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Density estimation is one of the fundamental problems in both
statistics and machine learning. In this study, we propose Round-
trip, a computational framework for general-purpose density esti-
mation based on deep generative neural networks. Roundtrip
retains the generative power of deep generative models, such as
generative adversarial networks (GANs) while it also provides es-
timates of density values, thus supporting both data generation
and density estimation. Unlike previous neural density estimators
that put stringent conditions on the transformation from the la-
tent space to the data space, Roundtrip enables the use of much
more general mappings where target density is modeled by learn-
ing a manifold induced from a base density (e.g., Gaussian distri-
bution). Roundtrip provides a statistical framework for GAN
models where an explicit evaluation of density values is feasible.
In numerical experiments, Roundtrip exceeds state-of-the-art per-
formance in a diverse range of density estimation tasks.

density estimation | neural network | deep learning |
importance sampling | GAN

Let p( · ) be a density on a n-dimensional Euclidean space χ.
The task of density estimation is to estimate p( · ) based on a

set of independently and identically distributed data points
{xi}Ni=1drawn from this density.
Traditional density estimators such as histograms (1, 2) and

kernel density estimators (KDEs) (3, 4) typically perform well
only in low dimension. Recently, neural network-based ap-
proaches were proposed for density estimation and yielded
promising results in problems with high-dimensional data points
such as images. There are mainly two families of such neural
density estimators: autoregressive models (5–7) and normalizing
flows (8–11). Autoregression-based neural density estimators
decompose the density into the product of conditional densities
based on probability chain rule p(x) = ∏

i
p(xi|x1 : i−1). Each con-

ditional probability p(xi|x1 : i−1) is modeled by a parametric den-
sity (e.g., Gaussian or mixture of Gaussian), of which the
parameters are learned by neural networks. Density estimators
based on normalizing flows represent x as an invertible trans-
formation of a latent variable z with known density, where the
invertible transformation is a composition of a series of simple
functions whose Jacobian is easy to compute. The parameters of
these component functions are then learned by neural networks.
As suggested in ref. 12, both of these are special cases of the

following general framework. Given a differentiable and invert-
ible mapping G :Rn →Rn and a base density pz z( ), the density of
x = G(z) can be represented using the change of variable rule as
follows:

px x( ) = pz z( )|det Jz( )|−1, [1]

where Jz = ∂G z( )( )=∂zT is the Jacobian matrix of function G( · )
at point z. Density estimation at x can be solved if the base den-
sity pz z( ) is known and the determinant of Jacobian matrix is

feasible to calculate. To achieve this, previous neural density
estimators have to impose heavy constraints on the model archi-
tecture. For example, refs. 7, 10, and 12 require the Jacobian to
be triangular, ref. 13 constructed low rank perturbations of a
diagonal matrix as the Jacobian, and ref. 14 proposed a circular
convolution where the Jacobian is a circulant matrix. These
strong constraints diminish the expressiveness of neural net-
works, which may lead to poor performance. For example, autor-
egressive neural density estimators based on learning p(xi|x1 : i−1)
are naturally sensitive to the order of the features. Moreover, the
change of variable rule is not applicable when the domain di-
mension in base density differs from target density. However,
experiences from deep generative models [e.g., GAN (15) and
VAE (16)] suggested that it is often desirable to use a latent
space of smaller dimension than the data space.
To overcome the limitations above, we propose a neural

density estimator called Roundtrip. Our approach is motivated
by recent advances in deep generative neural networks (15, 17,
18). Roundtrip differs from previous neural density estimators in
two ways. 1) It allows the direct use of a deep generative network
to model the transformation from the latent variable space to the
data space, while previous neural density estimators use neural
networks only to learn the parameters in the component func-
tions that are used for building up an invertible transformation.
2) It can efficiently model data densities that are concentrated
near learned manifolds, which is difficult to achieve by previous
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approaches as they require the latent space to have the same
dimension as the data space. Importantly, we also provide
methods, based on either importance sampling and Laplace
approximation, for the pointwise evaluation of the density esti-
mate. We summarize our major contributions in this study as
follows: 1) We propose a general-purpose neural density esti-
mator based on deep generative models, which requires less
restrictive model assumptions compared to previous neural
density estimators. 2) We show that the principle in previous
neural density estimators can be regarded as a special case in our
Roundtrip framework. 3) We demonstrate state-of-the-art per-
formance of Roundtrip model through a series of experiments,
including density estimation tasks in simulations as well as in real
data applications ranging from image generation to outlier
detection.

Methods
Method Overview. The key idea of Roundtrip is to approximate the target
distribution as a convolution of a Gaussian with a distribution induced on a
manifold by transforming a base distribution where the transformation is
represented by two GAN models (Fig. 1). After learning the weights of two
GAN models by training on data, density estimation is achieved by an offline
algorithm.

Model for the Data Density. Consider two random variables z∈Rm and x∈Rn

where z has a known density pz z( ) (e.g., standard Gaussian) and x is dis-
tributed according to a target density px x( ) that we intend to estimate based
on i.i.d. observations from it. We introduced two functions G( · ) and H( · ) for
learning a forward and backward mapping relationship between the two
distributions. These two functions are learned by two neural networks
(Fig. 1). The bidirectional GAN architecture has been used by previous works
(17, 19) for computer vision tasks, but here we intend to exploit it for a new
task of density estimation. To do this, we denote G z( ) = x∼ and H x( ) = z∼

and assume that the forward mapping error follows a Gaussian distribution:

x = x∼ + e, «i ∼ N 0, σ2( ). [2]

Typically, we set m<n, which means that x∼ takes values in a manifold of Rn

with intrinsic dimension m. Basically, this roundtrip model utilizes G( · ) to
produce a manifold and then approximate the target density as a mixture of
Gaussians where the mixing density is the induced density px

∼ x∼)( on the
manifold. In what follows, we will set pz z( ) to be a standard Gaussian

pz z( ) = ̅̅̅̅̅̅
2π

√( ) −m
exp − 1=( 2( )‖z‖22). Based on the model assumption from [2],

we have px|z(x|z) = ( ̅̅̅̅̅̅
2π

√
σ)−n exp(−(1=2σ2)‖x − G(z)‖22). Then, the target

density can be expressed as follows:

px x( ) = ∫ px|z x|z( )pz z( )dz = 1̅̅̅̅̅̅
2π

√( )m+n
σ−n∫ e−

v x, z( )
2 dz, [3]

where v(x, z) = ‖z‖22 + σ−2‖x − G(z)‖22. The density estimation problem has
been transformed to computing the integral in Eq. 3. Assuming that G( · )
and H( · ) have already been learned, we evaluate the integral in Eq. 3 by
either importance sampling or Laplace approximation.

Importance Sampling. The simplest way to estimate [3] is to use the empirical

expectation by (1=N)∑N
i=1px|z(x|zi) where zi ∼ pz z( ). However, this is usually

extremely inefficient as px|z(x|z) typically takes low values at most values of
zi sampled from pz z( ). Thus, we propose to sample zi from an importance
distribution q(z) instead of the base density pz z( ) and use the importance-
weighted estimate:

pIS(x) = 1
N

∑N
i=1

px|z(x⃒⃒zqi )w(zqi ), [4]

where N is the sample size, w z( ) = pz z( )=q z( ) is the importance weight

function, {zqi }Ni=1 are i.i.d. samples from q(z). We propose to set q(z) to be a

Student t distribution with the center at z∼ = H x( ). This choice is motivated
by the following considerations. 1) For a given x, px|z(x|z) is likely to be
maximized at values of z near z∼ = H x( ). 2) Student t distribution has a
heavier tail than Gaussian which provides a control of the variance of the
summand in Eq. 4. Thus, instead of directly evaluating [3] that only requires
G( · ), we introduced an importance distribution q(z), where the center is
determined by H( · ), to achieve a more efficient evaluation. More details
including an illustrative example of importance sampling are provided in
SI Appendix, Fig. S1.

Laplace Approximation. We can also obtain an approximation to the integral
in [3] by Laplace’s method. To achieve this goal, we expand G(z) around
z∼ = H x( ) to obtain a quadratic approximation to v(x, z), which then leads to
a multivariate Gaussian integral that is solvable in closed form. The full
derivations are given in SI Appendix, Text S1. The resulting Laplace ap-
proximation for [3] is as follows:

pLP(x) ≈ ( 1̅̅̅̅̅̅
2π

√ )nσ−n ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
det(Σ)√

e−
c(x)
2 , [5]

where Jz∼ ∈Rn×m is the Jacobian of G(z) at z∼, Σ = I + σ−2Jz∼T Jz∼( )−1 ∈Rm×m,
det( · ) denotes the determinant of a matrix, and c(x) = ‖H(x)‖22+
σ−2‖x − G(H(x))‖22 − μTΣ−1μ. (μ,Σ) are the parameters of a constructed mul-
tivariate Gaussian distribution. Interestingly, we note that the change of
variable rule represented by [1] can be viewed as a special case of [5] if the

following three conditions are satisfied. 1) m = n. 2) H( · ) = G−1( · ). 3) σ→ 0.
The proof is given in SI Appendix, Text S2. Note that if G( · ) and H( · ) are

Fig. 1. The overview of Roundtrip framework. In the latent space, latent variable z follows a standard Gaussian distribution, which is fed to the G network.
The H network maps x from data space to the latent space. The Dx network works as a discriminator for discerning the true data (x) from the generated data
x;)( . The Dz network is another discriminator for distinguishing the generated latent variable z;)( from the real latent variable (z).
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approximated by neural networks, then their Jacobians are easy to compute
and [5] can be evaluated numerically.

In the remaining part of Methods, we discussed how to learn G( · ) and
H( · ) given observation data.

Adversarial Training Loss. The Roundtrip model consists of a pair of two GAN
models. In the forward GAN model, the network G aims at generating

samples x∼i{ }Ni=1 that are similar to observation data {xi}Ni=1 while the dis-
criminator Dx tries to distinguish observation data (positive) from generated
samples (negative). In the backward GAN model, the network H and the
discriminator Dz aim to transform the data distribution to approximate the
base distribution in latent space. Discriminators can be considered as (neural
network-based) binary classifiers where the input data points will be asser-
ted to be positive (1) or negative (0). The loss functions of the above four
neural networks (G,H,Dz, and Dx) in the training process can be represented
as the following:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
ℒGAN G( ) = Ez∼p z( ) Dx G z( )( ) − 1( )2

ℒGAN Dx( ) = Ex∼p x( ) Dx x( ) − 1( )2 + Ez∼p z( )D2
x G z( )( )

ℒGAN H( ) = Ex∼p x( ) Dz H x( )( ) − 1( )2
ℒGAN Dz( ) = Ez∼p z( ) Dz z( ) − 1( )2 + Ex∼p x( )D2

z H x( )( )

, [6]

where z and x are sampled in batches from base density p(z) and data
density p(x), respectively. In practice, sampling x from data density p(x) can
be regarded as a procedure of randomly sampling from i.i.d. observations
data with replacement. Minimizing the loss of a generator (e.g., ℒGAN(G))
and the corresponding discriminator (e.g., ℒGAN Dx( )) are adversarial as the
two networks (G and Dx) compete with each other during the training
process. Note that the least-square loss functions we used in Eq. 6 were
recommended by LSGAN (20).

Roundtrip Loss. During the training, we also aim to minimize the roundtrip
loss, which is defined as ρz z,  H G z( )( )( ) and ρx x,   G H x( )( )( ), where ρz, ρx are
distance functions and z, x are sampled from the base density pz z( ) and the
data density px x( ), respectively. The principle is to minimize the distance
when a data point goes through a roundtrip transformation between two
data domains. If m<n, this will ensure that x→H(x)→G(H(x))will stay close
to the projection of x to the manifold induced by G, and z→G(z)→H(G(z))

will stay close to z. Since our model assumes Gaussian errors in [2], we use
the L2 distance for both ρz and ρx. This leads to the roundtrip loss:

ℒRT (G,H) = α‖x − G(H(x))‖22 + β‖z − H(G(z))‖22, [7]

where α and β are two constant coefficients. The idea of roundtrip loss which
exploits transitivity for regularizing structured data can also be found in refs.
17 and 19.

Full Training Loss. Combining the adversarial training loss and roundtrip
loss together, we get the full training loss for generator networks and
discriminator networks as ℒ(G,H) = ℒGAN(G) + ℒGAN(H) + ℒRT (G,H) and
ℒ Dx,Dz( ) = ℒGAN Dx( ) + ℒGAN Dz( ), respectively. To achieve joint training of
the two GAN models, we iteratively updated the parameters in the two
generative models (G and H) and the two discriminative models (Dz and Dx),
respectively. Thus, the overall iterative optimization problem in Roundtrip
can be represented as follows:

G*,H*,D*x ,D*z =
⎧⎨⎩

argmin
G,H

ℒ G,H( )
argmin

Dx ,Dz

ℒ Dx ,Dz( ) . [8]

After an iterative model training process, the learned networks G* and H*
will then be used as G( · ) and H( · ) functions in the density estimation pro-
cedure. The training can be monitored using the average log likelihood of
the data in the validation set. We stop the training when there is no further
improvement of the average log likelihood on the validation set.

Model Architecture. The model architecture of Roundtrip is highly flexible. In
most cases, when it is utilized for density estimation tasks with vector-valued
data, we used fully connected layers for both generative networks and
discriminative networks. Specifically, the G network contains 10 fully con-
nected layers and each layer has 512 hidden nodes, while the H network
contains 10 fully connected layers and each layer has 256 hidden nodes. The
Dx network contains four fully connected layers and each layer has 256
hidden nodes, while the Dz network contains two fully connected layers and
each layer has 128 hidden nodes. The leaky-ReLu activation function is
deployed as a nonlinear transformation in each hidden layer.

Fig. 2. True density and estimated density by different neural density estimators (Roundtrip, MADE, RealNVP, and MAF) with three simulation datasets.
Density plots were shown on a 100 × 100 grid 2D bounded region. True densities were shown in the first column. Each row gives results of a dataset:
(A) independent Gaussian mixture; (B) eight-octagon Gaussian mixture; (C) Involute.
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Roundtrip can also handle tensor-valued data such as images. Similar to
the model architecture in DCGAN (21), we used transposed convolutional

layers for generating the image G(z) from the latent vector z, and traditional

convolutional neural networks to get the latent representation H(x)for the
image x. Note that Batch normalization (22) is applied after each convolu-

tional layer or transposed convolutional layer (detailed hyperparameters

were provided in SI Appendix, Table S3).

Labeled Data and Conditional Density Estimation. We provide a strategy for
conditional density estimation given labeled data. The original Roundtrip

model is extended by one-hot encoding the class label y as an additional

input to both G and Dx networks in a conditional GAN (CGAN) manner (23).

The label information will then be combined in the hidden representations

in G and Dx networks by concatenation. Conditional density estimation is

modeled as px|y x|y( ) = ∫ px|y, z x|y, z( )pz z( )dz. After training on labeled data,

Roundtrip is able to evaluate px|y x|y( ) given any test data and the label to

condition on.
Note that for the image datasets (MNIST and CIFAR-10) used in our study, we

regard the marginal distribution of y as uniform distribution. i.e., we have

p(y = i) = 1
10, i = 0,1, . . . , 9. Then the Bayesian posterior probability is calculated

as p(y = i|x) = (p(y = i)p(x|y = i)=p(x)) = (p(y = i)p(x|y = i)=∑ip(y = i)p(x|y = i)). Down-

stream tasks such as the image classification can be achieved by maximizing

the posterior probability argmax
i

p(y = i|x).

Results
Experiment Settings. We test the performance of Roundtrip in a
series of experiments, including simulation studies and real data
studies. For the density estimation task, we compared our
method to the widely used Gaussian KDE as well as several
neural density estimators, including MADE (6), RealNVP (10),
and MAF (7). For the outlier detection task, comparisons are
also made to two commonly used outlier detection methods:
one-class SVM (24) and Isolation Forest (25). Note that the
default setting of Roundtrip was based on the importance sam-
pling strategy. Results of Roundtrip density estimator based on
Laplace approximation are reported in SI Appendix, Fig. S2.
The neural networks in Roundtrip model were implemented

with TensorFlow (26). In all experiments, we set α = 10 and
β = 10 in Eq. 7. For the parameter σ in our model, we first
pretrained the Roundtrip model for 20 epochs and selected σ
from {0.01, 0.05, 0.1, 0.2, 0.4, 0.5} as the value that maximizes the
average likelihood on validation test. Sample size N in impor-
tance sampling is set to 40,000 as default. An Adam optimizer
(27) with a learning rate of 0.0002 was used for backpropagation
and updating model parameters. We stop model training when
there is no improvement on the average log-likelihood in the
validation set in 10 consecutive epochs.

Table 1. Performance of different methods on five UCI datasets

AReM CASP HEPMASS BANK YPMSD

KDE 6.26 ± 0.07 20.47 ± 0.10 −25.46 ± 0.03 15.84 ± 0.12 247.03 ± 0.61
MADE 6.00 ± 0.11 21.82 ± 0.23 −15.15 ± 0.02 14.97 ± 0.53 273.20 ± 0.35
RealNVP 9.52 ± 0.18 26.81 ± 0.15 −18.71 ± 0.02 26.33 ± 0.22 287.74 ± 0.34
MAF 9.49 ± 0.17 27.61 ± 0.13 −17.39 ± 0.02 20.09 ± 0.20 290.76 ± 0.33
Roundtrip 11.74 ± 0.04 28.38 ± 0.08 −4.18 ± 0.02 35.16 ± 0.14 297.98 ± 0.52

The average log likelihood and 2 SDs are shown. The best performance among five methods is shown in bold.

Fig. 3. True images and generated images from Roundtrip and MAF models trained on MNIST and CIFAR-10 databases. Each row denotes the true or
generated images of a specific class. (A) True and generated images of MNIST. (B) True and generated images of CIFAR-10. Images generated by Roundtrip
and MAF are sorted by decreased likelihood for each class.
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We took Gaussian KDE as a baseline where the bandwidth is
selected by Silverman’s “rule of thumb” (28) or Scott’s rule (29).
We choose the one with better result to present. The three al-
ternative neural density estimators (MADE, RealNVP, and
MAF) were implemented using codes from https://github.com/
gpapamak/maf. For outlier detection tasks, we implemented
one-class SVM and Isolation Forest using Scikit-learn library
(30), where the default parameters were used. To ensure fair
model comparison, both simulation and real data were randomly
split into a 90% training set and a 10% test set. For neural
density estimators including Roundtrip, 10% of the training set
was kept as a validation set. The image datasets with training and test
set were directly provided which require no further data split.

Evaluation. For simulation datasets with two dimensions, we di-
rectly visualized both true density and estimated density on a
two-dimensional (2D) bounded region. For simulation datasets
with higher dimensions where the true density can be calculated,
we evaluate different density estimators by calculating the
Spearman (rank) correlation between true density and estimated
density based on the test set. For real data where the ground
truth density is not available, the average estimated density
(natural log-likelihood) on the test set will be considered as a
metric for evaluation.
In the application of outlier detection, we measure perfor-

mance by calculating the precision at k, which is defined as the
proportion of correct results in the top-k ranks. We set k to the
number of outliers in the test set.

Simulation Studies. We first designed three 2D simulation data-
sets to test the performance of different neural density estima-
tors where the truth density can be calculated.

a) Independent Gaussian mixture. xi � ð1=3ÞðNð�1, 0.52Þþ
Nð0, 0.52Þ þ Nð1, 0.52ÞÞ, i ¼ 1,2. Each dimension of this sim-
ulation dataset follows a Gaussian mixture distribution with
three components.

b) Eight-octagon Gaussian mixture. x � ð1=8ÞP8
i¼1Nðμi,ΣiÞ

where μi ¼ ð3 cosðπi=4Þ, 3 sinðπi=4ÞÞ, and

Σi ¼

2
664

cos2
πi
4
þ 0.162sin2

πi
4

ð1� 0.162Þsin πi
4
cos

πi
4

ð1� 0.162Þsin πi
4
cos

πi
4

sin2
πi
4
þ 0.162cos2

πi
4

3
775, i ¼ 1, . . . , 8. This

simulation dataset follows a Gaussian mixture distribution,
where the two dimensions are conjuncted by the covariance
matrix.

c) Involute. x1 � Nðr sinð2rÞ, 0.42Þ, x2 � Nðr cosð2rÞ, 0.42Þ where
r follows a uniform distribution Uð0,2πÞ. This simulation
dataset shows a nonlinear distribution around an involute
of a circle.

The 20,000 i.i.d. points were sampled from each of the above
true data distribution. After model training, we directly esti-
mated the density in a 2D bounded region (100 × 100 grid) with
the different methods (Fig. 2). In cases a and b, Roundtrip
clearly separates the components in the mixture while other
neural density estimators either failed (MADE) or contain ob-
vious trajectory between different components (RealNVP and

MAF). In case c, the highly nonlinear structure in the density is
captured by Roundtrip in a much more accurate manner than the
other methods. To compare the methods in higher dimension, we
took case a for a further study by increasing the dimension up to 10
(containing 310 modes). Roundtrip still achieves a Spearman corre-
lation of 0.829 at dimension 10, compared to 0.669 of RealNVP,
0.595 of MAF, and 0.14 of KDE (SI Appendix, Fig. S1). These results
demonstrated the importance of using more expressive models, which
allowed Roundtrip to represent complicated density forms that are
hard to approximate by more restrictive neural density models.

Real Data Studies.
University of California, Irvine, datasets. We collected five datasets
(AReM, CASP, HEPMASS, BANK, and YPMSD) from the Uni-
versity of California, Irvine (UCI) machine learning repository (31)
with dimensions ranging from 6 to 90 and sample size from 42,240
to 515,345 (see more details about data description and data pre-
processing in SI Appendix, Text S3). Unlike simulation data, these
real datasets have no ground truth for the density. Hence, we
evaluated different methods by calculating the average log-
likelihood on the test set as suggested by previous work (7). Ta-
ble 1 illustrates the performance of Roundtrip and the other neural
density estimators. A Gaussian KDE fitted to the training data is
also reported as a baseline. The results show that Roundtrip sig-
nificantly outperforms other neural density estimators by achieving
the highest average log-likelihood on the test set of each dataset.
Image datasets. Deep generative models have demonstrated their
power in generating synthetic images. However, a conventional
deep generative model alone cannot provide quality scores for
generated images. Here, we propose to use our Roundtrip
method to generate both the image and its quality score based on
the density of the image. We test this approach on two commonly
used image datasets, MNIST (32) and CIFAR-10 (33), where in
each of these datasets, the image comes from 10 distinct classes.
Roundtrip model was modified by introducing an additional class
label y to bothG and Dx network and convolutional layers were used
in G, H, and Dx (Methods). We then model the conditional density
estimation by px|y x|y( ) = ∫ px|y,z x|y, z( )pz z( )dz where y ∼ Cat(10)
denotes a categorical distribution with 10 distinct classes. The class
label y will be one-hot encoded before feeding to the model. We
use this modified Roundtrip model to simultaneously generate
images conditional on a class label and compute the within-class
density of the image. The other neural density estimators typically
require a lot of tricks, including rescaling pixel values to [0,1],
transforming the bounded pixel values into an unbounded logit
space, and adding uniform noise, to achieve image generation and
density estimation. In contrast, Roundtrip did not require addi-
tional transformation except for rescaling. In Fig. 3, the generated
images of each class were sorted by decreased likelihood. It is seen
that images generated by Roundtrip are more realistic than those
generated by MAF (which is the best among alternative neural
density estimators; see Fig. 2 and Table 1). Furthermore, the
density provided by Roundtrip seems to correlate well with the
quality of the generated images.
As a more systematic and quantitative comparison of the

different methods for image data, we use the estimated condi-
tional densities of a test image (conditional on label values) to
obtain Bayesian predictions of the label (Methods). Roundtrip
achieves the highest test accuracy on both MNIST and CIFAR-
10 datasets (SI Appendix, Fig. S3). For example, on the MNIST
dataset, Roundtrip gives a test accuracy of 0.983, compared to
0.911 of MADE, 0.744 of RealNVP, and 0.926 of MAF, which
again demonstrates the superiority of Roundtrip.
Outlier detection. Finally, we applied Roundtrip to an outlier de-
tection task, where a data point with a very low density value is
regarded as likely to be an outlier. We tested this method on

Table 2. The precision at k of different methods on three
ODDS datasets

OC-SVM I-Forest RealNVP MAF Roundtrip

Shuttle 0.953 0.956 0.784 0.929 0.959
Mammography 0.037 0.482 0.474 0.407 0.482
ForestCover 0.127 0.058 0.054 0.046 0.177

The best performance among five methods is shown in bold.
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three outlier detection datasets (Shuttle, Mammography, and
ForestCover) from ODDS database (34).
Each dataset is split into training, validation, and test set

(details of data description can be found in SI Appendix, Text S4).
Besides the neural density estimators, we also provide compari-
sons with two baseline methods, namely one-class SVM (24) and
Isolation Forest (25). The results shown in Table 2 were based on
the average precision of three independent runs of each algorithm.
The performance of Roundtrip is either the best or tied for the
best for each dataset. For the ForestCover dataset, where the
outlier percentage is very low (0.9%), Roundtrip achieves a pre-
cision of 17.7% while the precision of other neural density esti-
mators is less than 6%. Roundtrip’s performance is robust to the
choice of the sample size used in importance sampling (SI Ap-
pendix, Fig. S4A). As for computational efficiency, Roundtrip is
more efficient in training but less efficient in testing, compared to
the other neural density estimators (SI Appendix, Fig. S4B).

Discussion
We propose Roundtrip as a general-purpose neural density es-
timator based on deep generative models. Unlike prior studies
that focus on modeling the invertible transformation between a
base density and the target density, where the parameters of the
component functions are learned by neural networks, Roundtrip
allows the direct use of a deep generative network to model the
transformation from the latent variable space to the data space.
In contrast to the change of variable rule used by previous
methods, which requires equal dimension in the base density and
the target density, Roundtrip provides a more flexible transfor-
mation between the base density and target density. In numerical

experiments, Roundtrip outperforms previous neural density
estimators in a variety of density estimation tasks, including
simulation/real data studies and an outlier detection application.
Given the observed data, density estimation aims to recover

the underlying density while deep generative modeling aims to
generate new data similar to the observed ones. Our work pro-
vides a way to leverage the power of deep generative models for
an accurate evaluation of density values.

Data Availability. Source code and data for Roundtrip are freely
available on Zenodo repository (DOI: 10.5281/zenodo.3747161)
(35) and (DOI: 10.5281/zenodo.3747144) (36). All data in this
study are included in the article and/or supporting information.
Previously published data were used for this work (https://archive.
ics.uci.edu/ml/datasets/Activity+Recognition+system+based+on+
Multisensor+data+fusion+%28AReM%29, https://archive.ics.uci.
edu/ml/datasets/Physicochemical+Properties+of+Protein+Tertiary+
Structure, https://archive.ics.uci.edu/ml/datasets/HEPMASS, https://
archive.ics.uci.edu/ml/datasets/Bank+Marketing, https://archive.
ics.uci.edu/ml/datasets/YearPredictionMSD, odds.cs.stonybrook.
edu/, http://yann.lecun.com/exdb/mnist/, and https://www.cs.toronto.
edu/∼kriz/cifar.html).
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