the complex stressing state of the bridge, various formulas based on different assumptions
and preconditions have been used to calculate the bearing capacity, and these calculation
results are often conservative and diverse from each other, leading to the overuse and/or
irrational use of materials. Moreover, there is little research on its specific stressing state
changing characteristics in the process of structural failure, such as the distribution of
sectional stresses, internal forces, etc. In addition, the high experimental costs and long
test period result in limited experimental data of the PCTLCC box girder bridge, which are
insufficient to update the existing theories.

In order to remedy the above research deficiencies, it is necessary to investigate new
analytical theories to explore the working performance of the PCTLCC box girder bridge
and to develop methods to extend the limited experimental data to further analyze the
internal force changes during the damage of the PCTLCC box girder bridge. Specifically,
the authors experimentally analyzed the working behavior characteristics of the PCTLCC
box girder bridge model based on structural stressing state theory and the numerical
shape function (NSF) method, revealing its stressing states’ changing characteristics in the
whole loading process. First, the generalized strain energy density (GSED) was creatively
modeled to evaluate the structural stressing state mode of the PCTLCC box girder bridge.
Subsequently, the Mann–Kendall (M–K) criterion in hydrometeorology was innovatively
used to detect characteristic loads and reveal abrupt structural features. Furthermore,
based on the NSF method with high accuracy, the limited strain data were expanded to
obtain the strain/stress fields and internal forces, so as to further analyze the stressing state
characteristics of the bridge model. The structural stressing state theory and NSF method
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proposed in this study can provide a new approach to the design and analysis of PCTLCC
box girder bridges and other types of structures.

2. Methods for Modeling and Analyzing Structural Stressing State
2.1. Structural Stressing State Concept and GSED Curve

The authors defined the stressing state of a structure as its working behavior, which is
characterized by the distribution pattern of strain energy density values, displacements,
strains, and stresses of measuring points [16,17]. Generally, the strain energy density Ei of
the i-th point can be calculated by

Ei =
∫

σ1dε1 + σ2dε2 + σ3dε3 (1)

where σ1, σ2, σ3 and ε1, ε2, ε3 are three principal stresses and strains, respectively; Ei is the
i-th strain energy density.

However, it is difficult to measure the stress or strain at one point in three directions in
the experiment; thus, this study creatively chose the GSED as the characteristic parameter
to express the stressing state at a point, and further analyzed the characteristics of the
working behavior of PCTLCC box girder bridge. Consequently, Equation (1) is simplified as

Ek
ij =

∫ εk
ij

0
σ(ε)dε (2)

where Ek
ij is the GSED of the i-th point for the j-th subpart of the structure at the k-th load

step; σ(ε) is the constitutive curve of the material at the measuring point; εk
ij is the measured

strain of the i-th point in a certain direction for the j-th subpart of the structure at the k-th
load step. Furthermore, then the GSED sum of all groups (sub-parts) for the j-th subpart of
the structure at k-th load step can be calculated by

Ek = ∑
k

∑
i

Ek
ij (3)

where Ek is the GSED sum of all groups (sub-parts) to express the stressing state of the
whole structure at the k-th load step. In order to exclude the influence of units, values, and
other factors, the normalized GSED sum Ek

norm is adopted to characterize the structural
stressing state at each load step, which can be calculated by

Ek
norm =

Ek

Emax (4)

where Ek
norm is the normalized GSED sum of the whole structure at the k-th load step. Then,

it can be seen that the Ek
norm–F curve can vividly exhibit differential structural stressing

states and corresponding characteristics.

2.2. M–K Criterion

The Mann–Kendall (M–K) is a widely used trend analysis tool currently without
the necessity for samples to comply with certain distributions or interference of a few
outliners [18–20]. In this study, the M–K criterion was found to be applicable to the analysis
of E′–F curves; thus, it was innovatively applied to the characterization of E′–F curves
to distinguish the stressing state leap of the PCTLCC box girder bridge. Furthermore, it
was assumed that the sequence of {Ek

norm} (the load step k = 1, 2, . . . , n) is statistically
independent. Then, a new stochastic variable bk at the k-th load step is defined as

bk =
k

∑
l

hl(2 ≤ k ≤ n), hl =

{
+1
0

El
norm > Em

norm(1 ≤ m ≤ l)
otherwise

(5)
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where hl is the cumulative number of the samples; “+1” means adding one more to the
existing value if the inequality on the right side is satisfied for the j-th comparison.

The mean value D(bk) and variance Vie(bk) of bk are calculated by

D(bk) =
k(k− 1)

4
(2 ≤ k ≤ n) (6)

Vie(bk) =
k(k− 1)(2k + 5)

72
(2 ≤ k ≤ n) (7)

Under the assumption that the {Ek
norm} sequence is statistically independent, a new

statistic NFk is defined by

NFk =

{
0
bk−D(bk)√

Vie(bk)

k = 1

2 ≤ k ≤ n
(8)

Thus, all the NFk data can form an NFk–F curve. Applying the same approach to the
inverse {E′knorm} sequence, the NBk–F curve can be obtained. Consequently, the NFk and
NBk curves can intersect at the mutation point of the Ek

norm–F curve, which is taken as a
criterion for distinguishing structural stressing state leaps. The M–K method has a high
recognition rate for mutations, and its discriminatory results are not greatly affected when
the data fluctuates.

2.3. Method for Expanding Experiment Data

Experimental data are often so limited due to the cost and period limitations that
some mechanisms and characteristics of the structure cannot be discovered. Therefore,
a reasonable spatial interpolation method is needed to extend the experimental strain
data to obtain more hidden laws. The numerical shape function (NSF) interpolation
method was developed to expand the limited experimental data of the bridge model
to overcome the shortcoming of conventional interpolation methods that cannot make
accurate interpolation of experimental data for structural analysis [21]. Compared with
other interpolation methods, the NSF method has higher interpolation accuracy and clearer
physical meaning. Applying this method, the changing characteristics of the stressing state
of the PCTLCC box girder bridge could be further investigated.

The NSF method was developed from the shape function in the finite element method
(FEM). The element displacement field in FEM is expressed as a linear combination of
shape functions, while the node displacement is exactly the weight of the corresponding
shape function. For a rectangular element with four nodes in the regular coordinate system
(ξ, η), the element displacement field can be expressed as

U =
4

∑
i=1

ui Ni(ξ, η) (9)

where U is the displacement field of the rectangular element; Ni is the shape function of
node i where the node has a displacement ui.

However, the displacement field of each element is not accurate enough, but according
to the principle of FEM, the simulated displacements of a finite element model assembled
with enough small elements can reflect the deformation characteristics of the plate with
high order continuity through the equilibrium equation established by the principle of
virtual displacement. Thus, by dividing the interpolation space into small enough units
and using finite element software, a more reasonable shape function can be simulated.
Therefore, it can be called a numerical shape function, which could be used to perform a
more precise and meaningful interpolation process.

Like the conventional shape function, the numerical shape functions of several mea-
suring points can be obtained through the numerical simulation of the specific model.
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Taking the PCTLCC box girder bridge in this study as an example, the experimental data
of 18 measuring points of the cross-section are extended. Figure 1a shows the element
divisions of the plate model with the size of 20 × 20 mm2 of each element using the Shell
181 element. Furthermore, the 18 sampled points are the basic nodes of the numerical shape
function. Thus, the numerical shape function can be derived by the following procedure:

1. Take the whole plate as a super element and divide it into suitable small elements;
2. For instance, the shape function of measuring point 3 can be obtained by applying

a unit displacement at point 3 (blue dot) along the z-axis, while other points (white
dots) are fixed. Then, static analysis is performed to derive the displacement field N3,
as shown in Figure 1b;

3. Similarly, the numerical shape function of N2–N18 can be acquired, in which N5
is shown in Figure 1c. If the deflections of the measuring points are given, the
displacement field of the plate can be calculated by Equation (10):

D =
M

∑
i=1

ui Ni (10)

where D is the displacement field of the plate; Ni =
[
Ni(x1), Ni(x2) · · ·Ni

(
xj
)
· · ·Ni(xn)

]
is the numerical shape function of measuring point i; Ni(xj) is the function value at element
node xj; and n is the total node number of the plate. The measuring node has a displacement
ui, and M is the number of measuring points.
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Figure 1. NSF model and contour map of the numerical shape function: (a) NSF model of section B; (b) shape function N3;
(c) shape function N5.

Correspondingly, the limited measuring strain on the cross-section can be expanded
by applying the NSF method to obtain the strain field, and the expanded stress data can
be calculated through the constitutive relation of the material. Consequently, the above
extended experimental data can be used to plot the stress–strain field contours and lay the
foundation for in-depth analysis of the structural stress state.

2.4. Internal Force Calculation of Cross-Section

Under the given loads, the bridge model is mainly subjected to bending moments
and axial forces; hence, the sectional internal forces are constructed based on the expanded
stress data in order to deeply investigate the working characteristics of the bridge model.
Here, the axial force is calculated by summing the product of longitudinal stress and area
for each element, and the in/out-plane bending moment is achieved through summing the
product of longitudinal stress, vertical/horizontal distances, and area for each element, as
shown in Equations (11)–(13):

N =
∫

A
σdA = ∑

A
σi Ai (11)
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Min =
∫

A
σydA = ∑

A
σiyi Ai (12)

Mout =
∫

A
σxdA = ∑

A
σixi Ai (13)

where N is the axial force of the section, Min is the in-plane bending moment of the section,
Mout is the out-plane bending moment of the section, σi is the longitudinal stress of the
i-th element, Ai is the area of the i-th element, and xi and yi are the horizontal and vertical
distances of the i-th element from the neutral axis, respectively.

Overall, the analytical idea of this study can be clearly demonstrated by Figure 2.
First, the method of modelling structural stressing state was used to analyze the working
behavior of PCTLCC box girder bridge under loads. The energy-based parameter GSED
was calculated, and the Ek

norm–F cure was obtained. Applying the M–K criterion, the
characteristic loads were detected. Moreover, due to the limited strain, data could not
provide a clear reflection of structural working behavior, so the NSF method was applied
to interpolate data at non-sampled locations so as to reflect the stressing state of the bridge
model in detail. With the help of test data and material constitutive models, the strain
and stress fields of the cross-sections could be obtained for analyzing the stressing state
characteristics of the bridge model around the characteristic loads.
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Figure 2. Stressing state analysis idea of the PCTLCC box girder bridge.

3. Experiment and Simulation of PCTLCC Box Girder Bridge Model
3.1. Experiments on PCTLCC Box Girder Bridge Model

According to a prestressed concrete continuous box girder bridge with a transverse
long cantilever in Xi’an, China, Gao [22] designed and carried out an experiment of a
1/10 scale bridge model with a total span of 9 m, as shown in Figure 3. The bridge model
had three spans, each of 3 m, and the first span was a three-cell box girder bridge, while the
second and the third spans were four-cell box girder bridges. The diameter of the stressed
reinforcements and prestressed steel strands were, respectively, 10 mm and 15.24 mm. The
yield strength and elastic modulus of stressed reinforcements were, respectively, 517.8 MPa
and 213 GPa, and the ultimate strength and elastic modulus of prestressed steel strand
were, respectively, 1860 MPa and 195 GPa. The bridge model was made of C50 concrete,
with a standard compressive strength of 40 MPa and an elastic modulus of 40 GPa.

Figure 3 shows the loading device of the experiment. It can be seen that the loading for
the bridge model was achieved by the reaction force of the QL32T jacks (dark blue), and the
30 cm × 25 cm rubber pads (light blue) under the jacks were used to convert concentrated
load into a surface load of the small area. The loads were applied to the mid-span side webs
of the bridge model at fixed increments of 20 kN. The steel I-beam (red) was supported
by the steel cushion blocks (yellow) in unloaded phases, and the blocks would gradually
separate from the bridge model as the load increased. The reaction frame (green) was
fixed on the ground in order to provide a reaction for the steel I-beam. Moreover, the
electric resistance strain gauges with the model of BF350 were arranged on the surface of
main steel bars at the top and bottom plates, and the distribution of the strain measuring
points was symmetrical horizontally and vertically. The strain data were collected via the
TZT3826E strain collector produced by Jiangsu Test Equipment Manufacturing Co., LTD
(Taizhou, China).
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After loading, transverse and longitudinal connecting cracks appeared in the bottom
plate, and vertical connecting cracks appeared in the flange plate and web plate. At
this time, cracks with different widths appeared on the roof of the model bridge. The
deformation state of the bridge model after failure is shown in Figure 3a,b, and it can be
seen that the deflection value at the mid-span was the largest. The distribution of cracks
throughout the top slab of the bridge model is shown in the Figure 3c, and it can be seen
that there were penetration cracks along both the transverse and longitudinal directions.
In addition, the distribution of cracks in the bottom and side webs in the span are shown in
Figure 3d,e.

3.2. FEM Simulation of the PCTLCC Box Girder Bridge Model

ANSYS finite element software was adopted to model the PCTLCC box girder bridge
with a top-down modeling approach. Firstly, the beam model was established with three-
dimensional CAD software, and the ANSYS program was imported to generate the ANSYS
solid model. The solid element type, Solid 65, was selected for mapping mesh generation,
and the constitutive models of concrete and reinforcements, respectively, adopted the
widely used quadratic parabola plus horizontal straight-line mode suggested by Rusch and
the ideal elastoplastic model, as shown in Figure 4a,b [23–25]. The constitutive model of the
prestressing strand is shown in Figure 4c, and the overall embedded constraint type was
used to couple its degrees of freedom to the concrete units at the corresponding locations.
Moreover, the initial prestress in the prestressing strand was simulated by means of the
cooling method, and the value of cooling was determined according to the value of the
initial prestress. Figure 5a shows the load and boundary conditions and the displacement
contours under 400 kN, and the Von Mises contours in the top and bottom view are shown
in Figure 5b,c. It can be seen that the cloud diagram obtained from the simulation was
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relatively consistent with the actual test situation, which verifies the accuracy of the model
to a certain extent. In addition, Figure 8a in the latter section shows that the strain-F curves
obtained from the simulation agreed well with the test results; thus, the accuracy of the
model could be further validated.
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4. Stressing State Analysis of the Bridge Model
4.1. GSED-Based Stressing State Mode and Characteristic Parameter

In order to reveal the structural stressing state characteristics of the bridge model, the
normalized GSED values were chosen as the characteristic parameter to better investigate
the developing tendency, as calculated by Equations (2)–(4). Then the Ek

norm–F curve could
be plotted to analyze the working behavior of the bridge model. First, based on the overall
Ek

norm–F curve, the characteristic load P was obtained using the M–K criterion. Then, the
curve after the load P was analyzed with the M–K criterion to obtain the characteristic
load Q. Finally, the curve after Q was statistically calculated based on the M–K criterion to
obtain the characteristic load H. Hence, three characteristic loads, respectively, P = 200 kN,
Q = 300 kN, and H = 340 kN, were distinguished from the Ek

norm–F curve as shown in
Figure 6.

It can be seen that the characteristic parameter Ek
norm increased slowly before load P,

and there were no cracks on the bridge model until 120 kN. Thereafter, small cracks started
to appear in the web and bottom plate of the mid-span section, and the width of the cracks
was less than 0.05 mm, indicating that before load P, the bridge model was in a stable
elastic stressing state phase. After that, due to the rapid development of concrete cracks
and the reduction of section stiffness, Ek

norm increased still relatively slowly but nonlinearly,
signifying that the whole bridge model entered the elastic–plastic stressing state phase.
From load Q on, Ek

norm increased sharply and rapidly, showing a different trend than
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before, which indicates that the bridge model mutated from the stable stressing state to the
unstable one, namely the failure stressing state phase. The mutation characteristic of the
structural stressing state is its inherent property and revealed according to the natural law
from quantitative change to qualitative change of a system, which represents the starting
point of the bridge model’s failure process.
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Figure 6. The Ek
norm–F and M–K statistic curves.

As the failure of the bridge model is a process of gradual development, the failure
stage also needs to be studied so as to reflect the possible collapse modes of the bridge
model. It could be observed that when the load exceeded H, Ek

norm continued to increase at
a higher growth rate than before, owing to further plastic development of the bridge; hence,
load H is defined as the progressive failure load. In this stage, the number, width, and depth
of cracks increased further, eventually forming connecting cracks. There were elliptical
arc cracks around the loading points in the mid-span loading area, and the cracks around
the two loading points were geometrically symmetrical. The phenomena exposed above
are derived from the concept of structural progressive failure. The first and progressive
failures of the bridge model further reflect the characteristics of the structural gradual
failure process or vividly embody the structural failure evolution.

Overall, the structural stressing state of the bridge model could be divided into three
stages by characteristic loads P and Q:

1. Before load P, the bridge is basically in a stable elastic stressing state, and load P could
be defined as the demarcation point from elastic stressing state to elastic–plastic one;

2. From P to Q, the bridge model begins to enter the nonlinear stressing state, namely
the elastic–plastic stressing state phase;

3. After failure load Q, the stressing state of the bridge model changes suddenly and
qualitatively. Furthermore, the plastic damage of the bridge model develops further
when the load exceeds H.

4.2. Analysis of Stressing State Modes Based on the Measured Strain

The strain-F curves of all measuring points of section A are plotted in Figure 7a, and it
could be observed that all the curves almost kept slow growth before the load P, and the
strain of each measuring point was relatively close, indicating that the bridge model was
in a stable elastic stress state. At this stage, only very small cracks appeared in the web
and bottom plate of the mid-span section. After load P, the curves began to diverge, and
the growth of each curve began to increase in a nonlinear way, embodying inconsistent
plastic development at various positions on the cross-section in the elastic–plastic stressing



Materials 2021, 14, 4671 10 of 18

state. At the same time, the cracks kept expanding and extending. When it arrived at load
Q, the strain curves of several measuring points (especially at A1, A5, and A8) increased
sharply, and the strain difference of each measuring point gradually increased, signifying
that the bridge model entered the failure stage. In this stage, all the strains of measuring
points underwent abrupt changes, revealing the fierce plastic development of the whole
bridge model. Moreover, the number of new cracks was increasing, and existing cracks
were gradually expanding, accompanied by the formation of penetration cracks (especially
in the structure loading area). As for section B shown in Figure 7b, its trend of changing
characteristics was similar to that of section A; therefore, the strain-F curves also had the
mutation characteristics at loads P, Q, and H, which is consistent with that revealed from
the characteristic parameter Ek

norm.
Certainly, the strain–location curves can describe the distribution mode of the strain-

based stressing state, as illustrated in Figure 7c,d. The mutation characteristics around the
three characteristic loads for the two sections could also be seen in the strain-based mode
distribution diagram in shapes and increments, such as the shapes of A6, A7, and A8 for
section A and those of B4, B5, B6, and B7 for section B, the increments of A6, B5, B6, etc.
Furthermore, it can be seen that before load P, the strain at each measuring point on the
section was small, the growth rate of strain for each point was relatively slow, and there
was no obvious redistribution of stress. Before and after loads Q and H, the increasing
speed of the strain at some measuring points was faster, while the strain at some measuring
points was slower, which is a direct reflection of the redistribution of stress and reveals the
coordinated work behavior of the bridge model. Furthermore, the strain in section B was
small in the middle of the top plate and large in the middle of the soleplate, which indicates
that the transverse bending moment of this bridge may make the stress distribution in the
width direction of the section uneven. Moreover, after load H, the peak characteristics of
some points, such as, A1, A6, A8, etc., could reflect their decisive roles in their respective
stressing state phases.

Figure 7e,f also shows the strain-F curves of all measuring points of section A and
section B based on the simulation, it could be found that the maximum values of experi-
mental data exceeded those of the simulated ones. Moreover, comparing Figure 7c with
Figure 7e, it can be seen that after load H, the strains of A2 and A4 in Figure 7e were much
larger than those of A3, while the strains of the three measuring points in Figure 7c were
approximately the same. Similarly, the change characteristics of A8, A9, A10, B4, B5, and B6
could be observed as well, while from the whole point of view the mutation characteristics
at the characteristic points for simulation data were also very obvious, which could prove
the accuracy of the three characteristic points again.

4.3. Verification of Expanded Experimental Data

To verify the accuracy of the NSF method, leave-one-out (LOO) cross validation [26]
was performed and compared with FEM simulation. LOO cross validation takes n – 1 as
the training set, the remaining one is the test set, and then it selects the next one as the test
set, and so on to perform n cycles. By comparing the experimental data with estimation
methods, the relative error δ can be calculated by

δi =

∣∣∣∣ εi − εe

εe
× 100%

∣∣∣∣ (14)

δs =

∣∣∣∣ εs − εe

εe
× 100%

∣∣∣∣ (15)

where εi, εs, and εe are the interpolated, simulated, and experimental strains respectively.
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Figure 7. The changing characteristics of strain-based stressing state modes: the trend changing
characteristics of strain-based stressing state mode of (a) section A; (b) section B in the experiment;
the distribution pattern changing characteristics of strain-based stressing state modes of (c) section A;
(d) section B in the experiment; (e) section A; and (f) section B in the simulation.

The experimental results, simulation results, and interpolation results based on the
NSF method of the strains at the middle of the bottom plate for sections A and B are shown
in Figure 8a. It can be observed that the three curves were close before 320 kN. However,
when the load exceeded 320 kN, the difference between the simulated data curve and
the other two curves increased gradually, while the intervals between interpolated and
experimental data were still very small. Furthermore, the relative errors of simulation and
the NSF method of different measuring points under all load steps are shown in Figure 8b,c.
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The maximum and average errors of interpolated data were 26.8% and 0.7%, respectively,
for section B. Similarly, the maximum and average errors of simulated data were 57.1%
and 10.1%, respectively. It can be seen that the relative error of the NSF method was
smaller than that of simulation in all respects. Furthermore, for section A, which is not
illustrated here, it showed the same conclusion. By adjusting the model parameters and
intrinsic parameters, the simulation results were as close as possible to the experimental
ones. However, due to the unknown defects in the structure, construction errors, etc., there
were still large differences between the simulation results of strain and the experimental
ones at some measuring points. Hence, the NSF method provided a more effective way
to expand experimental data and estimate internal forces for the in-depth study of the
structural working characteristics.

4.4. Analysis of the Expanded Strain and Stress Data

In order to compensate to some extent for the difficulties in analyzing the overall
working behavior characteristics of the bridge model caused by insufficient experimental
data, the NSF method was applied, and the strain and stress fields could be easily obtained.
Here, the strain and stress fields of sections A and B from 280 kN to 360 kN are plotted in
Figure 9, so that the changing characteristics around characteristic loads Q and H of the
stressing state for the bridge model could be reflected intuitionally from them. The black
solid line in the figure represents the point with stress and strain of 0, and the blue dotted
line represents the point with maximum tensile stress (137 µε) and maximum tensile strain
(4 MPa) of concrete.

It can be seen in Figure 9a that the roof and soleplate of section A were respectively
subjected to compression and tension, and the line of 0 µε was near the bottom of the roof.
From 280 kN to load Q, except the middle parts, nearly all the strains of the soleplate and
the lower half of the webs on both sides were over 137 µε (the ultimate tensile strain of the
concrete), namely these parts began to crack in different degrees. However, the cracking
areas just had a slight increase with the growth of loads, reflecting the accumulation of
quantitative instead of qualitative mutations. After that, the entire soleplate exceeded the
ultimate tensile strain of the concrete, signifying that the concrete of the entire soleplate
basically lost its bearing capacity, and all the tension was borne by the steel bars. The
transformation of tension on the soleplate would result in the mutation of the stressing
state for the bridge model without doubt, and it may also have contributed to the abrupt
change of strain/stress fields for itself or other sections, such as the significant increase and
position change of cracking areas, the change of the line of 0 µε, etc., which could also reveal
the mutation characteristics of the stressing state. The changing characteristics of cracking
areas were consistent with the experimental phenomenon; hence, it could be speculated
that the whole bridge model entered a failure stressing state. When it surpassed load H,
the cracking areas spread to nearly all the webs and clung to the line of 0 µε, and both ends
of the soleplate mutated from green to red, indicating that almost all the tensile zone of the
concrete lost its capacity, which would accelerate the failure of the whole bridge model,
namely progressive failures. According to the material constitutive relationship, the stress
fields can be further obtained, as shown in Figure 9b, and then the mutation characteristics
of the stressing state can be analyzed. As for section B shown in Figure 9c,d, the mutation
characteristics, including the change of shapes and regions for cracking areas and color
gradations, could be obviously seen on the roof of the bridge model at characteristic loads
Q and H as well.

By analyzing the sectional strain/stress fields of the bridge model, the mutation
characteristics around the characteristic loads Q and H and the development trend of
strains and stress during the whole loading process could be discovered easily and clearly.
Accordingly, the strain/stress fields expanded by the NSF method could reveal the sectional
changing characteristics under loading, such as the distribution of the cracking area,
the detection of location stress concentration, etc., which could help researchers deeply
understand the working behavior of bridges.
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Figure 8. The error comparison between simulated and interpolated data: (a) the strain estimation of
midpoint by simulation and interpolation, box chart of relative errors of (b) simulation, and (c) NSF
method of section B.

Figure 10 shows the strain and stress fields of sections A and B obtained by simulation,
and it can be seen that the changing characteristics of strain and stress fields around 300 kN
were not prominent compared with the experimental data. After load H (340 kN), the
limited strain line of experimental data rose and clung to 0 µε, while the line of simulated
data rose slowly and had a certain distance from 0 µε, signifying that the crack growth
speed was slow. Moreover, it could also be observed that the cracking areas did not extend
to all the webs for section A and top plate for section B.

4.5. Analysis of the Sectional Internal Forces

The axial forces of sections A and B could be obtained by Equation (11). It can be seen
in Figure 11a that they were quite different in value, while they had nearly the same trend
characteristics in the loading process. Before load P, they were respectively subjected to
adverse axial forces, whereas the values of them were small and had fluctuation, indicating
that the bridge model was in the elastic stage with high self-regulation ability. Thereafter,
the axial forces of the two sections entered a stable parallel growth stage until load Q, and
the cracks could be observed clearly on the bottom plate and web, which could be regarded
as the steady transformation of the bridge model from the elastic stressing state to the
elastic–plastic one. Moreover, the mutation characteristics of the curves after load Q could
also be discovered, indicating that the stressing state of the bridge model changed from a
stable state to an unstable failure one. When it comes to load H, the curves of sections A and
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B bifurcated and never remained parallel, signifying the further aggravation of the bridge
model’s failure, namely progressive failures. At the same time, comparing Figure 11a,b,
it can be seen that before load P, the axial force fluctuation of section A for experimental
data was larger than that of the simulated ones. Between loads P and Q, the axial force
growth of section B in Figure 11a was faster than that in Figure 11b. After that, the axial
force growth speed of the two figures was almost the same.
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Figure 9. Strain and stress fields of the bridge model constructed by the NSF method: (a) strain fields
of section A; (b) stress fields of section A; (c) strain fields of section B; (d) stress fields of section B.

The in-plane and out-plane bending moments of sections A and B could be obtained
by Equations (12) and (13), respectively. As for the in-plane bending moments shown in
Figure 12a, section B bore sagging bending moments, whereas section A bore the reverse
one. Before load P, the bending moment of section A fluctuated around 0 kN and that
of section B increased gently, which can be considered as the self-regulation results of
sectional stress at the elastic stressing state phase. In addition, the mutation characteristic
of section A and the maximum in-plane bending moment of section B both occurred at
load Q, and the developing trend characteristics of the two sections changed from opposite
to the same, which can also reveal the mutation of the bridge model’s stressing state. It is
remarkable that the bending moment of section B became opposite after load H, while that
of section A continued to increase sharply at a higher level, reflecting the bridge model’s
change of the stressing state and progressive failures.

With regard to straight bridges under the vertical loads, the out-plane bending mo-
ments are usually small, which can be ignored in the analysis procedure. Nevertheless,
the bridge model is a transverse long cantilever bridge, and in spite of the prestress, the
cracks still occur easily, resulting in the nonuniform distribution of stress and internal dam-
age. The influence of nonuniform internal damage would be magnified in the transverse
direction, which would cause a certain out-plane bending moment; thus, the change of
the out-plane bending moments could embody the nonuniform internal damage to some
extent. Correspondingly, the out-plane bending moments were constructed, as shown in
Figure 12b, based on the expanded data to investigate the correlation between the change
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of the structural stressing state and the internal damage. The results show that the bending
moments of section A fluctuated around 0 kN by a large margin and the peak ones all
occurred at the characteristic loads. As well, the developing trends of sections A and B
changed with different stressing state phases, namely they stayed the same at elastic and
failure stages and reversed at the elastic–plastic stage, which can also verify the correctness
of the stressing state division based on characteristic loads. Therefore, the internal damage
is sensitive to the change of stressing state for the bridge model and would change a lot
before and after the characteristic loads.
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Figure 11. The changing characteristics of the axial force: (a) The constructed axial force based on the
expanded stress data; (b) The axial force of simulated data.
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Figure 12. The changing characteristics of the bending moment: (a) the constructed in-plane bending
moment based on the expanded stress data; (b) the constructed out-plane bending moment based on
the expanded stress data.

5. Discussion

In recent years, it has been widely accepted that the ductility of structures by means of
the ductility coefficient can be characterized [27], which is characterized by the deformation
of a structure, member, or a certain section of a member [28]. However, the ductility is only
reflected by the deformation without characterizing the intrinsic properties, which makes
the ductility coefficient scientifically insufficient, and there are many contingencies. There-
fore, this paper innovatively divides the ultimate load of the structure by the failure load
determined by the structural stressing state theory to represent the ductility, considering
the inherent attribute characteristics of the structure, so that the determined ductility will
be more convincing and scientific. In addition, many studies have applied the methods
mentioned in this paper to various aspects of research. The Mann–Kendall (M–K) criterion
is a results-oriented method for trend mutation detection. It does not require that the data
must satisfy a specific form of distribution and can allow for missing values [29]. The NSF
interpolation method in this study improves the accuracy of the interpolation results by
considering the material properties and the actual constraints. In addition, the NSF method
combines the spatial interpolation method with numerical simulation, so that this method
has some physical significance. It is worth pointing out that the NSF method is currently
adopted only for in-plane interpolation, while the application of interpolation in space
needs to be further explored. In addition, the structural stressing state theory mentioned in
this paper is a theory based on the law of quantitative and qualitative changes, combining
classical mechanical theories with empirical and statistical analysis principles to model and
analyze the structural response (strains, displacements, etc.), which can reveal the changing
characteristics of the structural stressing state and the inherent working mechanism [30].
Although the structural stressing state theory has been successfully applied to conventional
structures under conventional loads, its applicability to other forms of structures and
loads still needs to be further explored. In a word, the structural stressing state theory can
provide a more scientific reference and design basis for structural design.

6. Conclusions

This paper investigates the changes of stressing state of the PCTLCC box girder bridge
throughout the process from loading to damage by means of structural stressing state
theory and the NSF method. The following conclusions are derived from this research:

1. The normalized GSED can effectively model the structural stressing state of the
PCTLCC box girder bridge model. Applying the M–K criterion to the Ek

norm–F curve,
three characteristic loads, namely elastic–plastic branch load P = 200 kN, failure load
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Q = 300 kN, and progressive failure load H = 340 kN, are detected to separate three
stressing state phases of the bridge model. Then the effectivity and rationality of the
M–K criterion are verified through the analyses of measured and expanded data;

2. When the load is less than P, the bridge model is in the stable stressing stage. As the
load exceeds P, the structure starts to enter the elastic–plastic stage, and the strain-F
curve shows non-linear growth. When the load continues to increase to greater than
Q, the bridge model enters an unstable stress stage and is unsuitable for further
loading, i.e., Q is the starting point of the bridge failure process. Furthermore, when
the load exceeds H, the structure would damage faster than before, indicating the
characteristic of progressive failure of the structure;

3. The NSF method provides a more effective way to expand experimental data and
estimate internal forces. The maximum and average errors for the NSF method are
26.8% and 0.7%, respectively, but for simulation are 57.1% and 10.1%, meaning that
the NSF method has reliable accuracy. Moreover, the strain/stress fields and internal
forces constructed by the NSF method and can specifically and intuitively explain the
sectional stress developing and damage characteristics in each stressing state phase.

In a word, the structural stressing state theory and NSF method can deeply reveal the
working characteristics and the dynamic features of the stressing state of the PCTLCC box
girder bridge. Furthermore, this study can provide a new way for the analysis of other
types of bridges and has an important reference value for structural design.
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