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Abstract 

Background:  Thiamine metabolism dysfunction syndrome 4 (THMD4, OMIM #613710) is an autosomal recessive 
inherited disease caused by the deficiency of SLC25A19 that encodes the mitochondrial thiamine pyrophosphate 
(TPP) transporter. This disorder is characterized by bilateral striatal degradation and progressive polyneuropathy with 
the onset of fever of unknown origin. The limited number of reported cases and lack of functional annotation of 
related gene variants continue to limit diagnosis.

Results:  We report three cases of encephalopathy from two unrelated pedigrees with basal ganglia signal changes 
after fever of unknown origin. To distinguish this from other types of encephalopathy, such as acute necrotizing 
encephalopathy, exome sequencing was performed, and four novel heterozygous variations, namely, c.169G>A 
(p.Ala57Thr), c.383C>T (p.Ala128Val), c.76G>A (p.Gly26Arg), and c.745T>A (p.Phe249Ile), were identified in SLC25A19. 
All variants were confirmed using Sanger sequencing. To determine the pathogenicity of these variants, functional 
studies were performed. We found that mitochondrial TPP levels were significantly decreased in the presence of 
SLC25A19 variants, indicating that TPP transport activities of mutated SLC25A19 proteins were impaired. Thus, combin-
ing clinical phenotype, genetic analysis, and functional studies, these variants were deemed as likely pathogenic.

Conclusions:  Exome sequencing analysis enables molecular diagnosis as well as provides potential etiology. Further 
studies will enable the elucidation of SLC25A19 protein function. Our investigation supplied key molecular evidence 
for the precise diagnosis of and clinical decision-making for a rare disease.

Keywords:  SLC25A19, Thiamine pyrophosphate, Thiamine metabolism dysfunction syndrome 4, Functional study, 
Exome sequencing, Compound heterozygosity
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Introduction
Thiamine metabolism dysfunction syndrome 4 (THMD4, 
OMIM #613710) is an autosomal recessive inherited 
disease characterized by bilateral striatal necrosis and 
progressive polyneuropathy. Patients are usually asymp-
tomatic with normal development until having a febrile 
illness or viral infection, at which point, the disease 
rapidly develops and manifests in patients as recurrent 
episodes of encephalopathy and weakness. The clinical 
features of patients in the intensive care unit (ICU) are 
similar to those of acute necrotizing encephalopathy 
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(ANE) [1, 2]. However, unlike ANE, which has a high 
mortality and disability rate, most patients with THMD4 
fully recover, although some patients have mild residual 
weakness. As there are only a few reported cases, the 
disease is difficult to clinically identify. However, genetic 
testing is of great significance for guiding the diagnosis of 
the disease, clinical treatment, and long-term prognosis.

The disease is caused by a deficiency of SLC25A19, 
which encodes the mitochondrial thiamine pyrophos-
phate (TPP) transporter [3]. To date, only nine cases 
(Table  1) have been described worldwide [4–13]. Six 
variants, namely, c.373G>A (p.Gly125Ser), c.530G>C 
(p.Gly177Ala), c.576G>C (p.Q192H), c.580T>C 
(p.Ser194Pro), c.869T>A (p.L290Q), and c.910G>A 
(p.Glu304Lys), have been reported homozygously in this 
gene. A variant of SLC25A19 (c.530G>C, p.Gly125Ser) 
accounts for Amish lethal microcephaly (MCPHA; 
OMIM #607196), a disorder with a more severe pheno-
type [8–10, 14]. The remaining other homozygous vari-
ants of SLC25A19 have been indicated to cause bilateral 
striatal necrosis with polyneuropathy.

Here, we reported the cases of three patients from two 
unrelated families with encephalopathy associated with 
fever of unknown origin. All three cases presented with 
abnormal basal ganglia signals on brain magnetic reso-
nance imaging (MRI). We performed exome sequenc-
ing and discovered four novel heterozygous variations, 
namely, c.169G>A (p.Ala57Thr), c.383C>T (p.Ala128Val), 
c.76G>A (p.Gly26Arg), and c.745T>A (p.Phe249Ile) in 
SLC25A19. To explain the pathogenicity of these varia-
tions, mass spectrometry (MS) was performed. We found 
that the TPP levels in mitochondria were significantly 
decreased when carrying the mutated SLC25A19 protein 
compared with the wild-type protein, indicating that TPP 
transport activities of mutated SLC25A19 were defec-
tive. To the best of our knowledge, this is the first report 
of SLC25A19 variants in the Chinese population. Our 

investigation identified and proved the pathogenicity of 
novel SLC25A19 variants, extended the genotype–phe-
notype spectrum, and guided the clinical diagnosis and 
decision-making.

Methods
Participants
The patients were enrolled from Beijing Children’s Hos-
pital. They were referred to the pediatric ICU (PICU) for 
severe lethargy, convulsions, or impairment of conscious-
ness. Informed consent was obtained from the parents of 
the patients. The study was approved by the Institutional 
Review Board of Beijing Children’s Hospital, Capital 
Medical University (2015–26).

Exome sequencing, bioinformatics analysis, and Sanger 
sequencing
Genomic DNA from peripheral blood was extracted, 
purified, and fragmented into random segments. 
Genomic DNA was then captured using the Agilent 
SureSelect Human All Exome V6 Kit (Agilent Tech-
nologies, USA), and a sequencing library was pre-
pared. High-throughput sequencing was performed 
using a HiSeq X Ten sequencer (Illumina, USA), with 
a reading length of 150  bp. The exome sequencing 
resulted in > 12 GB of clean data. The average sequenc-
ing depth was more than 100×. Sequence alignment 
was conducted according to the GRCh37/hg19 human 
reference genome sequence using Burrows–Wheeler 
Aligner (BWA) and BAM files were created using Pic-
ard. Variant calling was performed using Genome 
Analysis Toolkit (GATK). Variants were annotated 
and filtered using TGex (https://​geneyx.​com/​geney​
xanal​ysis/). The main reference databases included 
population databases (dbSNP, 1000G, and gnomAD) 
and disease databases (Human Gene Mutation Data-
base [HGMD], ClinVar, OMIM, and MalaCards). The 

Table 1  Reported cases of SLC25A19 variants

Cases Variants Phenotype References

1 c.373G>A, p.Gly125Ser Neuropathy and bilateral striatal necrosis [4]

2 c.495G>A, p.Met165Ile Thiamine metabolism dysfunction syndrome 4 [5]

3 c.505G>A, p.Glu169Lys Neuropathy [6, 7]

4 c.530G>C, p.Gly177Ala Microcephaly [8–10]

5 c.580T>C, p.Ser194Pro Encephalopathy, childhood [11]

6 c.869T>A, p.Leu290Gln Neuropathy and bilateral striatal necrosis [12]

7 c.910G>A, p.Glu304Lys Neuropathy and bilateral striatal necrosis [12]

8 ~ 4.5 kb incl. partial gene Thiamine metabolism dysfunction syndrome 4 [5]

9 c.576G>C, p.Gln192His Bilateral striatal necrosis with polyneuropathy [13]

https://geneyx.com/geneyxanalysis/
https://geneyx.com/geneyxanalysis/
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pathogenicity of the variants was classified according 
to the standards and guidelines of the American Col-
lege of Medical Genetics and Genomics (ACMG) [15]. 
Primers were designed to amplify the covered exons 
and flanking regions. The DNA samples of the patients 
and their parents were amplified using polymerase 
chain reaction, and Sanger sequencing was performed 
using ABI 3730xl DNA Analyzer (Applied Biosystems, 
USA).

Structure prediction
The protein structure of SLC25A19 was predicted 
through homology modeling using Phyre2 (http://​www.​
sbg.​bio.​ic.​ac.​uk/​phyre2). Illustrations of the transmem-
brane domain of SLC25A19 were drawn based on the 
prediction using Adobe Illustrator (Adobe, USA).

Constructs and antibodies
SLC25A19 was cloned into a pCMV-Tag2B Flag con-
struct using BamHI and HindIII restriction endonu-
cleases. Variations were introduced into the SLC25A19 
constructs via site-directed mutagenesis method with 
slight modifications using KOD-Plus Neo (TOYOBO, 
Japan) and Dpn I (Thermo Fisher Scientific, USA). The 
primers used to generate amplicons of SLC25A19 and 
specified variation sites are presented in Table  2. Flag 
and β-actin antibodies were purchased from Sigma 

(Merck, Germany) and an anti-pyruvate dehydrogenase 
monoclonal antibody was obtained from Abcam (UK).

Isolation of mitochondria
Mitochondrial fractions were extracted via the differen-
tial centrifugation method using the Mitochondria Iso-
lation Kit (MITOISO2, Merck, Germany). Briefly, after 
transfection with Flag-SLC25A19 and the mutants, HEK 
293 cells were harvested via trypsinization. The cells were 
washed in ice-cold phosphate-buffered saline and centri-
fuged at 600 × g for 5 min. The pellets were resuspended 
in lysis buffer provided in the kit and incubated for 5 min 
on ice. The homogenate was centrifuged at 600 × g for 
10  min to remove the nuclear fraction and unruptured 
cells. The supernatant was again subjected to centrifuga-
tion at 11,000 × g for 10 min and the crude mitochondrial 
fractions were collected. The mitochondrial fractions 
were resuspended and stored at − 80 ℃ until further use 
for MS.

Ms
The mitochondrial extracts and post-mitochondrial 
supernatants were lyophilized overnight. The samples 
were then dissolved in a solution of methanol: acetoni-
trile (1:1, v/v), containing 5% formic acid. The mixture 
was mixed using a vortex mixer for 5–10  min and cen-
trifuged at 12,000 rpm, 10 ℃ for 5 min. The supernatant 
was subjected to liquid chromatography-MS analysis. 
Using Agilent 6545 and Accurate-Mass Q-TOF MS/MS 
with Agilent 1290 Infinity UHPLC system (Agilent Tech-
nologies, Santa Clara, CA, USA), electrospray-ionization 
liquid chromatography-tandem MS analysis of TPP in 
positive-ion mode was performed. The mass-to-charge 
ratio (m/z) for TPP was 425.05. Chromatographic reso-
lution of TPP was achieved using an X Select HSS T3 
Column (2.5  μm, 2.1 × 100  mm, Waters Corp., Milford, 
MA, USA) eluted using a linear gradient from 98% water 
(containing 20  mM ammonium formate and 0.1% for-
mic acid) (initial phase) to 85% water (containing 20 mM 
ammonium formate and 0.1% formic acid) and 15% ace-
tonitrile (containing 0.1% formic acid). The mobile phase 
was then reversed to 98% water. High-performance liq-
uid chromatography flow was 0.4  mL/min. Calibration 
curves were set at 100–25,000 ng/mL by using standards 
processed under the same conditions as the samples. The 
line of best fit was determined by regression analysis of 
the peak analyte area.

Statistical analysis
Data were presented as mean ± standard deviation of 
three independent experiments. The amount of TPP was 
expressed in terms of nanograms per milligram of pro-
tein. One-way analysis of variance was used to conduct 

Table 2  Primers used to generate SLC25A19 constructs and 
specified variation sites

Mutated sites of each primer are bolded

Primers Sequences

SLC25A19 5′-cgcggatccatggttggctatgacc-3′

5′-cccaagctttcagcgctggctggct-3′

SLC25A19 c.169G>A p.A57T 5′-cgcagtgaccccagcacaaagtaccatg-
gcatc-3′

5′-gatgccatggtactttgtgctggggtcactgcg-3′

SLC25A19 c.383C>T p.A128V 5′-gtatgtggtggcctggttgcctgtatggccac-3′

5′-gtggccatacaggcaaccaggccaccacatac-3′

SLC25A19 c.76G>A G26R 5′-gctgggtctgtgtctagacttgttactcggg-3′

5′-cccgagtaacaagtctagacacagacccagc-3′

SLC25A19 c.745T>A F249I 5′-ctacaggttggagggattgagcatgccagag-3′

5′-ctctggcatgctcaatccctccaacctgtag-3′

SLC25A19 c.530G>C p.G177A 5′-aggttttctacaaagccttggctcccacctt-3′

5′-aaggtgggagccaaggctttgtagaaaacct-3′

SLC25A19 I33A 5′-gttactcgggcgctggccagtcccttcgacgt-3′

5′-acgtcgaagggactggccagcgcccgag-
taac-3′

http://www.sbg.bio.ic.ac.uk/phyre2
http://www.sbg.bio.ic.ac.uk/phyre2
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statistical analysis, and Dunnett’s correction was used to 
perform multiple comparisons. Significance was set as 
*P < 0.05, **P < 0.01, and ***P < 0.001.

Results
Clinical description
Patient 1 was a boy aged 4 years and 3 months present-
ing with normal birth history, growth, and development 
(height, 115  cm; weight, 18  kg; body surface area, 0.73 
m2; and head circumference, 50  cm). He showed nor-
mal facial features, physical development, and nutrition 
condition. Nine months after birth, the patient showed 
somnolence and right upper-limb shaking. Brain MRI 
showed probable metabolic encephalopathy. Mitochon-
drial DNA testing was negative. His condition improved 
after orally taking vitamins B1 and B2, and he had no 
subsequent developmental delay. At 4  years of age, he 
was referred to PICU at the Beijing Children’s Hospital 
for viral infection-induced lethargy, decreased muscle 
strength and limb tension, diaphragmatic weakness, and 
expiratory dyspnea; he had to undergo tracheal cannu-
lation and mechanical ventilation for 8 days. Brain MRI 
showed abnormal signals in the bilateral basal ganglia, 
thalamus margin, hippocampus, midline frontal lobe, 
and temporal cortex. Diffusion-weighted imaging was 
limited (Fig. 1a), and the lactic acid levels in the cerebro-
spinal fluid (CSF) was normal. Muscle biopsy showed no 
abnormalities in mitochondrial respiratory chain enzyme 
activity. Combined with previous medical history, a 
diagnosis of aggravation of metabolic encephalopathy 
induced by infection was considered, but the possibil-
ity of necrotizing encephalopathy could not be ruled 
out. During treatment, immunotherapy for necrotizing 
encephalopathy and vitamin cocktail therapy for meta-
bolic encephalopathy were given along with vitamin B1 
(3.33 mg/kg/day) and vitamin B2 (1.67 mg/kg/day). Trio-
exome sequencing was performed during his hospitaliza-
tion. The patient’s condition did not deteriorate further; 
he was transferred to the local hospital PICU for treat-
ment for another 10 days and was taken off the ventilator. 
Later, the consciousness of the patient cleared and mus-
cle strength recovered; however, low muscle tone, incom-
plete deep tendon reflex, and extrapyramidal symptoms 
remained. One-year follow-up showed that the patient 
survived, exhibiting normal intelligence and behavioral 
development, but muscle tone and tendon reflex were 
still decreased.

Patient 2 was a boy aged 2 years and 7 months. He pre-
sented with normal birth history and physical and mental 
development. He had influenza A virus infection-induced 
febrile illness, became convulsed, and fell into a deep 
coma. He was admitted to PICU. During the disease, 
the coma progressively worsened and limb paroxysmal 

tremors, shaking, and muscle tone increased with pas-
sive extension. In the initial stage, the possibility of ANE 
was suspected. Immunoglobin and methylprednisolone 
were administered. Vitamin treatment was not given 
during hospitalization. Brain MRI revealed multiple 
signal abnormalities in the bilateral basal ganglia, thala-
mus margin, and brainstem (Fig.  1b). However, the lac-
tic acid levels in the CSF were normal. In the late stage 
of treatment, he and his parents’ blood were collected 
for genetic testing in the Center for Medical Genetics of 
Beijing Children’s Hospital. Four weeks after intubation, 
he was taken off the invasive ventilator and spontaneous 
breathing was maintained; however, cough and swallow-
ing reflexes were weak.

Patient 3 was the younger sister of patient 2 aged 
1 year and 7 months. She was admitted to local hospital 
with a deep coma after Influenza A virus infection. She 
presented many of the same symptoms as her brother, 
and exome sequencing was performed. Her brain MRI 
showed pathological changes in the basal ganglia and 
thalamus edge. Furthermore, the white matter around 
the bilateral lateral ventricles was demyelinated, the 
supratentorial ventricles were enlarged, and the sulci 
were deepened (Fig. 1c). In the recovery process of spon-
taneous breathing, the clinical symptoms of Patients 
2 and 3 were more serious, and they required a longer 
recovery time for spontaneous breathing than Patient 1. 
Perhaps, the differences in medical treatment led to the 
more serious symptoms than those seen for Patient 1. 
Patients 2 and 3 were discharged from the hospital before 
obtaining the genetic examination results. Their fam-
ily members were informed of the results via telephone. 
They were informed to provide oral vitamin B1 treat-
ment to the patients and followed up at the local Depart-
ment of Neurology. One month after discharge, Patients 
2 and 3 still showed high muscle tone, passive extension 
of limbs, painful response to external sound stimulation, 
and ineffectual speak or gaze. At a 3-month follow-up, 
high muscle tone and passive extension of the limbs had 
not improved in both patients; they showed a painful 
reaction to external sound stimulation and were unable 
to speak but occasionally gazed at the sound source.

Genetic variation analysis
Trio-exome sequencing was performed using peripheral 
blood DNA of all three patients and their respective par-
ents. We identified two novel compound heterozygous 
variants of SLC25A19 in Patient 1, c.169G>A (p.Ala57Thr) 
and c.383C>T (p.Ala128Val), and two compound 
heterozygous variants in Patients 2 and 3, c.76G>A 
(p.Gly26Arg) and c.745T>A (p.Phe249Ile). Subsequent 
Sanger sequencing confirmed that these variations were 
inherited from their parents (Fig.  2a–d). These variants 
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Fig. 1  Brain magnetic resonance imaging (MRI) of the three patients. a Brain MRI of Patient 1 showing abnormal signals in the bilateral basal 
ganglia, thalamus margin, hippocampus, midline frontal lobe, and temporal cortex. b Brain MRI of Patient 2 displaying abnormalities in the bilateral 
basal ganglia, thalamus margin, and brainstem. c Brain MRI of Patient 3 showing signal changes in basal ganglia and thalamus edge
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have not been reported in HGMD and ClinVar and have 
a low population frequency (Table 3). All variations were 
predicted to be pathogenic in silico using prediction tools, 
such as SIFT, Polyphen-2, MutationTaster, and CADD 
(Table 4). Sequence alignment indicated that the variants 
were conserved among most species (Fig. 3a).

Functional experiments
Based on Phyre2 analysis, SLC25A19 is predicted to con-
tain six transmembrane domains, and the variation sites 
are distributed in either the transmembrane helixes or 
mitochondrial matrix (Fig.  3b). To further confirm the 
pathogenicity of these variants, functional studies were 

Fig. 2  Pedigree and Sanger sequencing of the patients. Pedigree and Sanger sequencing results of Patient 1 (a, b) and Patients 2 and 3 (c, d)

Table 3  Population frequency of SLC25A19 variants

Patients Gene Transcript Variants Zygosity Carrier gnomAD
East Asian

1000 genomes dbSNP

1 SLC25A19 NM_00112
6122

c.169G>C p.Ala57Thr Heterozygous Father 5.789e−05 – rs766616256

c.383C>T p.Ala128Val Heterozygous Mother – – –

2 and 3 c.76G>A p.Gly26Arg Heterozygous Father 0.0005 0.001 rs181826033

c.745T>A p.Phe249Ile Heterozygous Mother – – –
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performed. We cloned SLC25A19 and its variants into 
a flag-tagged pCMV-Tag2B vector using site-directed 
mutagenesis. Two additional SLC25A19 mutants, 
p.G177A and p.I33A, were used as positive controls, and 
empty flag-tagged pCMV-Tag2B was used as a negative 
control. Control plasmids, wild-type, and constructs car-
rying SLC25A19 variations were transfected into HEK 
293 cells and seeded for mitochondrial isolation. There 

were no significant differences in the protein expression 
levels of the wild-type and mutated SLC25A19 protein 
(Fig.  4a, b). Next, we conducted MS to evaluate TPP 
levels in isolated mitochondria and post-mitochondrial 
supernatant to evaluate the thiamine transport abilities 
of wild-type and mutated SLC25A19 proteins. Mito-
chondria and post-mitochondrial fractions from HEK 
293 cells were isolated after transfection with controls, 

Table 4  Pathogenicity prediction of SLC25A19 variants

Patients Gene Transcript Variants SIFT Plyphen-2 Mutation 
taster

CADD

1 SLC25A19 NM_00112
6122

c.169G>C p.Ala57Thr D PD D D

c.383C>T p.Ala128Val D PD D D

2 and 3 c.76G>A p.Gly26Arg D PD D D

c.745T>A p.Phe249Ile D PD D D
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wild-type SLC25A19, and SLC25A19 mutants. TPP lev-
els were assayed using MS and normalized with total 
protein. Significantly higher levels of TPP were detected 
in the mitochondrial fraction of wild-type SLC25A19 
than in mutants and controls (Fig.  4c). In contrast, the 
detected TPP levels in post-mitochondrial supernatant of 
wild-type SLC25A19 were significantly lower than those 

of other variants and controls (Fig.  4d). Thus, changes 
in TPP levels in mitochondria and post-mitochondrial 
fractions indicated the loss of SLC25A19 transportabil-
ity in these genetic variants. According to ACMG guide-
lines, these variants were classified as likely pathogenic 
(PS3 + PM2 + PP3).
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Discussion
The three patients in this study exhibited viral infection-
induced progressive encephalopathy. We conducted 
exome sequencing and found four novel SLC25A19 
variants, namely, c.169G>A (p.Ala57Thr), c.383C>T 
(p.Ala128Val), c.76G>A (p.Gly26Arg), and c.745T>A 
(p.Phe249Ile). Functional studies proved that these vari-
ants exhibit defective TPP transportability. Combined 
with their medical history, MRI imaging results, genetic 
analysis, functional studies, and follow-up results, we 
confirmed that these SLC25A19 variants are likely path-
ogenic (PS3 + PM2 + PP3) and determined that these 
patients are likely to have THMD4 or a related condition. 
Our investigation defined and proved the pathogenicity 
of these novel SLC25A19 variants as well as extended our 
knowledge on the genotype–phenotype characterization 
of and assisted clinical intervention for patients. Addi-
tionally, our investigation demonstrated that definitive 
molecular diagnosis plays a vital role in predicting long-
term prognosis and developing effective drug interven-
tion plans.

SLC25A19 was once considered a mitochondrial deox-
yribonucleotide carrier [16]; however, other experiments 
later demonstrated that SLC25A19 was a TPP trans-
porter [3, 17, 18]. Moreover, it is accepted that SLC25A19 
encodes a transporter that facilitates the movement of 
TPP across the mitochondrial membrane. TPP is a deriv-
ative of thiamine, also known as vitamin B1, and one of 
the fundamental vitamins present in humans [19]. Mam-
malian cells obtain this vitamin from their surroundings 
via transport across the plasma membrane. Several forms 
of thiamine exist, including free thiamine, thiamine 
monophosphate (TMP), TPP, and thiamine triphosphate 
(TTP), in various tissues. Among them, TPP accounts 
for 80% of the total body thiamine, acting as a cofactor 
of several complexes of mitochondria and is involved in 
multiple metabolic processes [20].

Diseases related to SLC25A19 mainly include MCPHA 
and THMD4 (Table  1). MCPHA is a severe autosomal 
recessive metabolic disorder with a poor prognosis. In 
contrast, THMD4 causes transient neurologic dysfunc-
tion, and most patients show complete recovery [4, 12, 
13]. According to previous studies, patients with THMD4 
are characterized by episodes of encephalopathy in child-
hood that are often triggered by febrile illness. They usu-
ally suffer from encephalopathy, muscular weakness, and 
the disappearance of deep tendon reflexes. Patients’ brain 
MRI displays abnormal signals in bilateral basal ganglia, 
and some patients have high levels of lactic acid in CSF or 
serums. In some cases, patients recover with mild distal 
myasthenia or cognitive delay. Treatment with thiamine 
supplementation at a dose of 400 mg/day can occasion-
ally relieve symptoms.

In our study, all three patients exhibited viral infection-
induced encephalopathy and abnormalities in the bilat-
eral basal ganglia after fever. According to the results 
of genetic testing, the children were highly suspected 
to have THMD4. Patient 1 fully recovered with normal 
intelligence and behavior development but still showed 
decreased tendon reflexes. Patients 2 and 3 had high 
muscle tone, poor prognosis, and delayed cognitive abil-
ity development. In the recovery process of spontane-
ous breathing, the clinical symptoms of Patients 2 and 3 
were more serious compared with Patient 1. The differ-
ent phenotypes of patients following ventilator removal 
may indicate the importance of medical treatment and 
the differences in the genetic variations of SLC25A19. It 
is reasonable to infer that these variants affect SLC25A19 
function through amino acid changes in polarity, charge, 
and space configuration.

Conclusions
Three patients developed encephalopathy after viral 
infection with acute progression in our study. The brain 
MRI of these patients in the ICU was almost consist-
ent with ANE, which has a high mortality and disability 
rate. Due to the few case reports on THMD4, it is diffi-
cult to clinically identify such cases. Most children with 
ANE die from respiratory failure, circulatory failure, and 
severe internal environment disorder due to brain failure 
within a few days of symptom onset. However, with res-
piratory and circulatory support, brain protection, and 
mitochondrial cocktail therapy to get through the acute 
phase, patients with THMD4 can often survive and have 
a better neurological prognosis. In this study, we first 
reported two Chinese nonconsanguineous pedigrees of 
THMD4. Using exome sequencing, candidate SLC25A19 
was found and unique compound heterozygous varia-
tions were identified. Subsequent functional verification 
confirmed the biological defect of the novel SLC25A19 
variants, providing the molecular basis for the clini-
cal diagnosis and treatment. The prognosis of the three 
reported cases was good; based on these cases, it is sug-
gested that pediatricians pay close attention to the medi-
cal history of patients exhibiting an ANE-like phenotype, 
particularly focusing on the history of the extrapyramidal 
system and clinical features. In addition, the cooperation 
of parents with support treatment should be encouraged, 
informing parents of the importance of continued sup-
port to avoid children being affected by viral infection 
after recovery. Our study assisted in the clinical diagnosis 
and decision-making of a rare disease.
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