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Abstract 

To design safe, selective, and effective new therapies, there must be a deep understanding of the structure and 
function of the drug target. One of the most difficult problems to solve has been resolution of discrete conformational 
states of transmembrane ion channel proteins. An example is KV11.1 (hERG), comprising the primary cardiac 
repolarizing current, IKr. hERG is a notorious drug anti-target against which all promising drugs are screened to 
determine potential for arrhythmia. Drug interactions with the hERG inactivated state are linked to elevated 
arrhythmia risk, and drugs may become trapped during channel closure. However, the structural details of multiple 
conformational states have remained elusive. Here, we guided AlphaFold2 to predict plausible hERG inactivated 
and closed conformations, obtaining results consistent with myriad available experimental data. Drug docking 
simulations demonstrated hERG state-specific drug interactions aligning well with experimental results, revealing 
that most drugs bind more effectively in the inactivated state and are trapped in the closed state. Molecular dynamics 
simulations demonstrated ion conduction that aligned with earlier studies. Finally, we identified key molecular 
determinants of state transitions by analyzing interaction networks across closed, open, and inactivated states in 
agreement with earlier mutagenesis studies. Here, we demonstrate a readily generalizable application of 
AlphaFold2 as a novel method to predict discrete protein conformations and novel linkages from structure to 
function. 
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Significance Statement 

It has been a longstanding goal to reveal the distinct conformational states of proteins to better understand their 
function. In pursuit of this goal, an extensive array of approaches including mutagenesis, electrophysiological, 
structural and computational methods have been undertaken. While published studies have yielded important 
insights, none of the existing approaches have proven adequate to unambiguously identify natural protein 
conformational states. Here, we demonstrate the successful application of deep-learning based AlphaFold2 to 
predict conformational states of the key cardiac hERG K+ ion channel. The implications are broad as understanding 
hERG is critical for drug cardiac safety. Moreover, the approach can be readily generalized to other ion channels, 
offering a versatile framework for identifying protein structure and its link to function. 

Introduction 

The human voltage-gated potassium channel KV11.1, encoded by the KCNH2 or human Ether-à-go-go-Related 
Gene (hERG) gene, is a key player in cardiac electrophysiology, underpinning the rapid component of the delayed 
rectifier K+ current (IKr) in cardiac myocytes(1). This current plays a crucial role in the repolarization phase of the 
cardiac action potential, essential for the rhythmic and stable electrical propagation and consequent contraction(2). 
Perturbation to hERG channel function, whether stemming from genetic anomalies or pharmacological 
interventions, can precipitate multiple arrhythmogenic disorders(2).  
 
The distinctive pharmacological sensitivity of hERG channels, prone to blockade by a diverse array of drugs, has 
placed them at the forefront of cardiac safety pharmacology and the drug discovery process. Blockade of hERG by 
drugs can lead to QT interval prolongation known as an acquired long QT syndrome and escalate the risk of 
torsades de pointes (TdP), a potentially fatal arrhythmia(3). This issue has prompted the withdrawal of various drugs 
from the market and underscored the necessity of incorporating hERG safety evaluations in the drug development 
pipeline(4–6). 
 
The hERG channel is a homotetramer, with each subunit containing six membrane-spanning segments (S1-S6)(7). 
The segments S5 and S6 along with the intervening loops and short pore helix form the channel pore domain (PD), 
crucial for potassium ion passage, while segments S1-S4 form the voltage sensing domain (VSD), responding to 
voltage changes across the cell membrane. Notably, the hERG channel also features specialized intracellular 
regions: the Per-Arnt-Sim (PAS) domain at the N-terminus and the cyclic nucleotide-binding domain (CNBD) at the 
C-terminus. The structural intricacies of the hERG channel, particularly its pore and voltage-sensing domains, 
render it sensitive to a variety of drugs, highlighting the imperative for intricate structural understanding of drug 
channel interactions to foster safer drug designs. This susceptibility is not uniform but varies depending on the 
channel conformational state, a phenomenon known as state-dependent drug block. Drugs may preferentially bind 
to and block the channel in specific states (open, closed, or inactivated), which can differentially affect cardiac 
repolarization and rhythm(8, 9). 
 
Capturing the dynamic spectrum of hERG channel states poses a formidable challenge. While cryo-electron 
microscopy (cryo-EM) has offered invaluable insights into the open state of the channel(7, 10), a comprehensive 
view of the closed and inactivated states has remained elusive. Thus, even as we embark on a scientific era of 
explosive growth fueled by the convergence of protein structure insights, computational capabilities, and AI based 
modeling and synthetic data, the next frontier is marked by the need to reveal all relevant conformational states of 
proteins. The existing knowledge gaps constrain both predictive capabilities regarding drug – protein interactions 
and the creation of therapies through drug discovery to find specific and selective drugs, or in the case of hERG, to 
minimize adverse interactions. For example, a recent study by Yang et al. introduced a multiscale model framework 
to forecast drug-induced cardiotoxicity at cellular and tissue levels, utilizing atomistic simulations of drug interactions 
with hERG(11). However, the absence of hERG structural models in the inactivated and closed states limited the 
predictive potential of atomistic scale simulations of state-specific drug binding.  
 
The emergence of AlphaFold2 (also known as AlphaFold 2), a protein structure prediction tool driven by machine 
learning, has brought a paradigm shift in structural biology(12). The proficiency of AlphaFold2 in accurately 
predicting protein structures presents a significant opportunity to model numerous proteins whose experimental 
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structures remain unsolved. Nonetheless, the conventional use of AlphaFold2 tends to produce a single-state 
structure for the protein, which in the case of hERG corresponds to the open state. In this study, we presented a 
novel approach to guide AlphaFold2 to predict models of the hERG channel in the closed and inactivated states, 
thereby unveiling the elusive structural underpinnings of state-specific drug interactions and gating mechanisms of 
the channel. 
 
We sought insights into the state-specific interactions of drugs with hERG channel, which are vital for revealing the 
mechanisms behind drug-induced cardiotoxicity and for designing safer pharmaceuticals. Our methodology blended 
advanced computational techniques to yield an exhaustive understanding of the dynamics of the hERG channel at 
atomistic resolution. We commenced with structural modeling using AlphaFold2, followed by drug docking 
simulations via Rosetta GALigandDock(13) to evaluate drug – ion channel interactions. All-atom molecular 
dynamics (MD) simulations were employed to investigate ion conduction attributes and dynamic channel behavior 
across conformational states. We also present an interaction network analysis that revealed key protein residues 
and domains involved in state transitions, offering a molecular framework for deciphering hERG channel gating 
mechanisms. 
 
 
Results and Discussion 

Generating hERG channel conformational states 

The hERG channel undergoes transitions between closed, open, and inactivated conformational states. 
Experimental cryo-EM structures published so far(7, 10) appeared to resolve only one of those states (open and 
conducting) based on previous molecular simulation studies(11, 14, 15). To guide AlphaFold2 in generating diverse 
conformations pertinent to each conformational state, we integrated fragments from experimental structures, each 
characteristic of the discrete closed, open or inactivated state. We then utilized AlphaFold2 to explore a broad array 
of conformational states and generate the final structures. This approach ensured that the resulting conformations 
were diverse and relevant to each discrete conformational state. Inspired by the Meiler lab's successful use of 
AlphaFold2 for sampling alternative conformations of transporter and receptors(16–18), we expect that this method 
will be capable of yielding possible representations of the hERG channel in different states, offering an improvement 
over earlier computational methods that depended on homology modeling(19, 20). 

To construct the closed state of the hERG channel, we used regions of the voltage-sensing domains (VSDs) from 
the rat EAG channel cryo-EM structure in its closed conformation (PDB 8EP1(21), residues H208 – H343) as a 
structural template and combined them with the selectivity filter (SF) region from an available hERG cryo-EM 
structure (PDB 5VA2(7), residues I607 – T634), as depicted in Figure 1a. Recognizing that the physiological closed 
state of the hERG channel might only partially resemble these structural elements, we sought to introduce a degree 
of flexibility in our model sampling process.  

Due to the time-intensive process of creating multiple sequence alignments (MSA) for AlphaFold2, the 
ColabFold(22) software was made to streamline protein structure prediction by combining MMseqs2(23) sequence 
search toolkit with AlphaFold2, enhancing runtime efficiency while preserving high prediction accuracy. First, we 
provided this hybrid structure as a template for ColabFold. ColabFold utilized only a portion of the MSA in the 
modeling process to reduce memory usage. We adjusted the limit to 256 cluster centers and 512 additional 
sequences, a reduction from the standard 512 and 1024, respectively. Altering the random seed can lead to 
variance in cluster centers and, consequently, in structure predictions. Therefore, we set AlphaFold2 to cycle 
through 20 random seeds (each seed was used to produce 5 models) to foster diversity in the predicted 
conformational states. Additionally, we enabled the model stochastic (dropout) component during inference to 
sample from an ensemble of models for the more ambiguous segments of the structure prediction. Past research 
has indicated that these settings may permit the sampling of alternative protein conformations(16–18, 22). In total, 
we generated 100 models for further analysis. The N-terminal PAS domain (residues M1 – R397) was not included 
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in the modeling due to graphics card memory limitation making the resultant model (W398 – R863) resemble hERG 
1b isoform(24). 

For the open hERG channel state, we utilized the existing cryo-EM structure of hERG (PDB 5VA2(7)), albeit with 
missing extracellular loops. We then reconstructed the extracellular loops using the Rosetta LoopRemodel 
mover(25) with the results shown in Figure 1b. This reconstructed model served as a base for molecular dynamics 
and drug docking simulations. However, we also wanted to test the potential for AlphaFold2 to emulate this 
structure. The modeling procedure was initiated with constraints akin to those used for the closed state. This time, 
specific regions of the putative open state hERG model (PDB 5VA2(7)) — namely the VSD (W398 – V549), the SF 
with adjacent pore helix (I607 – T634), a part of S6 and the cytosolic domain (S660 – R863) — were provided to 
ColabFold as a structural guide. Then, we generated 100 diverse models for the detailed cluster analysis. 

The task of modeling hERG in an inactivated state was more complex due to the absence of direct experimental 

references. As illustrated in Figure 1c, we extracted a region of the S6 and the entire cytosolic domain (S660 – 

R863) from the open-state hERG channel model and employed ColabFold under similar conditions to those 

described above for closed and open states. Our method involved letting AlphaFold2 reconstruct the 

transmembrane domain from the ground up under conditions that facilitated the sampling of varied 

conformations(17). In the resulting models, a subset of these models exhibited SFs (residues S624 – G628) akin 

to the non-conductive variant observed under low extracellular K+ conditions, as described in a preprint study by 

Lau et al.(26, 27) This non-conductive SF is primarily identified by a distinct lateral flip of the backbone carbonyl 

oxygens in residue V625 away from hERG central axis, creating a potential barrier that may prevent K+ from 

crossing from S3 to S2 ion binding sites. We extracted this non-conductive SF and the adjacent pore helix (residues 

Y607 – T634) structures from our array of models and merged it with the activated VSDs (W398 – V549) and the 

cytosolic domain (S660 – R863) from the open-state hERG structure (PDB 5VA2(7)) to use as structural template. 

Employing the same parameters in ColabFold as described above, we then generated 100 more models for further 

analysis. 

Clustering AlphaFold2-generated hERG models 

Post-prediction, the resulting 100 models for each structural state were categorized into clusters based on all-atom 
root-mean-square deviation (RMSD) between those models, as shown in Figure 2, using Python scripts developed 
in-house. Closed-state models were clustered with a threshold of 0.75 Å across the entire channel, whereas 
inactivated and open states (non-empirical, AlphaFold-predicted) models focused on the SF (residues S624 – 
G628), with a more stringent threshold of 0.35 Å. We ranked the models in the cluster by their average per-residue 
confidence metric (predicted local distance difference test, or pLDDT), which assesses the likelihood that the 
predicted structure aligns with an experimentally determined structure(12). pLDDT above 90 are considered to be 
highly reliable and those between 70 and 90 as reliable with generally good protein backbone structure 
prediction(12). Lower scores indicate regions of lower confidence and may be unstructured. Cluster 1 is defined in 
this study to be the cluster with highest average pLDDT among its members. 

Closed-state clusters: The analysis of closed-state clusters revealed very minor discrepancies when comparing 
RMSD and pLDDT values across those clusters. Comparing the top-ranked model in each cluster, the all-atom 
RMSD between cluster 1 (cluster with highest confidence) with cluster 2 is 0.36 Å, and with the outlier cluster is 
0.95 Å (clusters with fewer than 3 members are classified as outliers). Excluding the outlier cluster, the average 
pLDDT scores between cluster 1 and cluster 2 are very similar. The predicted low RMSD between the models 
suggests a convergence of the prediction to a singular conformation, with minor differences likely arising from slight 
variations in the positioning of intracellular loop regions. Therefore, the top-ranked model in cluster 1 was chosen 
for subsequent simulations. 

Inactivated-state clusters: Compared to the previous case, we observed more differences among the putative 
inactivated-state clusters. For this situation, we used a more precise metric for clustering by focusing exclusively 
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on the SF (S624 – G628). Following this, we ranked the clusters according to the average pLDDT of these specific 
residues. This method led to the identification of four main clusters and one outlier.  

Cluster 1, which has the highest certainty (pLDDT = 90.3 ± 2.3), consists of models where the carbonyl of SF V625 
alternates between turning inward and outward, i.e. toward and away from the central axis, among different 
subunits. Cluster 2 (pLDDT = 85.2 ± 1.6) is fairly similar, but the carbonyl of SF V625 is now flipped outward from 
the central axis in all subunits in most instances, and there is a noticeable constriction between G626 carbonyls. 
Cluster 3 (pLDDT = 77.5 ± 2.5) features the carbonyl reorientation of SF G626 and occasionally F627. In most 
models from these groups, the S6 helix rotates to varying extents, causing Y652 and particularly F656 side chains 
to rotate along and extending further into the hERG inner cavity. Both cluster 4 and the outlier cluster have low 
average pLDDTs (<70), rendering them unreliable for our analysis. 

Intriguingly, while modeling hERG inactivation, we found that the SF conformations predicted by AlphaFold coincide 
with proposed hERG C-type inactivation mechanisms as highlighted in other experimental and computational 
studies(15, 26, 27). This correlation is particularly notable considering the structures in the mentioned studies have 
not been published in any publicly accessible databases, to the best of our knowledge. Specifically, the behavior 
observed in clusters 1 and 2, namely the flipping of V625 and the constriction at G626 carbonyls, was previously 
reported in a preprint study by Lau et al.(26, 27) Moreover, Li et al.’s computational work revealed an asymmetric 
SF conformation, where two opposing subunits exhibited similar V625 flipping and G626 narrowing as seen in our 
AlphaFold-predicted clusters 1 and 2, while the other two subunits displayed the G626 and F627 carbonyl 
reorientation characteristic of our cluster 3.(15) For our investigation, we chose to focus on the conformations seen 
in clusters 1 and 2, as this behavior was observed in both previous studies. We proceeded with further analysis and 
simulations using the best model from cluster 2, where all subunits consistently show the flipping of V625 carbonyls 
and pinching between G626 carbonyls. 

Open-state clusters: In a control study, we used the conductive SF from the presumed open-state cryo-EM hERG 
structure (PDB 5VA2(7)), combined with the VSD and cytosolic domain, as the structural template for AlphaFold. 
Remarkably, the generated models converged almost uniformly into a single cluster, exhibiting negligible variance 
in both pLDDT and RMSD values across the models. The highest scoring model closely mirrors the experimental 
structure with reconstructed loops, showing only 0.5 Å all-atom RMSD due to minor differences in the loop 
conformations. 

Comparison of state-specific hERG channel models 

We refined the preliminary atomistic structural models putatively representing each functional state of the hERG 
channel (open, inactivated and closed) using Rosetta(25, 28) with an implicit membrane to optimize each residue 
orientation and resolve any steric clashes. The resulting models are compared in Figure 3. In Figure 3a, b, the 
closed-state model displays the most constricted channel pore, followed by the inactivated-state and then the open-
state model. In the pore-lining S6 helix, the drug-binding residue Y652 maintains a consistent position in both closed 
and open hERG channel models. However, in the inactivated-state model, Y652 and its aromatic ring move slightly 
due to the rotation of the S6 helix, and together with the rotation of S624 sidechain hydroxyl oxygen away from the 
pore help form a shallow hydrophobic pocket above Y652 rings and beneath the SF. The rotation and movement 
of the pore-lining S6 helix also influences the position of residue F656 across the models, with its side chain 
protruding most into hERG inner cavity in the closed state, followed by the inactivated state and least in the open 
state. 

Shown in Figure S1a, b, the SFs of the open- and closed-state models display similar arrangements, with carbonyl 
oxygens along the ion path all oriented inward to the central axis as in other K+ channel structures, e.g., KcsA and 
KV1.2, enabling efficient knock-on K+ conduction(29, 30). In contrast, the inactivated-state model SF is distinct, 
marked by the lateral rotation of the V625 backbone carbonyl away from the central axis (Figure S1c), thereby 
creating a potential barrier preventing ion crossing from the S3 to S2 binding sites. Additionally, we noted a 
constriction between the G626 backbone carbonyls and a repositioning of the S624 sidechain hydroxyl oxygen. In 
the model representing the inactivated state, the carbonyl oxygens of G628 and F627 exhibit an upward shift relative 
to their positions in the open-state model. Figure S1d-f presents the SF of all three models from an extracellular 
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perspective. In both the closed- and inactivated-state models, the F627 side chain undergoes a clockwise rotation 
when contrasted with its orientation in the open state. This rotational behavior aligns with findings from prior 
simulation study(14) where it was noted in a metastable non-conductive state. The loop that links the upper SF to 
the S6 helix rotates anti-clockwise relative to its position in the open-state model, consequently narrowing the upper 
part of the SF. 

Echoing our observations, Lau et al., in a preprint, have suggested that the observed flipping of V625 carbonyls 
might be a potential C-type inactivation mechanism for the hERG channel(26, 27). Their study involved altering the 
external K+ concentration to predispose the channels towards a non-conductive, inactivated-like state(26, 27). Li et 
al. made a similar observation in their study, demonstrating the constriction between G626 carbonyls which occurs 
asymmetrically in only two opposing subunits and not in the others to be a potential C-type inactivation 
mechanism(15). Indeed, this constriction was accompanied by the flipping of V625 carbonyls in the same subunits 
where the constriction was observed(15). Both structural features, which are also replicated in the AlphaFold-
predicted model, might collectively constitute components of the inactivation mechanism. 

Furthermore, Cuello et al. in their study of KcsA channel identified a similar constriction at G77 within the SF and a 
corresponding reorientation of the V76 carbonyl, resulting in a dilation in the SF at this location and correspondingly 
the loss of the S2 and S3 ion binding sites(31). Consequently, they suggested this backbone rearrangement as a 
fundamental molecular mechanism underlying C-type inactivation in K+ channels(31). In other studies on Shaker 
and Kv1.3 channels, dilation in the upper SF has been proposed to be a potential C-type inactivation mechanism 
but without notable constriction at the SF glycine(32–35). The inactivation processes across various K+ channels 
may exhibit similarities to some degree, but possess distinct differences that could account for the observed 
variability in inactivation rates among different K+ channels(1). 

For the VSD, we measured the distances between the backbone Cα atoms of the gating charge residues (K525, 
R528, R531, R534, R537, K538) on the S4 helix and the gating charge transfer center F463 on the S2 helix, as 
shown in Figure 3c. Although we observed an increased distance between the gating charge residues and the 
charge transfer center residue in the closed state, this separation was not due to a straight downward movement 
of the S4 helix. Instead, the closed-state model S4 exhibited a minor kink around residue R531 and lateral 
movement toward the center of the channel, impacting the S4 – S5 linker and consequently nudging the S5 helix 
inward, effectively narrowing the pore. It should be emphasized that the predicted closed-state model exhibits lower 
confidence levels for the S4 helix and S4-S5 linker residues (pLDDT ≤ 75) when compared to their counterparts in 
models of other states, necessitating caution in interpreting the physiological implications of this observation. 
Conversely, the pore region, which demonstrates closure, is characterized by a higher prediction confidence 
(pLDDT ≥ 75), suggests a more robust and reliable representation in this part of the model. Supporting Movie 1 is 
showcasing the morph between each hERG channel model. 

In Figure 4a and b, we analyzed interactions of extracellular S5-P linker (I583 – Q592) along with SF and 
surrounding SF residues (S620 – N633) through heatmaps detailing hydrogen bonding, π stacking, cation-π, and 
salt bridge formation similarities and differences (Table S1 shows detection criteria; distance-based contact 
maps(36) for all residues are shown in Figure S2). Distinct interaction patterns between open- and inactivated-
state models were observed in these regions (Figure 4b, c). N633 atop the SF forms hydrogen bonds with S5-P 
linker G584 and Q592 from an adjacent subunit, while N629 forms hydrogen bonds with adjacent S631. Additionally, 
SF G626 forms a hydrogen bond with S620 behind the SF. Within the S5-P linker, N588 and D591 also display 
hydrogen bonding. However, these stabilizing interactions in the open-state model SF region are absent in the 
inactivated-state model, where only intra-subunit hydrogen bonds between I583 (S5-P linker) and N633 (SF) occur, 
along with V630 bonding with N629 atop the SF. 

To corroborate our findings, mutations involving the residues above have been shown to impact hERG inactivation 
as evidenced in numerous clinical and experimental studies(14, 37–44). For instance, the S631A mutation, linked 
to short QT syndrome, causes a positive shift in hERG half-inactivation voltage(38), while S631C speeds up fast 
inactivation(39). N629D, N629S, and N633S mutations, found in long QT syndrome patients, disrupt inactivation 
and K+ selectivity (14, 40). N588K/E and Q592K modulate rapid inactivation(41, 42), G584S leads to inactivation 
gating defects(45), and S620T abolishes hERG inactivation(43). V630L caused a negative shift in the voltage 
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dependence of steady-state inactivation(44), while H587P/K disrupts the C-type inactivation process and K+ 
selectivity(37). N588C and I583C mutations have high and intermediate impact of hERG inactivation(46). Lastly, 
the D591R/Q592R double mutation inhibits inactivation(42). 

There are fewer differences between the open- and closed-state models (Figure 4b, d). In the open-state model, 
D591 from the S5-P linker forms hydrogen bonds with N588, and G584 bonds with N633 at the top of the SF. These 
interactions are absent in the closed-state model, where H587 (instead of N588) bonds with D591 within the S5-P 
linker, and I583 (replacing G584) interacts with N633 at the SF top. Additionally, G628 from an adjacent subunit 
forms a hydrogen bond with N629 atop the SF. Analyzing the differences between the inactivated- and closed-state 
model (Figure 4e), the inactivated-state model uniquely features a V630-N629 hydrogen bond, whereas the closed-
state model exhibits intersubunit hydrogen bonds between N633 and Q592, and between S631/G628 and N629. 
Furthermore, in the closed-state model, S620 forms a hydrogen bond with G626, stabilizing the SF conformation. 

In Figure S3, we compared the S6 pore-lining helix orientation across various models. The closed-state model 
features a straight S6 helix with a minor kink. On the contrary, both the open- and inactivated-state models exhibit 
a pronounced kink around I655, as identified in a prior study(47), which facilitates pore opening and distinguishes 
the inactivated-state from the closed-state model. Notably, a slight rotation differentiates the S6 helix in the open- 
and inactivated-state models, altering the alignment of drug-binding residues Y652 and F656. The interaction 
network analysis results from Figure 4b, c suggest that alterations in the hydrogen bond network around the SF 
region, during the transition from open to inactivated state, might pull on the S6 helix and influence its orientation 
(Figure S1e, f) – a subtle yet potentially impactful change for drug binding which we will explore later. In agreement 
with our observations, a study by Helliwell et al. also suggested that a slight clockwise rotation of the S6 helix in the 
hERG open-state cryo-EM structure(7) could align the S6 aromatic side chains, particularly F656, into a 
configuration to enable interactions with inactivation-dependent blockers that more accurately reflects experimental 
data(48). 

Molecular dynamics simulations to assess ion conductivity 

We performed all-atom molecular dynamics (MD) simulations on two hERG channel models described above, one 
in the open state and the other in the predicted inactivated state, to evaluate their ion conduction capabilities. Unlike 
the closed-state model, both open- and inactivated-state models should allow ions and water to enter and traverse 
the channel pore reaching the SF region. However, only the open state-model is expected to facilitate ion conduction 
through its SF. 

To investigate ion conduction in the selectivity filter, we considered two conditions, as shown in Figure 5a: one in 
which the SF initially contained only K+ ions and another in which both ions and water were present to test previously 
proposed direct (or Coulombic) and water-mediated K+ conduction knock-on mechanisms(49, 50) as in a previous 
study(14). In the direct knock-on (ions-only) scenario, we manually positioned K+ atoms in the putative K+ binding 
sites of S0, S2, S3, and S4 within the SF. For water-mediated knock-on (the alternating ions and water molecules) 
scenario, K+ ions were placed in the S1, S3, and Scav positions, while water molecules were inserted into the S0, 
S2, and S4 positions. These models were incorporated into phospholipid bilayers consisting of 1-palmitoyl-2-
oleoylphosphatidylcholine (POPC) molecules, as depicted in Figure 5b. Subsequently, we conducted simulations 
for each case under three membrane voltage conditions: 0 mV, 500 mV, and 750 mV, each lasting 1 μs. This 
resulted in a total of six MD simulations for each model. 

For all instances where a non-zero membrane voltage was applied, we observed K+ conduction after equilibration 

in the open-state model (Figure 6a, c and Figure S4a, c), whereas such conduction was not observed in the 

inactivated-state model (Figure 6b, d and Figure S4b, d). For ions-only initial arrangement we observed that all K+ 

ions initially located in the SF went across during 1 μs MD runs under applied 750 and 500 mV membrane voltage 

(Figure 6a and Figure S4a), whereas for the alternating water-ion initial SF configuration we observed conduction 

of SF ions as well as additional K+ moving all the way across the channel pore (Figure 6c and Figure S4c). In both 

cases we saw combination of direct and water-mediated knock-on mechanisms as in our previous hERG channel 

MD simulations(11, 14). Control MD simulations conducted under zero voltage conditions revealed a single K+ 
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conduction event for the open-state model (Figure S4g) when the SF was initially filled with water molecules and 

ions, while no conduction events were observed in the remaining cases (Figure S4e, f, h). 

Subsequently, we conducted an analysis of pore radius changes throughout the MD simulations (full results in 
Figure S5). In Figure 7a, under zero voltage conditions, we observed consistent and distinct pore radius profiles 
across all simulations within their respective models. Specifically, MD simulations featuring the inactivated-state 
model consistently displayed a narrower pore radius when compared to simulations involving the open-state model. 
However, when subjected to high voltage conditions, the open-state model exhibited a shift towards an inactivated-
like state, leading to a reduction in the pore width, which is consistent with an increased hERG channel inactivation 
propensity at more depolarized voltages(1). Although we did not observe the outward flipping of the V625 backbone 
carbonyl oxygens in the SF during the 1 μs simulations of the open-state model, we did observe the flipping of the 
F627 backbone carbonyl oxygens as shown in Figure 7b. Interestingly, this SF conformation with flipped F627 but 
not V625 backbone carbonyls is also observed in cluster 3 of the AlphaFold-predicted models shown in Figure 2. 
In the inactivated-state model MD simulations, V625 backbone carbonyl oxygens flipped inward into ion conducting 
conformation more often with increasing voltage, but as long as one out of four of them remained outward oriented, 
no K+ could pass through the SF. 

Assessing state-dependent drug block using GALigandDock 

 
We utilized Rosetta GALigandDock software(13) to dock 19 drugs from different classes, including alternative 
protonation states, into our hERG state-specific channel models. This process aimed to evaluate and corroborate 
their state-dependent binding interactions with experimental studies, specifically in terms of relative binding 
affinities. Figure 8 presents these findings in the form of Rosetta GALigandDock(13) binding energies (lower values 
mean more favorable binding). Consistent with published studies, most drugs showed stronger binding to the 
inactivated-state hERG channel model, including astemizole(8), terfenadine(8), cisapride(8), d/l-sotalol(8), 
dofetilide(8), and E-4031(51, 52). Drugs like moxifloxacin(53), quinidine(8), and perhexiline(8) did not show strong 
preference for the inactivated model, aligning with findings from hERG experimental studies using inactivation-
deficient mutants(8) or “step-ramp” voltage protocol(53). 
 
In our GALigandDock docking results, most drugs exhibited increased binding affinity to the closed-state hERG 
model compared to the open-state hERG model. Drugs are unable to bind to the closed state from the intracellular 
space because the pore is closed. However, they can become trapped if they are already bound when the channel 
transitions from open to closed state, as shown in experiments for dofetilide(54), cisapride(54), terfenadine(54, 55), 
E-4031(55), nifekalant(56), etc. To model drug trapping, we placed the drug in a pocket beneath the selectivity filter 
in the closed pore configuration before docking. However, this method does not consider how the conformational 
shift from the open to the closed state might influence drug binding. Under physiological conditions, the pore gating 
motion from open to closed might expel drugs from the pore instead of pushing them deeper. This limitation might 
account for some inconsistencies noted in our docking study, particularly regarding the apparent trapping of drugs 
such as amiodarone and haloperidol, which is at odds with experimental results(57). However, these preliminary 
results could pave the way for more thorough investigations, employing advanced computational techniques to 
delve deeper into the dynamics of drug trapping(58, 59). 
 
In most cases, the increased drug binding affinity to the inactivated-state hERG model can be attributed to the 
protrusion of residue F656 aromatic side chain into hERG central cavity (Figure 3a). This protrusion has the 
potential to strengthen drug binding through providing extra π stacking or hydrophobic interactions. Furthermore, 
the side chains of F656 could act as a barrier, blocking drugs that are bound deeper within the pore from escaping 
even when they do not have direct interactions with the drugs. Similar observations were made for the closed-state 
model, where the pore closure also positions the F656 side chain inward. In addition, the slanted orientation of the 
Y652 aromatic ring and repositioning of the S624 sidechain hydroxyl oxygen in the inactivated model enabled the 
formation of a pocket beneath the SF (Figure 3b), enabling drugs to reach deeper into the pore. 
 
As an example,  
Figure 9 focuses closely on the binding of astemizole, dofetilide, and quinidine in their cationic forms (the 
predominant species at the physiological pH 7.4) to different hERG channel models. Experimental evidence(8) 
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suggests that dofetilide and astemizole bind more potently to the inactivated state, while quinidine does not exhibit 
this preference. 
 
Astemizole: In the open-state model, astemizole engages in π stacking with the Y652 aromatic side chain via its 
benzimidazole group and forms hydrophobic contacts with adjacent residues (A653, F656, and Y652). Its binding 
occurs just below S6 helix residue Y652, not deeply within the pore, resulting in a binding pocket that remains 
partially open to external solvent. In contrast, in the inactivated-state model, astemizole demonstrates an increase 
in interactions and becomes fully enclosed within the binding site deeper into the pore, engaging in hydrophobic 
interactions with S6 residues S649, Y652, F656, I655 and S5 residue F557. Astemizole phenyl ether group engages 
in the π stacking with hERG Y652 and F656 side chains from adjacent subunits. At the other end, the aromatic ring 
of Y652 phenol side chain also engages in π stacking, while its oxygen atom acts as a non-ideal hydrogen bond 
acceptor (i.e., donor angle of ≤ 45° and bonding distance of ≤ 3.8 Å(60)) to astemizole nitrogen. Furthermore, the 
SF residue S624 side chain participates as a hydrogen bond acceptor with the piperidine ring of the drug. The 
binding pattern in the closed-state model is similar to that in the inactivated-state model, but it includes additional 
hydrophobic interaction with S660 and an extra hydrogen bond provided by the phenol oxygen of Y652.  
 
In 2021, a study by Asai et al. solved the cryo-EM hERG structure in complex with astemizole(10). Although the 
structures deposited to the PDB (7CN0(10) and 7CN1(10)) did not depict any bound ligand, a possible astemizole 
binding pose was suggested based on residual EM density. The density map showed a π-π interaction of astemizole 
with Y652 and a hydrogen bond with S624(10). In addition, electrophysiology study by Saxena et al. has identified 
F557 and Y652 as crucial for astemizole binding, as determined through mutagenesis(61). In 2022, a study by Nano 
Imaging Services unveiled a cryo-EM structure of hERG with astemizole at a refined 2.7 Å resolution(62), 
showcasing a binding pose remarkably similar to what we observed in our study for the hERG inactivated state. 
 
Dofetilide: In the open-state hERG model, dofetilide interacts with multiple residues of the pore lining S6 helices. 
For instance, it forms hydrogen bonds with two S660 residues from opposite subunits and two A653 residues from 
adjacent subunits. Additionally, there are hydrophobic interactions with Y652 and G657. When bound to the 
inactivated-state model, dofetilide settles deeper into the pore, extending horizontally above the Y652 residue, 
where it forms π stacking and cation-π interactions, as well as hydrogen bonds with the Y652 residues of all 
subunits. The backbone carbonyl oxygen of residue S649 also engages in hydrogen bonding with the nitrogen in 
the sulfonamide group of dofetilide. There are also hydrophobic contacts with hERG S6 residues S649, F656, and 
I655 as well as residue F557 on the S5 helix. The closed-state model pore provides a substantially narrower space, 
leading dofetilide to bind vertically along the pore axis, forming hydrophobic contacts with S624, S649, Y652, F656, 
and S660. Here, the oxygen and nitrogen of its sulfonamide group create a series of hydrogen bonds with hERG 
residues T623 and Y652. The central cationic ammonium group of the ligand forms cation-π interactions with two 
F656 residues from adjacent subunits. Lastly, the oxygens in the remaining sulfonamide group are involved in 
hydrogen bonding with the S660 residues from every subunit. In the inactivated-state and closed-state models, the 
binding pocket is completely enclosed, notably unlike the open-state model. 
 
In line with our results, mutations affecting A653 have demonstrated an influence on hERG channel blocking by 
dofetilide(63). Additionally, electrophysiology study by Saxena et al. revealed that mutants Y652A and F557 altered 
dofetilide binding(61). Simulation studies have highlighted interactions involving non-polar residues A653, Y652, 
F656, as well as polar residues S624, T623, S649, and S660 with dofetilide(64). 
 
Quinidine: Unlike the previous two drugs, quinidine does not exhibit significant state-specific binding based on our 
docking predictions (Figure 8). In the open-state hERG model, its small size allows for complete enclosure within 
the binding pocket, where it forms non-ideal hydrogen bonds with residue Y652 and hydrophobic contacts with 
another Y652 from an adjacent chain as well as A653 and S660. In the inactivated-state model, quinidine binds 
lower in the pore, resulting in a partially open binding pocket. Here, its quinoline rings engage in π-stacking 
interactions with the F656 side chain above and hydrophobic contacts with another F656 from the opposite subunit. 
The hydroxyl oxygen forms a non-ideal hydrogen bond with residue S660. In the closed-state model, quinidine 
becomes trapped deeper in the pore and is fully enclosed. Its quinoline rings π stack with multiple F656 side chains 
below and the Y652 side chain above drug binding position. The hydroxyl oxygen now establishes a non-ideal 
hydrogen bond with Y652, with additional hydrophobic contacts observed with Y652 side chains and the T623 
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backbone. Corroborating our results, Sănchez-Chapula et al. previously found that mutating key aromatic residues 
(Y652, F656) in the S6 domain reduced the efficacy of quinidine by more than 100-fold(65). 
 
 
Conclusions 
 
Employing AlphaFold2 under default parameters typically leads to the prediction of the hERG channel in the open-
state conformations. In our study, we presented an approach to guide AlphaFold2 to model the hERG channel in 
various conformational states. We further validated the physiological significance of these states using 
computational simulations. This methodology has provided new insights into the structural and functional behavior 
of the hERG channel, including state-specific drug interaction mechanisms. 
 
The predicted models, which putatively represent the closed, open and inactivated states of the hERG channel, 
have revealed detailed structural aspects that were previously elusive, particularly in the pore region where drug 
binding occurs. The closed-state hERG channel model demonstrates a constricted pore and deactivated voltage-
sensing domains, suggesting a structural basis for the prevention of ion passage. The open-state hERG channel 
model, conversely, illustrates a pore conformation accessible to ion conduction, aligning with the physiological role 
of the channel in cardiac repolarization. The inactivated-state hERG channel model, a prediction of which greatly 
contributes to our understanding to hERG channel gating mechanism, shows a non-conductive selectivity filter 
conformation with significant changes to the pore region that could be a key in understanding state-specific drug-
induced channel blockade. The non-conductive SF predicted by AlphaFold2, characterized by flipping of SF V625 
carbonyl oxygens away from the central axis and minor constriction at the level of G626, aligns with prior 
computational analyses and preliminary experimental reports as a possible hERG C-type inactivation 
mechanism(15, 26, 27). The structures referenced in these studies have not been published in any publicly available 
databases and used for the training of AlphaFold2 to our knowledge. Our approach thus underscores the substantial 
yet untapped potential of AlphaFold2 to predict de novo channel conformations with physiological relevance. 
 
Molecular dynamics simulations were crucial in confirming these model functional properties. The observed 
differences in ion conduction between the open and inactivated hERG channel states illustrate the impact of 
structural changes on ion channel activity. In addition, the drug docking analysis matched expectations, with 
significant preference for the inactivated-state model across a variety of hERG blockers. In the model representing 
the inactivated state, a subtle rotation of the S6 pore-lining helix from the open state results in a more prominent 
protrusion of the F656 side chains into the central cavity and widens the inner cavity below the SF due to the 
repositioning of Y652 side chains. These structural modifications facilitate deeper binding of certain drugs in the 
pore, increase interactions between drugs and the channel, impede ion movement, and obstruct the exit routes for 
drugs that are bound within the pore. Although prior studies have proposed potential molecular mechanisms for 
hERG C-type inactivation(15, 26, 27), they have primarily concentrated on conformational shifts leading to a non-
conductive selectivity filter. Our research, however, also sheds light on how these alterations extend to the pore 
region and subsequently impact drug binding, an issue of significant relevance in safety pharmacology and drug 
development. 
 
Moreover, the study highlights the potential for deep-learning based computational methods like AlphaFold2 in 
structural biology, especially for complex proteins like ion channels and a simultaneous prediction of multiple 
conformations putatively representing different channel states. This is a challenging task for experimental structure 
determination as it requires changes in experimental conditions and/or classification of multiple cryo-EM images. 
Our proposed AlphaFold2 approach using multiple templates and fine-tuned structural prediction parameters 
allowed us to overcome this challenge and predict atomistic structural models of the hERG channel in the putative 
closed, open, and inactivated states. These models were further validated using all-atom molecular dynamics 
simulations under applied voltage to test ion conduction through model channel pores as well as molecular docking 
of multiple drugs to test their state-dependent binding preferences compared to known experimental data. The 
intersection of structural modeling, molecular docking and molecular dynamics simulations, and supporting 
experimental data offers a comprehensive approach to understanding protein structures and their links to biological 
functions. 
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Despite the promising results, our study is not without limitations. While AlphaFold has demonstrated remarkable 
accuracy in numerous instances(66–68), it is important to note that the predicted models, particularly in regions 
where the model has lower confidence, may not always be reliably accurate to predict drug binding poses(69). 
Moreover, hERG channel inactivation and closure might encompass a range of states, and the conformations we 
have identified could potentially represent just a few possibilities within this broad spectrum. The results from 
GALigandDock drug docking, while providing valuable insights, should be regarded as provisional due to inherent 
limitations of this approach, including limited accuracy and transferability(19). Additionally, knowing the 
computational binding free energies of a drug is not the complete story; binding rates such as kon (association rate) 
and koff (dissociation rate) are also crucial for a quantitative evaluation of drug binding to the channel. The results 
herein primarily serve as a basis for further detailed investigation using methods like molecular dynamics 
simulations linked to multiscale functional modeling, as demonstrated in previous studies(11, 70). 
 
In conclusion, this study not only advances our knowledge of the hERG channel structural dynamics but also sets 
a precedent for using AlphaFold2 or similar computational methods, such as RoseTTAFold(71), to study other ion 
channels and membrane proteins. The insights gained from this study are expected to have a lasting impact on the 
fields of ion channel physiology and pharmacology including cardiac drug safety, providing a foundation for future 
research aimed at developing safer and more effective therapeutic agents. 
 
 
Methods 
 
hERG channel model generation and refinement 

Structural data for the Eag KV channel in its closed conformation (PDB 8EP1(21)) and the hERG channel in its open 
state (PDB 5VA2(7)) were sourced from the Protein Data Bank (PDB(72)). To accurately represent the open state 
of hERG, we integrated known cryo-EM structures (PDB 5VA2(7)) with modeled segments of absent loops, 
employing Rosetta(28) software suite LoopRemodel mover in a symmetrical configuration. The refinement of all 
final models was performed using Rosetta FastRelax protocol, which iterated 15 times and included a simulated 
POPC membrane environment. For each finalized model, 10 separate relaxation runs were executed, and the 
highest-scoring model from these runs was selected for further simulation and analysis. 
 
Cloud computational resources, specifically NVIDIA A10 GPUs (24 GB of VRAM) provided by Oracle, facilitated the 
modeling processes in ColabFold(22). To enhance sampling diversity, in each modeling session, ColabFold was 
configured to utilize 256 sequence clusters and 512 extra sequences (max_msa = “256:512”) under the MSA option 
and have dropouts enabled (use_dropout = True). The prediction phase was further diversified by running 20 
iterations with different random seeds (num_seeds = 20), each producing 5 models and resulting in 100 total models 
per run. An exception to this approach was the initial phase of inactivated-state hERG model creation, where a 
single seed number was used to generate 5 models. The number of iteration cycles was set to 20, with an early 
stopping tolerance of 0.5 based on per-residue confidence metric pLDDT deviation from the previous cycle.  
 
Atomistic MD simulations of hERG channel conduction 

The CHARMM-GUI web server(73) was employed to embed hERG channel structural models within tetragonal 
patches of phospholipid bilayers, each comprising approximately 230 to 240 POPC lipid molecules. The resulting 
assemblies were immersed in a 0.3 M KCl aqueous solution, culminating in molecular systems with an approximate 
total of 144,000 atoms. Residue protonation states were determined assuming a neutral pH environment, and each 
channel subunit was terminated with standard charged N- and C-termini. 
 
MD simulations were conducted using the Amber22(74) software suite. The simulations utilized standard all-atom 
CHARMM force fields specific to proteins (CHARMM36m(75)), lipids (C36(76)), and ions, in conjunction with the 
TIP3P water model(77). The systems were maintained at 310.15 K and 1 atm pressure in the isobaric-isothermal 
(NPT) ensemble, facilitated by Langevin temperature equilibration and the Berendsen barostat. Non-bonded 
interactions were calculated with a cutoff of 12 Å. Long-range electrostatic forces were addressed using the Particle 
Mesh Ewald (PME) method(78), and van der Waals interactions were not subjected to long-range correction as per 
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recommendations for the C36 lipid force field. All hydrogen-involved covalent bonds were constrained using the 
SHAKE algorithm to enable a 2-fs MD simulation time step. 
 
Equilibration began with harmonic restraints imposed on protein atoms and lipid dihedral angles, initially set at 20 
kcal/mol/Å² and reduced to 2.5 kcal/mol/Å² over 6 ns. A subsequent 90 ns equilibration phase further decreased 
the restraints to 0.1 kcal/mol/Å², initially encompassing all atoms in the protein and eventually focusing solely on 
the backbone atoms of pore-lining residues (G546 to F720). In selected MD simulations, an electric field was applied 
along the Z direction to mimic membrane voltage, increasing linearly over the final 10 ns of equilibration to reach 
either 500 or 750 mV. This setup prefaced a production phase lasting 910 ns, totaling 1 μs of total simulation time 
per each case. 
 
Docking of drugs to hERG channel models 

Ligand structures (i.e., pharmaceutical compounds) were retrieved from the PubChem(79) and ZINC(80) 
databases. Afterward, each ligand underwent modification processes including bond corrections and setting of 
protonation states using the Avogadro software(81). In this study, we considered the protonation state of the top 
two most dominant species at the physiological pH of 7.4, computed using the Henderson–Hasselbalch equation. 
After these initial modifications, each ligand partial atomic charges, as well as atom and bond types, were refined 
using AM1-BCC correction via the Antechamber module in AmberTools22(74, 82). 

Each ligand was individually positioned within the pore of the hERG channel, specifically between the key drug-
binding residues, Y652 and F656, located on the pore lining S6 helices. This manual placement was a preparatory 
step for the docking process. Docking was executed using the GALigandDock(13) Rosetta mover, a component of 
the Rosetta software suite(28). The DockFlex mode was utilized for this purpose with a spatial padding of 5 Å. For 
every individual hERG channel – ligand pair, a total of 20 parallel runs were conducted. Each run generated 1,250 
unique docking poses, cumulatively providing a substantial collection of 25,000 poses for each ligand – hERG 
channel complex. This extensive array of poses was intended to ensure a comprehensive exploration of potential 
ligand binding configurations and orientations within the hERG channel pore. 

Utilizing in-house Python scripts, we selected the top 50 docking poses for each ligand based on the lowest free 
energy of binding as calculated by GALigandDock. These selected poses were then clustered based on ligand all-
atom RMSD, factoring in the symmetry of the hERG channel to ensure accurate grouping. The clustering was 
executed with an RMSD threshold of 2.5 Å, and only clusters containing a minimum of 8 poses were deemed 
significant; those with fewer were classified as outliers. Within the cluster with the most favorable average binding 
free energy, we selected the top scoring pose as the representative pose for further analysis. This pose was then 
subjected to a detailed analysis of protein-ligand interactions utilizing the Grapheme Toolkit from the OpenEye 
software suite(83). The criteria for detecting interactions are outlined in the OEChem Toolkit manual(60), with two 
modifications: the MaxContactFraction is set to 1 (default: 1.2), and the MaxCationPiAngle is adjusted to 30° 
(default: 40°). The interaction patterns and binding sites were subsequently rendered as a two-dimensional image 
for comprehensive visual interpretation. Additionally, for a more detailed understanding of the spatial arrangement, 
three-dimensional visualization of the protein-ligand complexes was conducted using the ChimeraX20 software. 

Molecular graphics and interaction analysis 

Molecular graphics visualization was performed using ChimeraX(84). MD trajectory and simulation images were 
visualized using VMD(85). Interaction network analysis was performed using the Protein-Ligand Interaction 
Profiler(86) with criteria outlined in Table S1. 
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Figure captions 

Figure 1. Generation of hERG channel models in the closed (a), open (b), and inactivated (c) states. The 
lower limit of the pore radius color profile (1.15 Å) indicates the minimum radius to accommodate a water molecule, 
and the upper limit (2.30 Å) indicates sufficient space to fit two water molecules side by side. 

Figure 2. Clustering of AlphaFold2-predicted hERG channel models. a) The model chosen for subsequent 
analysis. b) Clusters created from 100 models predicted for each state. Each structure visualized is colored 
according to the per-residue confidence metric (pLDDT). The closed-state models are clustered based on the 
RMSD of the entire protein models. The inactivated- and open-state models are clustered based on the RMSD of 
the selectivity filter (S624 – G628). To represent each cluster, the top 5 models ranked by average pLDDT are 
shown. The bar graphs display the mean pLDDT values for the clustered segment across all models within each 
cluster, accompanied by the standard deviation. Clusters containing less than three models are categorized as 
outliers. 
 
Figure 3. Structural comparison of different hERG channel state models. a) Visual comparison of the closed, 
open-, and inactivated-state models. b) Pore radius for the SF and drug binding region (upper) and for the entire 
pore (lower). c) Comparison of the VSD conformation in each model, showcasing the positively charged Arg and 
Lys gating-charge residues, located on the S4 helix, and the gating charge transfer center residue, F463, on the S2 
helix. d) Measurement of the distance between the Cα atom of F463 to the Cα atom of each of the gating-charge 
residues.  
 
Figure 4. Interaction network analysis showcasing residue-residue interactions in the S5-P linker (I583 – 
Q592) and region surrounding the SF (S620 – N633). a) An image of a hERG channel subunit with the analyzed 
regions colored in cyan and blue. b) Heatmaps showing intrasubunit and intersubunit (marked by X) interactions 
between each residue in the analyzed regions. The interactions analyzed are hydrogen bonding, π stacking, cation-
π, and salt bridges. Black cells indicate no interactions. Gray cells indicate an interaction is present in both states. 
Blue, orange, and green colored cells indicate the interaction is present only in the open, inactivated, or closed 
state, respectively, but not in the other state being compared in the map. White lines are added to separate S5-P 
linker residues from the SF region residues. c, d, e) Visualization of the interactions being present in one state but 
not the other. Gold-colored residues are involved in the interactions. Green-colored residues, named with an 
asterisk at the end, are from an adjacent chain but are interacting with gold-colored residues. Dashed lines 
represent hydrogen bonds. 
 
Figure 5. Setup of MD simulations to assess ion conduction in the open and inactivated models. a) Initial 
configuration of the SF, set to fill with either all K+ ions, or alternating K+ and water molecules. b) An example MD 
simulation box showing a hERG channel model (shown in yellow surface representation) embedded in POPC lipid 
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bilayer (shown as sticks) and solvated by an aqueous 0.3 M KCl solution (shown as a transparent surface with K+ 
and Cl- ions shown as purple and green balls, respectively). 
 
Figure 6. Movement of K+ ions through hERG SF. The z coordinates of K+ ions are tracked as they traverse from 
the pore of the channel (lower y-axis limit) to the extracellular space (upper y-axis limit) under membrane voltage 
of 750 mV. Putative K+ binding sites in the SF (S0 – S5) are marked using blue dashed lines in the plots. a, c) 
Results from MD simulations on the open model with the SF initially configured to have only K+ ions or alternating 
K+ / water molecules, respectively. b, d) Results from MD simulations on the inactivated model with the SF initially 
configured to have only K+ ions or alternating K+ / water molecules, respectively. 
 
Figure 7. Analysis of dynamics of the SF and pore conformations over the course of the 1 µs MD 
simulations. a) Pore radius averaged over each 1 µs long MD simulations with or without applied membrane 
voltage. Open- and inactivated-state model MD simulations are notated as O and I, respectively, with the subscripts 
KK and WK denoting whether the SF initially configured to have only K+ ions or alternating K+ / water molecules, 
respectively. b) Ensembles of SF conformation over the course of each MD simulation superimposed over each 
other. The gold-colored conformation indicates the initial conformation. 
 

Figure 8. GALigandDock drug docking results to different hERG channel models. Each bar plot represents 
the estimated energy of binding in Rosetta energy units (R.E.U.) for the named drug to the open-, inactivated-, and 
closed-state hERG channel models. Lower values mean more favorable binding. 25,000 docking poses were 
generated for each drug/channel model pairing. The top 50 poses were clustered, and the plotted energy represents 
the average free energy of the top cluster along with the standard deviation. The labels (0), (+), (±) after the drug 
name indicate its neutral, cationic, or zwitterionic form, respectively. 
 
Figure 9. Visualization of interactions for cationic astemizole (a), dofetilide (b), and quinidine (c) to different 
hERG channel models. Each panel includes 3 subpanels showcasing drug interactions to the open-, inactivated, 
and closed-state hERG channel models. In each subpanel, an overview of where the drug binds within the channel 
pore is shown on the upper left, a 3D visualization of interactions between each channel residue (blue, red, green, 
and tan residues are from the subunit A, B, C, or D, respectively) to the drug (magenta) is shown on the upper right, 
and a 2D ligand – protein interaction map is shown at the bottom. A continuous gray line depicts the contour of the 
protein binding site, and any breaks in this line signal areas where the ligand is exposed to the solvent. 
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Figures and Tables 

 

Figure 1. Generation of hERG channel models in the closed (a), open (b), and inactivated (c) states. The 
lower limit of the pore radius color profile (1.15 Å) indicates the minimum radius to accommodate a water molecule, 
and the upper limit (2.30 Å) indicates sufficient space to fit two water molecules side by side. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted January 30, 2024. ; https://doi.org/10.1101/2024.01.27.577468doi: bioRxiv preprint 

https://doi.org/10.1101/2024.01.27.577468
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

16 

 

 
 
Figure 2. Clustering of AlphaFold2-predicted hERG channel models. a) The model chosen for subsequent 
analysis. b) Clusters created from 100 models predicted for each state. Each structure visualized is colored 
according to the per-residue confidence metric (pLDDT). The closed-state models are clustered based on the 
RMSD of the entire protein models. The inactivated- and open-state models are clustered based on the RMSD of 
the selectivity filter (S624 – G628). To represent each cluster, the top 5 models ranked by average pLDDT are 
shown. The bar graphs display the mean pLDDT values for the clustered segment across all models within each 
cluster, accompanied by the standard deviation. Clusters containing less than three models are categorized as 
outliers. 
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Figure 3. Structural comparison of different hERG channel state models. a) Visual comparison of the closed, 
open-, and inactivated-state models. b) Pore radius for the SF and drug binding region (upper) and for the entire 
pore (lower). c) Comparison of the VSD conformation in each model, showcasing the positively charged Arg and 
Lys gating-charge residues, located on the S4 helix, and the gating charge transfer center residue, F463, on the S2 
helix. d) Measurement of the distance between the Cα atom of F463 to the Cα atom of each of the gating-charge 
residues.  
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Figure 4. Interaction network analysis showcasing residue-residue interactions in the S5-P linker (I583 – 
Q592) and region surrounding the SF (S620 – N633). a) An image of a hERG channel subunit with the analyzed 
regions colored in cyan and blue. b) Heatmaps showing intrasubunit and intersubunit (marked by X) interactions 
between each residue in the analyzed regions. The interactions analyzed are hydrogen bonding, π stacking, cation-
π, and salt bridges. Black cells indicate no interactions. Gray cells indicate an interaction is present in both states. 
Blue, orange, and green colored cells indicate the interaction is present only in the open, inactivated, or closed 
state, respectively, but not in the other state being compared in the map. White lines are added to separate S5-P 
linker residues from the SF region residues. c, d, e) Visualization of the interactions being present in one state but 
not the other. Gold-colored residues are involved in the interactions. Green-colored residues, named with an 
asterisk at the end, are from an adjacent chain but are interacting with gold-colored residues. Dashed lines 
represent hydrogen bonds. 
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Figure 5. Setup of MD simulations to assess ion conduction in the open and inactivated models. a) Initial 
configuration of the SF, set to fill with either all K+ ions, or alternating K+ and water molecules. b) An example MD 
simulation box showing a hERG channel model (shown in yellow surface representation) embedded in POPC lipid 
bilayer (shown as sticks) and solvated by an aqueous 0.3 M KCl solution (shown as a transparent surface with K+ 
and Cl- ions shown as purple and green balls, respectively). 
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Figure 6. Movement of K+ ions through hERG SF. The z coordinates of K+ ions are tracked as they traverse from 
the pore of the channel (lower y-axis limit) to the extracellular space (upper y-axis limit) under membrane voltage 
of 750 mV. Putative K+ binding sites in the SF (S0 – S5) are marked using blue dashed lines in the plots. a, c) 
Results from MD simulations on the open model with the SF initially configured to have only K+ ions or alternating 
K+ / water molecules, respectively. b, d) Results from MD simulations on the inactivated model with the SF initially 
configured to have only K+ ions or alternating K+ / water molecules, respectively. 
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Figure 7. Analysis of dynamics of the SF and pore conformations over the course of the 1 µs MD 
simulations. a) Pore radius averaged over each 1 µs long MD simulations with or without applied membrane 
voltage. Open- and inactivated-state model MD simulations are notated as O and I, respectively, with the subscripts 
KK and WK denoting whether the SF initially configured to have only K+ ions or alternating K+ / water molecules, 
respectively. b) Ensembles of SF conformation over the course of each MD simulation superimposed over each 
other. The gold-colored conformation indicates the initial conformation. 
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Figure 8. GALigandDock drug docking results to different hERG channel models. Each bar plot represents 
the estimated energy of binding in Rosetta energy units (R.E.U.) for the named drug to the open-, inactivated-, and 
closed-state hERG channel models. Lower values mean more favorable binding. 25,000 docking poses were 
generated for each drug/channel model pairing. The top 50 poses were clustered, and the plotted energy represents 
the average free energy of the top cluster along with the standard deviation. The labels (0), (+), (±) after the drug 
name indicate its neutral, cationic, or zwitterionic form, respectively. 
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Figure 9. Visualization of interactions for cationic astemizole (a), dofetilide (b), and quinidine (c) to different 
hERG channel models. Each panel includes 3 subpanels showcasing drug interactions to the open-, inactivated, 
and closed-state hERG channel models. In each subpanel, an overview of where the drug binds within the channel 
pore is shown on the upper left, a 3D visualization of interactions between each channel residue (blue, red, green, 
and tan residues are from the subunit A, B, C, or D, respectively) to the drug (magenta) is shown on the upper right, 
and a 2D ligand – protein interaction map is shown at the bottom. A continuous gray line depicts the contour of the 
protein binding site, and any breaks in this line signal areas where the ligand is exposed to the solvent. 
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