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Characterizing functions of long noncoding RNAs (lncRNAs) remains amajor challenge, mostly due to the lack of
lncRNA-involved regulatory relationships. A wide array of genome-wide expression profiles generated by gene
perturbation have been widely used to capture causal links between perturbed genes and response genes.
Through annotating N600 gene perturbation profiles, over 354,000 causal relationships between perturbed
genes and lncRNAs were identified. This large-scale resource of causal relations inspired us to develop a novel
computational approach LnCAR for inferring lncRNAs' functions, which showed a higher accuracy than the co-
expression based approach. By application of LnCAR to the cancer hallmark processes, we identified 38 lncRNAs
involved in distinct carcinogenic processes. The “activating invasion &metastasis” related lncRNAswere strongly
associated with metastatic progression in various cancer types and could act as a predictor of cancer metastasis.
Meanwhile, the “evading immune destruction” related lncRNAs showed significant associations with immune
infiltration of various immune cells and, importantly, can predict response to anti-PD-1 immunotherapy, sug-
gesting their potential roles as biomarkers for immune therapy. Taken together, our approach provides a novel
way to systematically reveal functions of lncRNAs, which will be helpful for further experimental exploration
and clinical translational research of lncRNAs.
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1. Introduction

Over the past decade, advances in sequencing technologies have de-
tected large amounts of long non-coding RNAs (lncRNAs) in the human
genome. Some lncRNAs have been proved to play key roles in transcrip-
tional regulation, chromatin modification, cell differentiation and im-
mune responses [25,28,37,50]. In human diseases, particularly cancer,
a large number of genetic variations in non-coding regions, including
lncRNAs, are discovered and some are highly correlated with pathogen-
esis of the disease [18,81]. Although lncRNAs have been proved to exert
important effects in numerous diseases, however, little is known about
the functions ofmost lncRNAs,which seriously obstructs our further un-
derstanding of their dysfunctional mechanisms underlying complex
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disease [81]. Therefore, the functional characterization of lncRNAs is a
key fundamental challenge in the field of lncRNA biology.

Although perturbation experiments, such as knockdown or overex-
pression, have been developed or adapted to properly yield biological
insights into lncRNAs, they are not suited to study such extensive pool
of candidates [5,67]. Even though large-scale RNAi screens have been
successful in investigating hundreds of functional lncRNAs in specific bi-
ological processes, they are frequently not efficient to reduce lncRNA
levels and may suffer substantial off-target effects [10,25,40]. Recently,
CRISPR/Cas9-based screening strategies, which are highly dependent
on specific genome editing and can effectively reduce off-target effects
[8], are developed to identify lncRNAs required for cellular growth
[45,90]. However, the Cas9-mediated approaches are shown to be un-
suitable to target lncRNAs that are positioned in close proximity to
other genes, making it difficult to obtain biologically significant results
for a majority of lncRNAs [21].

Considering the fact that experimental methods can be time-
consuming and laborious, the computational methodologies are pro-
posed to systematically infer lncRNA functions based on various types
of biological data, such as sequence conservation [54] and RNA
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Research in context

Evidence before this study

In the past decade, a large number of perturbation-based expres-
sion datawere produced, which capture awide range of causal re-
lations between perturbed genes and response genes for revealing
the biological functions. We collected gene expression profiles of
single-gene perturbation experiments from the Gene Expression
Omnibus (GEO), the ENCODE project and the gene perturbation
atlas (GPA). Perturbation experiments from the GEOwere curated
before June 2016 by using the keywords ‘knock out’, ‘knock
down’, ‘RNAi’, ‘knock in’, ‘overexpression’, ‘high expression’, ‘low
expression’, ‘siRNA’ or ‘shRNA’. By assessing the reannotation
performance for every microarray platforms, we observed that
the majority of platforms had a few re-annotated lncRNAs and
only two platforms including Affymetrix Human Genome U133
Plus 2.0 Array (GPL570) and Affymetrix Human Exon 1.0 ST
Array (GPL5175) had enough lncRNAs, which were thus selected
for the following analysis. Moreover, perturbations with less than
two experimental samples were filtered. In addition, considering
the influence of other biochemical factors, experiments with addi-
tional treatments, such as dexamethasone, hypoxia and insulin,
were also filtered.

Added value of this study

We constructed a comprehensive resource of causal relations of
lncRNAs and protein-coding genes and proposed a novel ap-
proach, named LnCAR, to capture functions of lncRNAs based
on a resource of causal relations from a large scale gene perturba-
tion profiles. LnCAR is a robust and flexible approach for identify-
ing lncRNAs related to any function of interest. To facilitate the
convenient use of our approach to infer lncRNAs' functions, we
also developed an online tool at the following URL: http://biocc.
hrbmu.edu.cn/LnCAR/.

Implications of all the available evidence

In this study,we not only inferred cancer-related lncRNAs but also
identified lncRNAs involved in each cancer hallmark, allowing to
look into the underlying mechanisms of lncRNAs in cancer pro-
gression. Our method can effectively identify lncRNAs of tumor
metastasis and demonstrate their potential as biomarkers for diag-
nosis and prognosis of cancer progression. For lncRNAs involved
in “evading immune destruction”, we not only found their signifi-
cant association with different immune cell infiltration but also
with some chemokines/receptors in various cancer types,
highlighting their important roles in immune response. Further-
more, two lncRNAs, RP11-705C15.3 and SNHG5, were found
to be highly correlated with response to anti-PD-1 immunothera-
py, and be correlated with patient survival and better stratifica-
tion, showing their strong potential as novel clinical predictors
for immunotherapy response.

370 J. Xu et al. / EBioMedicine 35 (2018) 369–380
secondary structure predicted from DNA sequences [68] as well as
transcriptomic [24] and epigenomic data [88]. Undoubtedly, the
most commonly used data is gene expression profile, by means of
which the guilt-by-association approach that assumes genes with
similar expression patterns should share common biological func-
tions or pathways, is widely used to predict lncRNA functions
[43,67]. Following the identification of co-expression relationships
based on the guilt-by-association principle, genome-wide clustering
methods and network-based approaches can be intuitively used to
organize transcriptome data and reveal lncRNA functions [9,85,86].
However, it should be noted that these guilt-by-association methods
are suffering many false positive functional associations predicted
from co-expression relations, thus affecting the performance of
predicting lncRNA functions [63].

In the past decade, a large number of perturbation-based expression
data were produced, which capture a wide range of causal relations be-
tween perturbed genes and response genes for revealing the biological
functions of the perturbed genes [36,56,83]. Importantly, these causal
relationships that reflect the influence of perturbed genes on down-
stream genes, when compared with co-expression-based relationships,
provide a more reliable and more direct way to build functional links.
Moreover, it is intuitively reasonable that these causal relationships
allow bridging known functional genes to many functionally
uncharacterized genes, especially largely uncharacterized lncRNAs.
With thewide application of RNA sequencing technology and the devel-
opment of re-annotation approaches for microarray data, lncRNAs can
be properly detected in a large number of gene expression datasets
that are publicly available in gene expression repositories, thus making
it possible to detect lncRNA-associated causal relations.

In this study, we presented a novel approach, called LnCAR, to infer
functional lncRNAs based on the causal relations inherent to gene per-
turbation experiments. By using LnCAR, we successfully captured
lncRNAs involved in cell cycle and tumorigenesis processes and proved
the reliability and accuracy of the approach. We further showed that
lncRNAs that were inferred to be associated with tumor metastasis and
immune response can be served as potentialmarkers for clinical diagno-
sis of metastatic cancer and response to immunotherapy, respectively.

2. Material and methods

2.1. Gene perturbation resource

We collected gene expression profiles of single-gene perturbation
experiments from the Gene Expression Omnibus (GEO), the ENCODE
project and the gene perturbation atlas (GPA). Perturbation experi-
ments from the GEO were curated before June 2016 by using the key-
words ‘knock out’, ‘knock down’, ‘RNAi’, ‘knock in’, ‘overexpression’,
‘high expression’, ‘low expression’, ‘siRNA’ or ‘shRNA’. We downloaded
the original microarray datasets from GEO, and processed the data by
re-annotating lncRNAs using a custom pipeline [89]. By assessing the
reannotation performance for every microarray platforms, we observed
that themajority of platforms had a few re-annotated lncRNAs and only
two platforms including Affymetrix Human Genome U133 Plus 2.0
Array (GPL570) and Affymetrix Human Exon 1.0 ST Array (GPL5175)
had enough lncRNAs [17], which were thus selected for the following
analysis.Moreover, perturbationswith less than two experimental sam-
ples were filtered. In addition, considering the influence of other bio-
chemical factors, experiments with additional treatments, such as
dexamethasone, hypoxia and insulin, were also filtered. RNA-seq
datasets treated with shRNA knockdown and generated using strand-
specific transcriptome sequencing were obtained from the ENCODE
project and the gene quantifications generated by the ENCODE process-
ing pipeline were used to construct transcriptional profiles.

2.2. Data preparation

The protein-coding gene and lncRNA annotations were obtained
from the UCSC Gene track and GENCODE (v19), respectively. For micro-
array data, we used a custom pipeline to re-annotate the probe se-
quences provided by Affymetrix (http://www.affymetrix.com) to
thousands of lncRNAs according to our previous study [89]. This results
in 15,692 protein-coding genes and 2673 lncRNAs for GPL570 and
18,376 and 10,092 for GPL5175, respectively. The raw data were nor-
malized using the RMA normalization method and gene expression
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variations between perturbation and control were obtained by
Student's t-test analysis. For RNA-seq data, we first unified gene iden-
tities of protein-coding genes and lncRNAs to our annotations and
filtered genes without or with multiple IDs. According to
the official instructions of the GENCODE, only genes annotated
with "3prime_overlapping_ncrna", "antisense", "lincRNA",
"processed_transcript", "sense_intronic" and "sense_overlapping" are
regarded as lncRNAs. Considering the low consistency of less expressed
genes betweenRNA-seq andmicroarray, genes expressed at least 2 read
counts in 75% samples were retained. Raw count data with paired sam-
ples (knockdown and control) were analyzed using DESeq R package.

2.3. Generation of gene ranking lists

We first obtained expression fold change (FC) and statistical signifi-
cance (P-value) from differential expression analysis of perturbation
profiles. A significance scorewhich combined FC and P-valuewas calcu-
lated to rank causal relations [84].

πi ¼ log2 FCið Þj j: − log10pið Þ

π-value is a non-negative index, and the larger it is, the more signif-
icant gene expression changes. For each perturbation experiment, we
can get the ranked list of genes where expression is most affected by
the perturbed gene.

2.4. LnCAR

The LnCAR approach provides a set of optimal lncRNAs as well as a
prioritized list of genes associated with the function of interest. For a
given function, we obtained the causal relations from our gene perturba-
tion resourcewhoseperturbedgeneswere in the function, andcalculated
π-value for each causal relation. Then, the ranked gene lists affected by
the perturbed genes were generated and the genes annotated in all of
the perturbation profiles (without perturbed genes) were chosen for
the following analysis. The LnCAR procedure consists of two major
steps: (1) rank aggregation and (2) selection of optimal lncRNAs.

We first employed a modified hybrid Bayesian-rank integration
method (BIRRA) for aggregation of our gene rankings [4]. The rank-
based method is proper to solve the problem of the heterogeneity
among different high-throughput genomic experiments and the use of
Bayesian framework allows us to weight the reliability of individual
datasets. To address the requirement of a prior probability before aggre-
gation, we integrated another method RRA to produce a positive class
for the prior probability calculation (see Supplementary Information)
[39]. According to the modified prior probability and the Bayes factor
calculation, a confidence score for each gene would be obtained to rep-
resent how likely it influenced by the function. Then, a high-confidence
ranking of genes was constructed according to their scores.

Next, we proposed a sliding window method to extract optimal
lncRNAs that most associated with the function. We used 6 different
bin sizes (20, 25, 30, 50, 75 and 100) to slide the ranking constructed
above separately to determine the optimal position. For each bin, the as-
sociation between the genes in the bin and the given functionwas iden-
tified by the network analysis based on the random walk with restart
(RWR) algorithm (see Supplementary Information) [74]. We used
genes in the bin and genes in that function as seeds to prioritize genes
in the network (from the STRING database) separately and calculated
an association score to reflect the association strength between the
two gene sets. If the gene sets are in the top ranking area of each
other, it will obtain a high association score. The association score can
be defined as follows:

median 1−
Rank GeneOf Stepið Þð Þ

Totalgenes

� �
�median 1−

Rank GeneOf Functionð Þð Þ
Totalgenes

� �
We further applied a permutation test to assess the significance of
each score. We simulated the ranking 1000 times, used the same bin
sizes to calculate the association scores and evaluated the significant
score for each bin. The significant results of the bins from all six scale
types were used to generate amultiscale view and help precisely define
the position (on the basis that the bins near the top should be continu-
ously significant, see Supplementary Information). Finally, lncRNAs
above the position were regarded as optimal lncRNAs.

3. Method comparison

The functional catalogs assigned to the lncRNAs and the lncRNAs
recorded in each function were retrieved from Huarte [30]. To expand
the repertoire of known functional lncRNAs, we also added lncRNAs
recorded in the lncRNAdb database by searching each function in the
database [61]. After filtering lncRNAs that were not adopted in the
two approaches, six functional catalogswere used for comparative anal-
ysis, which included eight known lncRNAs. The co-expression based
approach used Spearman correlation coefficients to calculate the corre-
lations for each lncRNA–mRNA pair based on the gene expression data
from the GTEx Portal (including 7497 samples from 36 different tis-
sues). For each lncRNA, protein-coding genes were ranked according
to their correlation coefficients and gene set enrichment analysis
(GSEA) was used to identify significantly enriched functions based on
the GO terms with more than fifteen gene members and FDR b 0.25
[24]. The lncRNAs significantly enriched in the six functions were
assigned to each function and compared to the known lncRNAs and
the lncRNAs captured by LnCAR in the corresponding function.

4. Results

4.1. A comprehensive resource of causal relations of lncRNAs and protein-
coding genes

Transcriptional profiles after gene perturbations, such as knock out,
RNAi, overexpression, and CRISPRi, have been widely used to discover
causal relations between perturbed genes and downstream factors.
We totally collected N2700 high-throughput protein-coding gene per-
turbation experiments (based on microarray and RNA-seq techniques)
which contained ~8800 perturbed samples and ~6200 controls. After fil-
tering experiments with additional treatments and annotating lncRNAs
in both microarray and RNA-seq data, we constructed a resource of
causal relations between perturbed genes and lncRNAs/protein-coding
genes from 672 independent perturbation experiments (see Methods,
Supplementary Fig. S1, Supplementary Table S1). A total of over
1,180,000 causal relations were included, containing 13,870 lncRNAs
and 18,734 protein-coding genes (Table S2). Almost all (99.99%) of the
lncRNAs were experimentally validated (n= 2005) or manually anno-
tated (n= 11,863), only two lncRNAs were derived from computation-
al analysis. Among them, over 354,000 causal relationships were
identified between 419 perturbed genes and these lncRNAs. Note that
these perturbed protein-coding genes are involved in many different
functional categories, such as cell cycle and developmental process,
highlighting the high functional coverage and diversity implicated in
the causal relations (Supplementary Fig. S1).

4.2. LnCAR: a novel computational approach to infer lncRNA functions using
causal relations

It has been shown that the causal relations produced by an individ-
ual gene perturbation could implicate tight functional links [56]. We
reasoned that when multiple genes from a common function were
perturbed separately, their co-influenced factors should be also
involved in that function. This hypothesis allowed us to predict the
functions of abundant uncharacterized molecules, including various
non-coding RNAs. LncRNAs, as a major class of regulatory molecules,



Fig. 1.Overview of the LnCAR approach. (A) General view of the gene perturbation resource and a functional gene set used in the approach. (B) Schematic of the rank aggregationmethod
in LnCAR. (C) Schematic of the network-based method to capture lncRNAs involved in the function.

372 J. Xu et al. / EBioMedicine 35 (2018) 369–380
are still facing challenges in functional identification. The causal rela-
tions between perturbed genes and downstream lncRNAs could provide
us a new way to reversely infer the functions of lncRNAs. Thus, we
designed an approach termed LnCAR that used the resource of causal
relations to capture lncRNA functions (Fig. 1).

Briefly, for a given biological function, we extracted all causal rela-
tions from our causal resource in which the perturbed genes were in-
volved in that function. The causal relations for each perturbed gene
were ranked according to their varying degree after gene perturbation
and a gene ranking list was generated. We aggregated the ranking
lists derived from the given function using a modified hybrid
Bayesian-rank integration method which could adaptively compute a
prior probability for the ‘positive class’ and iteratively fit Bayes factors
to recompute the integration result (see Methods). Then, to capture
lncRNAs most relevant to the given function, we adopted a sliding win-
dowmethod to analyze the functional connections of genes in each bin
with that function based on protein interaction network. Byusing differ-
ent bin sizes, amultiscale viewof functional connectionswas investigat-
ed and an optimal threshold was determined. Finally, lncRNAs ranked
above the optimal position were considered to be involved in that func-
tion (see Methods).
4.3. Using LnCAR for identifying lncRNAs involved in cell cycle

To test the performance of LnCAR, we extracted causal relations of
perturbed 46 cell cycle genes (such as CDK1, CCNB1 and TP53) to cap-
ture lncRNAs involved in cell cycle. By applying LnCAR to causal rela-
tions derived from these 46 genes, an aggregated gene ranking list
reflecting the relevance to cell cycle was produced and then the top
205 genes (excluded the perturbed cell cycle genes) were captured as
cell cycle-related molecules, which included 201 protein-coding genes
and 4 lncRNAs (Fig. 2A, Supplementary Fig. S2, Table S3). Many of the
protein-coding genes have been reported to be related to cell cycle.
For example, the top one protein-coding gene GDF15 has been widely
investigated as a regulator in cell cycle by targeting cell cycle-
regulated protein kinases [13,48]. Two of the three D-type cyclins,
CCND1 and CCND2, that control cell cycle progression through the G1
phase [62], were also identified (the other cyclin CCND3 was included
in the perturbed gene list). Statistically, we observed a significant en-
richment of the other cell cyclemembers (not included in the perturbed
list) at the top of the aggregated ranking list (P-value= 2.80e-03, chi-
square test, Fig. 2B). Further analysis using the gene set enrichment
analysis (GSEA) also confirmed the result (nominal P-value b 0.001).
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When compared to the ranking lists of individual perturbed genes, our
approach based on the integrative strategy showed obviously more su-
perior performance (Fig. 2D). In parallel, functional enrichment analysis
showed that the 201 protein-coding genes were significantly involved
in cell cycle (FDR b 0.05, hypergeometric test, Fig. 2E and F), and signif-
icantly over-represented in S, G2/M and M phases (P-values b 0.01,
Fisher's exact test, Fig. 2C) [49].

Importantly, we identified four lncRNAs, from the top 205 genes, in-
cluding MALAT1, NEAT1, H19 and CCDC18-AS1. All of them have been
validated to contribute to cell cycle. MALAT1, which ranked first in the
aggregated ranking list, can modulate the expression of cell cycle
genes and is required for G1/S and mitotic progression [51]. MALAT1-
depletion can prevent the activation of genes involved inG1/S transition
Fig. 2. Systematic assessment of LnCAR's performance. (A) Spiral diagram illustrating the rank
(B) Enrichment of cell cycle members. The members in the optimal result are labeled in red.
five phases (G1/S, S, G2/M, M and M/G1) are labeled in blue. (D) Predicting genes to cell cyc
test P-value, showing the difference between cell cycle members and other genes in the rankin
if the P-value is significant (dark grey: significant; light grey: not significant). (E-F) Function
pathway databases (KEGG, REACTOME and BIOCATA). (G) Bar plots of identified lncRNAs in
lncRNAs identified by both methods (purple) were also showed.
and S-phase progression [76]. Two studies also demonstrated the essen-
tial roles of NEAT1 and H19 in cell cycle [7,14]. CCDC18-AS1 is tran-
scribed divergently from the promoter region of down-regulator of
transcription 1 (DR1), a global transcriptional repressor related to RNA
synthesis during mitosis [79].

Taken together, these results together demonstrated the effective
performance of LnCAR to identify new molecules (including lncRNAs
and protein-coding genes) involved in a particular function.

4.4. Comparing LnCAR to co-expression based approach

The guilt-by-association strategies have been widely used to predict
the putative functions of lncRNAs based on the co-expressed protein-
of genes associated with cell cycle. The lncRNAs involved in cell cycle are labeled in red.
(C) Representation of signature gene sets for cell-cycle phases. The genes in each of the
le based on the perturbations of individual genes. Each bubble represents the Wilcoxon
g list. The horizontal line shows the P-value for the aggregated list and the colour shows
al enrichment of the optimal protein-coding genes in (E) Gene Ontology and (F) three
six functions by LnCAR and GSEA. The known lncRNAs in each function (green) and the



374 J. Xu et al. / EBioMedicine 35 (2018) 369–380
coding genes [71]. To compare with our approach, we applied both
LnCAR and co-expression based approach to identify lncRNAs involved
in the functions assigned to thewell-known lncRNAs [30], including ap-
optotic process, cell migration, cell proliferation, etc., and evaluated the
performance of the two methods (see Methods). For the co-expression
based approach, we used the GTEx expression data in 36 tissues [15] to
calculate the correlations between lncRNAs and protein-coding genes.
Spearman correlation coefficients were used to rank protein-coding
genes for each lncRNA and then GSEA was used to identify significantly
enriched functions (FDR b 0.25) [24]. We found that LnCAR could cor-
rectly capture proved lncRNAs in some functions, while lncRNAs identi-
fied by the co-expression based approach were rarely characterized
(Fig. 2G). Although co-expression based approach could identify more
lncRNAs than LnCAR, they do not contain some well-known lncRNAs
identified by LnCAR, such as H19 and MALAT1. It should be noted that
other well-studied lncRNAs were also identified by LnCAR, such as
NEAT1 and FTX in cell proliferation [12,44]; H19, MALAT1 and NEAT1
in cell growth and cell cycle arrest [20,35,73,76,80].

Recently, a CRISPRi-based genome-scale screening system has been
developed to reveal functional lncRNAs and identified a set of lncRNAs
required for robust cellular growth [45]. Based on the result, we further
compared these lncRNAs to the lncRNAs identified in the “cell growth”
function by the co-expression based approach and LnCAR, respectively.
As a result, three lncRNAs identified by our approach were shown to be
essential for cellular growth (P-value = 8.52e-03, hypergeometric test),
while no one was found by the co-expression based approach. Further-
more, considering the correlations between lncRNAs and protein-
coding genesmay be driven by the tissue-specific function, we obtained
three temporal expression profiles on cell growth (GSE10979, n = 9,
three time points; GSE18913, n = 12, three time points; GSE21912, n
= 12, four time points) to calculate the correlations and then identified
significantly enriched functions for each lncRNA. Unfortunately, none of
these data sets could figure out lncRNAs involved in cell growth. These
results showed the good performance of our method when compared
with the co-expression based approach.

4.5. Discovering cancer lncRNAs by application of LnCAR to known cancer
driver genes

Accumulating evidence have indicated that lncRNAs play important
roles in cancer biology, and recent data suggest that they may serve as
master drivers of carcinogenesis [59]. The interactions between cancer
genes and lncRNAs constitute a complicated regulation circuit to coop-
eratively drive carcinogenesis and progression. Therefore, we believed
that using the perturbation data of these cancer genes can help us to
identify lncRNAs associated with cancer. To identify cancer lncRNAs,
we applied LnCAR to known cancer genes listed in Cancer Gene Census
(CGC) that involved 61 perturbed genes. As a result, the optimal genes
showing significant functional association with the cancer genes were
identified, including 7 lncRNAs and 394 protein-coding genes (Fig. 3C,
Supplementary Supplementary Fig. S2, Table S3).

Among the 394 protein-coding genes, we found some well-known
cancer genes that were not included in our perturbation resource,
such as BUB1B andCOL1A1,whichplay a tumor suppressor role in rhab-
domyosarcoma and oncogene roles in both dermatofibrosarcoma
protuberans and aneurysmal bone cyst, respectively [19]. Furthermore,
these genes were significantly enriched for the cancer-associated genes
obtained from the genetic association database (GAD) (hypergeometric
test, P-value b 0.0001) [6]. To further assess their functional significance
in oncogenesis, functional enrichment analysis was performed against
known cancer-associated gene sets from 3 collections (“hallmark gene
sets”, “curated gene sets” and “oncogenic signatures”) of the
Molecular Signature Database (MSigDB) [72]. We found that the
optimal protein-coding genes were highly associated with many
cancer gene sets (hypergeometric test, FDR b 0.05, Fig. 3A and B),
such as “INTERFERON_GAMMA_RESPONSE” and “EPITHELIAL_
MESENCHYMAL_TRANSITION” in the “hallmark gene sets”. These re-
sults implied the importance of these genes in carcinogenesis.

Due to the strong association of the optimal protein-coding genes
with carcinogenesis, it is reasonable to believe that the 7 lncRNAs also
contribute to the tumorigenesis. We discovered that three well-
studied lncRNAs (MALAT1, H19 and NEAT1) can all act as oncogenes,
and have been shown to regulate tumor metastasis, growth and prolif-
eration in bladder, ovarian and breast cancer, respectively [55]. And the
7 lncRNAs were significantly enriched for cancer-associated lncRNAs
from Lnc2Cancer (hypergeometric test, P-value= .005). Recently, one
study has used the CRISPR–Cas9 strategy targeting lncRNAs on a
genome-scale to identify lncRNAs that can disrupt or stimulate cancer
cell proliferation [90]. By GSEA, the 7 lncRNAs were shown to both sig-
nificantly disrupt HeLa cell proliferation of cervical cancer and stimulate
Huh7.5 cell proliferation of liver cancer (FDR b 0.25). To assess their po-
tential biological functionality, we then investigated the alteration of
these lncRNA expression levels in various tumor types. We conducted
a pan-cancer analysis of publicly available expression data from 4225
tumors and 532 matched adjacent normal samples across 11 cancers
from TANRIC. All the 7 lncRNAs were altered in at least 3 cancer types,
with consistent dysregulation in at least two tumor types (Fig. 3C). Es-
pecially, MIR22HG was consistently downregulated in all 11 cancer
types, in line with previous reports in the miTranscriptome study [32],
indicating its tumor suppressor role in cancer. Consistently upregulated
in 5 cancer types, LINC00263 is located near protein-coding gene SCD,
whose increased expression promotes the proliferation of androgen re-
ceptor (AR)-positive LNCaP prostate cancer cells [38]. Furthermore, the
targeted investigation of LINC00263 for cell growth by CRISPR interfer-
ence (CRISPRi) has shown that it could decrease the growth of U87 cell
line [45]. These results together demonstrated the crucial roles of these
7 lncRNAs to drive carcinogenesis.

To further advance our understanding of the functional mechanisms
for these 7 cancer-related lncRNAs in cancer, we explored which cancer
hallmarks theymight be involved in, thereby contributing to the tumor-
igenesis and progression. By applying LnCAR to the genes associated
with 10 hallmarks collected from our manual curation [29,58], respec-
tively, a total of 38 lncRNAs were found to be involved in the hallmarks,
with obvious enrichment for known cancer-associated lncRNAs
(hypergeometric test, P-value b 0.001). The 7 lncRNAs identified using
CGC were included in these hallmark-related lncRNAs. Notably, they
were all involved in the hallmark “Activating Invasion and Metastasis”
(Fig. 3D). Among them, 3 known cancer lncRNAs (MALAT1, H19 and
NEAT1) have been reported to act as pivotal players in the metastasis
of cancer [22,66]. A recent study has demonstrated that MIR22HG re-
pression impaired migration, invasion and viability of ovarian cancer
cells [42]. Among the 38 hallmark-related lncRNAs, 8 and 4 lncRNAs
were respectively associated with “Sustaining proliferative signaling”
and “Evading growth suppressors”. Based on two previous CRISPR ex-
periments, the lncRNAs involved in these 2 hallmarkswere found to dis-
rupt cell proliferation (GSEA, FDR b 0.25) and modify the growth of
cancer cells (hypergeometric test, P-value = 0.018), respectively.
These results showed that these 38 lncRNAs, especially the 7 lncRNAs,
may exert their tumor suppressive and/or oncogenic functions by regu-
lating the malignant phenotype of cancer cells. Furthermore, we
checked whether there exists wet lab experiment evidence supporting
our results. One predicted apoptosis-associated lncRNA TNRC6C-AS1
was recently reported to powerfully modulate cell apoptosis. After
down-regulation of TNRC6C-AS1 by transfecting siRNA in papillary thy-
roid cancer derived cell lines TPC1, apoptosis of TPC1 cells were signifi-
cantly increased when compared to the control in an apoptosis assay by
flow cytometry [52]. LncRNAsMIR17HG and LINC00263were predicted
to be involved in cell proliferation and growth (hallmark "Sustaining
proliferative signaling") and LINC00263 also contributes to hallmark
"Evading growth suppressors". Consistently, CRISPR interference
(CRISPRi) of MIR17HG and LINC00263 showed that they played key
roles in modulating cell growth by affecting cell growth phenotype



Fig. 3. Inferring lncRNAs associatedwith cancer. (A) Scatter chart of the significantly enriched hallmark gene sets fromMSigDBdatabase. Different colors and sizes indicate the significance
levels and the percentage of overlapped genes upon hallmark gene sets, respectively. (B) Bar chart of the top 10 significantly enriched cancer-associated gene sets from MSigDB curated
gene sets (red) and oncogenic signatures (blue), respectively. (C) Spiral diagram illustrating the rank of genes associated with cancer and circular heatmaps showing the differential
expression patterns of the 7 captured lncRNAs in 11 tumor types from TCGA. The TCGA tumor type abbreviations are BRCA, breast invasive carcinoma; BLCA, bladder urothelial
carcinoma; HNSC, head and neck squamous cell carcinoma; KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LIHC, liver hepatocellular carcinoma;
LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; PRAD, prostate adenocarcinoma; STAD, stomach adenocarcinoma; THCA, thyroid carcinoma. (D) LncRNAs involved
in the 10 hallmarks of cancer. The lncRNAs in blue rectangles are the 7 lncRNAs identified before.
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[45].We also obtained expression profiles after lncRNA perturbation for
RP5-1148A21.3 (GSE85011), MIR17HG (GSE85011), LINC00467
(GSE52985). All of these lncRNAswere predicted to be involved in hall-
mark "Inducing angiogenesis". Based on the GSEA, we found that these
lncRNAs were significantly associated with several angiogenesis-
associated biological processes (Table S4) (MIR17HG was also signifi-
cantly associated with cell growth and proliferation based on GSEA,
data not shown). Together, these lncRNA perturbation experiments fur-
ther substantiate our predictions, highlighting the efficiency of our
method to capture lncRNA function.

4.6. Identifying metastatic lncRNAs and their clinical significance

Using perturbation experiments associated with the “Activating In-
vasion and Metastasis” hallmark in our approach, we identified nine
lncRNAs (MALAT1, NEAT1, H19, LINC00263, GABPB1-AS1, MIR22HG,
RP4-717I23.3, DANCR and HNRNPU-AS1) related to cancer metastasis
(Fig. 4A). Research evidence supports that some identified lncRNAs
are found to be involved in tumor invasion and metastasis [11,46,87].
For instance, MALAT1, metastasis-associated lung adenocarcinoma
transcript 1, has already been widely accepted as having an important
role in lung cancer metastasis [23,33]. High expression of lncRNA
DANCR was shown to promote osteosarcoma cells proliferation, migra-
tion and invasion by upregulating AXL through competitively binding to
miR-33a-5p [34]. Silencing DANCR repressed the β-catenin signaling
and then inhibited hepatocellular carcinoma cell proliferation and inva-
sion in vitro and in vivo [47]. To further confirm their roles in cancerme-
tastasis, we collected publicly available expression data from GEO,
involving 434 metastasis samples and 1177 non-metastasis tumors
across five different cancer types (Table S5). As a result, seven out of
nine lncRNAs presented significantly aberrant expression in at least
one cancer type (Fig. 4B). For example, in prostate cancer cohort, the ex-
pression of NEAT1 and HNRNPU-AS1 showed strong association with
tumor metastasis (NEAT1, P-value = 0.0001; HNRNPU-AS1, P-value
= 0.0019, Fig. S3).

In clinical research, these metastatic molecules may be of great po-
tential significance for diagnosis and prognosis of cancer metastasis.
Hence we took prostate cancer as an example and evaluated the clinical
benefit of NEAT1 and HNRNPU-AS1 that showed highly associations
with metastasis in the previous result. We found that their expression



Fig. 4. Clinical analysis of metastatic lncRNAs. (A) Spiral diagram illustrating the rank of genes associated with hallmark “Activating Invasion and Metastasis”. Red parts represent the
optimal lncRNAs we identified. (B) Differential expression of nine metastasis-related lncRNAs across five different cancer types. The P-values were calculated by two-tailed Student's t-
test. (C) Bar plots of patient outcomes of metastasis in the Mayo Clinic I cohort, stratified by NEAT1 or HNRNPU-AS1 expression. P-values were calculated by chi-square test. Odds ratio
(OR) was presented with 95% CI. (D) Kaplan-Meier analysis of prostate cancer outcome in the TCGA cohort. The P-value was calculated by log-rank test.
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levels were significantly positive correlatedwith Gleason score (6–9) in
the Mayo Clinic I cohort (NEAT1, Cor = 1.93, P-value = 7.34e-06;
HNRNPU-AS1, Cor = 0.23, P-value = 1.52–07, Supplementary Fig. S4),
which is an important clinical pathologic indicator for risk stratification
and therapeutic decision making in prostate cancer [26,57]. Moreover,
high NEAT1 and HNRNPU-AS1 expression were associated with higher
risks for metastasis (P-value = 1.31e-5, OR = 2.18 [1.53–3.09]; P-
value= 0.00928, OR= 1.58 [1.12–2.24], respectively, Fig. 4C). Notably,
NEAT1 was still a significant predictor of the prostate cancer metastasis
even after patient stratification byGleason score (P-value= 0.0002744,
OR= 2.00 [1.37–2.92], Supplementary Fig. S5). Multivariate logistic re-
gression analysis further confirmed that high expression of NEAT1
emerged as an independent risk factor for metastasis (P-value =
7.25e-4, OR = 1.95 [1.33–2.87], Table S6). A recent research has
shown that the AUC performance of prostate-specific antigen (PSA)
for metastatic progression was 0.56 [60], which approved by the FDA
to monitor and predict the progression of prostate cancer in men [69].
We then evaluated the predictive power of NEAT1 and found its perfor-
mancewas superior to PSA (AUC= 0.62, Supplementary Fig. S6). Addi-
tionally, we utilized prostate data from TCGA and assessed the
prognostic value of the NEAT1 expression. The analysis result showed
that high expression of NEAT1 was significantly associated with higher
Fig. 5. Immune-linked lncRNAspredict response to anti-PD-1 immunotherapy. (A) Spiral diagra
heatmaps showing partial Spearman's correlations of the expression levels of lncRNAs with
discovery rate (FDR) of 0.15 were indicated by asterisks. (B) Associations of RP11-705C15.3 an
and P-value b.05), the colors reflected the frequencies they occurred across cancer types. (C)
response markers covering seven different classes, including co-inhibition, activated cytokine,
associations were displayed by colored squares (Spearman's correlation N0.2 with P-value b.0
between the responders and non-responders following anti-PD-1 immunotherapy. (E) Kap
characteristic (ROC) curves showing the predictive powers of SNHG5 and RP11-705C15.3 (sol
PD-L1 expressions and mutation load (dash line).
pathological N stage, higher Gleason score (Table S7) and a lower rate
for disease-free (P-value b0.001, Fig. 4D). Furthermore, multivariable
Cox analysis revealed that NEAT1 expressionwas an independent prog-
nostic variable for disease-free survival after adjusting for age, PSA,
Gleason score, Clinical T stage and pathological N stage (DFS HR =
2.00 [1.03–3.91], P-value = 0.0400, Table S8). Taken together, our re-
sults demonstrated that our method can effectively identify lncRNAs
of tumormetastasis, and revealed their potential as biomarkers for diag-
nosis and prognosis of cancer progression.

4.7. LnCAR discovered lncRNAs participating in immune response

Cancer cells exploit multiple mechanisms in order to avoid the im-
mune attack, fortunately, immunotherapy strategy with checkpoint
blockade has been raised as a promising weapon against immune es-
cape. However, it remains a challenge to elucidate the molecular bio-
markers of immune response in tumor biology. As shown above, we
found 13 lncRNAs referred to the cancer hallmark “Evading ImmuneDe-
struction” (Fig. 5A). To validate their roles in the immune system, we
characterized their associationswith immune cell state in the tumormi-
croenvironment (TME). First, using the estimated abundance of six
main tumor-infiltrating immune cells (CD8 T cells, CD4 T cells, B cells,
m indicating the rank of genes associatedwith “Evading ImmuneDestruction” and Circular
different immune cell infiltration levels in 11 cancers. Significant correlations at a false
d SNHG5 with chemokines and its receptors across cancers (Spearman's correlation N0.2
Associations of lncRNAs and immune response markers in 11 cancer types. The immune
activated T cell, co-simulation, cytolytic activity, MHC Class I and MHC Class II. Significant
5). (D) Distribution of the expression levels of SNHG5 (left) and RP11-705C15.3 (right)
lan-Meier analysis of overall survival in 27 melanoma patients. (F) Receiver operating
id line) to stratify patients into responders and non-responders, compared with PD-1 and
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neutrophils, macrophages and dendritic cells), we investigated the con-
nection between these lncRNAs and the immune cell infiltration [41].
We found that the expression of 12 lncRNAs (expression level of CTB-
89H12.4 is unavailable) reflected the extent of different immune cell in-
filtration in various cancer types after correcting for tumor purity
(Fig. 5A). For example, HNRNPU-AS1, FTX and RP11-705C15.3 were sig-
nificantly associated with the CD8 T cell infiltration in HNSC and KIRC
that has been reported previously [41,65]. Remarkably, lncRNA RP11-
705C15.3 and SNHG5were associatedwith infiltration of all six immune
cells inmost cancer types, suggesting their outstanding roles in immune
infiltration regulation. Since chemokines drive the recruitment of im-
mune cells via interactions with chemokine receptors, we thus won-
dered whether these two lncRNAs were involved in chemokine-
induced immune cell infiltration. We found significant associations of
RP11-705C15.3 with some chemokines/receptors in different cancer
types, such as CXCL9 and CXCL10 in a substantial types of cancer (7 of
11 cancers and 5 of 11 respectively; both Cor N 0.2, P-value b 0.05),
two chemokines recruiting effector CD8 T cells and TH1 cells into
tumors (Fig. 5B) [53].

Moreover, we noticed that RP11705C-15.3 was significantly associ-
ated with dysregulation of signatures linked to immune response,
including T-cell activation, cytolytic activity, antigen presentation and
T-cell inhibition aswell in a pan-cancer analysis (Fig. 5C). Thesefindings
highlighted the importance of these lncRNAs in affecting different
tumor microenvironments and tumor-induced immune response.

4.8. Immune-linked lncRNAs predict response to anti-PD-1 immunotherapy

Although cancer immunotherapy based on the checkpoint blockade
strategy has been approved for use in several advanced malignancies
[27,82], there are still plenty of patients failed to respond, making the
identification of predictive markers an urgent problem. Currently, PD-
1 and PD-L1 expressions andmutation load have been proposed as pre-
dictors of clinical response [64,75,77], but they provided limited power
to effectively optimize the patients [70]. Here, the great relation of the
identified lncRNAs with T cell infiltration and activity led us to explore
their potential asnovel clinical predictors for checkpointblockadeeffica-
cy. Indeed, we noticed many significant associations between these
lncRNAs and inhibitory checkpoints, such as widely used targets PD-1,
PD-L1 and CTLA4 across the 11 cancers (Fig. 5C, Supplementary
Fig. S7). Also, RP11-705C15.3 and SNHG5 were more significantly
changed in those cancer types approved for the use of checkpoint inhib-
itors (LUSC, KIRC, BLCA, LUAD, HNSC; Supplementary Fig. S8) [78]. Fur-
thermore, we obtained the RNA-seq data of 28 pre-treatment
melanomas following anti-PD-1 immunotherapy, in which 15 samples
had clinical response while 13 had no response [31]. Expressions of
RP11-705C15.3 and SNHG5 had significant associations with response
to treatment (FC N 1.5, Fig. 5D). Patients with up one-third of RP11-
705C15.3 expression had a 20% (2 of 10) response to anti-PD-1 therapy,
compared with 72.2% (13 of 18 cases) for the low two-third (odds ratio
10.4 [95%CI 1.617–66.898]; P-value = 0.009). For SNHG5, patients with
up one-third of expression had a 90% (9 of 10) response, compared to
33.3% (6 of 18) for the lower two-thirds (odds ratio 0.056 [95%CI
0.006–0.547]; P-value = 0.005). The overall survival was significantly
improved in patients with lower RP11-705C15.3 expression (HR 0.117,
95% CI 0.029–0.462; log-rank P-value = 3.6e-4) and patients with
higher SNHG5 expression (HR 0.119, 95% CI 0.015–0.930; log-rank
P-value = 0.015). Multivariate Cox regression analysis showed they
were both independent of age and gender (P-value = 0.001 for RP11-
705C15.3 and P-value = 0.03 for SNHG5; Fig. 5E, Table S9). Importantly,
RP11-705C15.3 and SNHG5 expressions enabled better stratification of
patients into responders and non-responders with AUC of 0.73 and
0.74 respectively. By contrast, the AUC of PD-1 and PD-L1 expressions
and mutation load were only 0.56, 0.58 and 0.65, respectively (Fig. 5F).
Taken together, the immune-associated lncRNAs showed strong poten-
tial to be novel predictors for immunotherapy response.
4.9. The LnCAR analysis tool

To facilitate the convenient use of our approach to infer lncRNAs'
functions, we developed an online tool at the following URL: http://
biocc.hrbmu.edu.cn/LnCAR/. It allows users to explore lncRNAs associat-
ed with any interested biological function based on the incorporated
gene perturbation resource. For a functional gene set inputted by
users (a protein-coding gene set), the tool will screen relevant
perturbed data and only when there are 5 or more perturbed genes in
the input set, the LnCAR method will be applied to generate a rank list
characterizing links with the inputted function. The lncRNAs ranked at
the top of the list were predicted to be involved in the function. More-
over, users can quickly search the perturbation information of each
perturbed gene, such as platform and perturbation technology, and
can use a customized perturbation dataset to perform the calculation.

5. Discussion

While a large amount of lncRNAs has been exploded, only a small
proportion of lncRNAs have functionally characterized roles. The limited
characterization of lncRNAs will impede our further understanding of
biological mechanisms and processes regulated by lncRNAs. In this
paper, we proposed a novel approach, named LnCAR, to capture func-
tions of lncRNAs based on a resource of causal relations from a large
scale gene perturbation profiles. LnCAR is a robust and flexible approach
for identifying lncRNAs related to any function of interest. In our study,
we first captured lncRNAs involved in cell cycle process and systemati-
cally validated the performance of our approach. Then we applied
LnCAR to infer cancer-associated lncRNAs and lncRNAs contributed to
each cancer hallmark. We showed that the lncRNAs identified in the
“activating invasion & metastasis” hallmark were strongly associated
with metastatic progression in various cancer types. And lncRNAs in-
ferred from “evading immune destruction” were proved to be impor-
tant in immune cell infiltration and activity, which could also be
served as indicators of the response of immunotherapy.

Theuseof transcriptomeprofiles after geneperturbations canprovide
us adequate causal relations between perturbed genes and downstream
affected factors. Comparing to widely adopted co-expression relation-
ships between protein-coding and non-coding genes, the causal relation
would provide a more reliable measure to analyze functional mecha-
nisms of lncRNAs. In our approach,weused a rank-basedmethod to inte-
grate causal relations produced by gene perturbation experiments,
which can solve the problem of the heterogeneity among different plat-
forms and improve the data availability dramatically [39]. It should be
noted that LnCAR was able to capture lncRNAs from any gene set with
similar functional properties and enough perturbation profiles in our re-
source. In this study, we not only inferred cancer-related lncRNAs but
also identified lncRNAs involved in each cancer hallmark, allowing to
look into the underlying mechanisms of lncRNAs in cancer progression.
For lncRNAs involved in “evading immune destruction”, we not only
found their significant associationwith different immune cell infiltration
but also with some chemokines/receptors in various cancer types,
highlighting their important roles in immune response. Furthermore,
two lncRNAs, RP11-705C15.3 and SNHG5,were found to be highly corre-
latedwith response to anti-PD-1 immunotherapy, andbe correlatedwith
patient survival and better stratification, suggesting their potential as
novel clinical predictors for immunotherapy response.

In our resource, the perturbation experiments were generated from
multiple technical platforms, which can lead to different numbers of re-
annotated lncRNAs and thus different numbers of causal relationships
captured by perturbation experiment. To reduce the impact of platform
heterogeneity, one of the major advantages of LnCAR applies a weight-
based rank aggregation method in which the reliability of individual
datasets is estimated, which can, to some extent, mitigate the impact
of the heterogeneity among different technical platforms [2–4,39].
Even so, integration of perturbation data derived from different

http://biocc.hrbmu.edu.cn/LnCAR
http://biocc.hrbmu.edu.cn/LnCAR
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platform can still block LnCAR to capture more exhaustive causal rela-
tionships, resulting in the loss of some valuable lncRNAs. Besides, our
method is designed to capture the co-influenced factors across multiple
perturbed genes from a common function,with limited performance for
some lncRNAs highly dependent on specific components in the function
of interest. With the wider of applications of sequencing technology in
perturbation experiment, the performance of LnCAR will become
more robust and effective. Moreover, whenmore RNA-seq perturbation
data derived from RNA-seq experiments on total RNA are generated in
the future, non-polyadenylated lncRNAs can be also analyzed. It is con-
ceivable that other types of perturbation experiments following
genome-wide expression profiles and continuously updated lncRNA in-
formation can further facilitate revealing lncRNAs' functions. It is known
that there exist some lncRNAs playing completely different roles in dif-
ferent contexts (some lncRNAs may function as oncogenes in certain
types of cancer, but may function as tumor suppressors in other types
of cancer). The cellular context is an important aspect to be considered.
Recently, combination of CRISPR/Cas9-based gene editing technology
and single cell RNA-seq technology has been used to generate
perturbation-based expression data in specific cells [1,16]. We expect
that more and more perturbation-based expression data will be pro-
duced, which can help us to infer lncRNAs' functions in the specific cel-
lular context. Considering that lncRNAs often exert their function
through interaction with various components such as DNA elements,
RNAs or proteins, integrating more types of data (e.g., ChIP-seq,
RIP-seq and ChIRP-seq data) will further strength our method, which
can make our prediction more biologically relevant. In the future, we
anticipate that the applicability of LnCARwould be continually growing
aswe incorporate newdatasets into our existing resource of causal rela-
tions. The way we delivered for leveraging causal relations shed new
light on the characterization of lncRNAs, whichwould be helpful for fur-
ther experimental research and clinical applications of lncRNA class.
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