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Abstract

A variety of forensic, population, and disease studies are based on haploid DNA (e.g. mitochondrial DNA or Y-chromosome
data). For any set of genetic markers databases of conventional size will normally contain only a fraction of all haplotypes.
For several applications, reliable estimates of haplotype frequencies, the total number of haplotypes and coverage of the
database (the probability that the next random haplotype is contained in the database) will be useful. We propose different
approaches to the problem based on classical methods as well as new applications of Principal Component Analysis (PCA).
We also discuss previous proposals based on saturation curves. Several conclusions can be inferred from simulated and real
data. First, classical estimates of the fraction of unseen haplotypes can be seriously biased. Second, there is no obvious way
to decide on required sample size based on traditional approaches. Methods based on testing of hypotheses or length of
confidence intervals may appear artificial since no single test or parameter stands out as particularly relevant. Rather the
coverage may be more relevant since it indicates the percentage of different haplotypes that are contained in a database; if
the coverage is low, there is a considerable chance that the next haplotype to be observed does not appear in the database
and this indicates that the database needs to be expanded. Finally, freeware and example data sets accompany the
methods discussed in this paper: http://folk.uio.no/thoree/nhap/.
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Introduction

Haploid genetic data are commonly used in population genetics

(e.g. [1,2]), forensics (e.g. [3,4]), and genetic studies of disease [5].

The most popular haplotypic data in the literature are from the

non-recombining part of the Y-chromosome and the mitochon-

drial DNA (mtDNA). These markers are transmitted from parents

to the offspring in a patrilineal (Y-chromosome) or matrilineal

(mtDNA; see [6] for a recent discussion) way as pure haplotypic

blocks. In a forensic context, these markers are routinely used in

many applications. For instance, when biological material is

degraded and only mtDNA may be analyzed, or in a rape case

where the Y-chromosome is often more helpful than other

markers; such data may serve to strengthen the case against the

suspect or the suspect may be cleared. Other forensic applications

involve identification ranging from maternity/paternity cases to

larger pedigrees, perhaps extending over several generations. Such

applications may extend well beyond the forensic field. For

example, mtDNA and the Y chromosome have played a central

role in disentangling the ancient and recent past of human

populations and their demographic movements. In addition,

mtDNA has also been related to a plethora of complex diseases.

The methods proposed here can also be applied to markers of a

different nature. For instance, there are various methods available

for reconstructing haplotypes from unphased genotype data (e.g.

[7] or HapMap: http://www.hapmap.org). There is vast number

of other references that could be mentioned; the HLA-complex is

an important example of autosomal data covering all of the

mentioned areas.

The aims of the present article were motivated by the

mentioned applications. For example, it is frequently desirable in

population or forensic genetics to estimate the fraction of unseen

haplotypes in a population given a sample of a particular size.

Similar problems have been studied extensively with diverse

applications in mind. An early paper discussing statistical

approaches for estimating the number of species in a population

is [8]. A general review is given by [9] whereas more specialized

reviews are provided by [10] (for the case when the population size

is known) and [11] (based on empirical Bayes methods of [12]).

Huang and Weir [13] discuss the estimation of the number of

alleles using coverage methods [14].

The main problem described loosely above may now be

formulated precisely as follows: There is an extremely large

number of haplotypes (n) in a population. For modeling purposes

we will assume this number to be infinite. There are, however,

some papers dealing with the finite case (e.g., [10]) but this less

common approach will not be followed here. The number of

different haplotypes (N ) is smaller, but typically large in the

applications we have in mind. A sample of haplotypes is available

from this population. Based on this sample and possible further

extended samples we would like to address the following questions:

1. What is the total number of different haplotypes (N) in the

population?
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2. What is the coverage (C)? Specifically, if we unrealistically

assume N to be known and equal to 1000 and our sample

contains 600 different haplotypes, the coverage will be 0.6.

3. What is frequency of a previously unseen haplotype? While this

by necessity is a difficult and speculative question, several

applications, including forensic, require a specific estimate.

Comparing this paper to the existing literature, we first note that

haploid data has not been considered extensively previously, and

the treatment of this data is particularly complex. An understand-

ing of phylogenetic/phylogeographic features of haplotype data is

required and should be accounted for. Regarding problem 3 above

we implement a Principal Component procedure and argue that

substantial features of the data are incorporated through this

model. More generally, there is an extensive literature dealing with

problems 1, 2 and 3 above, and our ambition has been to focus on

approaches particularly suitable for haplotype applications.

Answers to these problems have direct implications for sample

size problems and design issues more generally and also estimation

of haplotype frequencies. To our knowledge, a pragmatic solution

to this problem, when applied to haploid data, is still not available.

We therefore provide relevant examples based on simulations as

well as mtDNA and Y-chromosome data and also freely available

software running in R (http://www.r-project.org/).

Analysis

Review of methods related to the coverage of a given
database

There is a large literature of statistical papers dealing with

problems resembling those we are addressing. The generic

problem addressed is often referred to as ‘Species richness

estimation’ and classical references include [8,15] while more

recent reviews are provided in [9,16]. In this section we provide

the required notation and also review the models we consider to be

most suitable for the applications we have in mind.

Let n denote the total number of haplotypes in the database, and

D the number of different, unique haplotypes. N is the total,

unknown number of unique haplotypes. Let pi be the probability

that a haplotype belongs to the ith class and Xi the number of

elements of the ith class in the sample, i = 1,…,N. Furthermore, fj
is the number of haplotypes observed exactly j times (which

corresponds to the frequency spectrum of haplotypes in population

genetics). The sample coverage, C, is defined as the sum of the

probabilities of the observed classes, i.e.,

C~
XN

i~1

piI Xiw0ð Þ ð1Þ

where I denotes the indicator function. Observe that when all haplo-

types are sampled, C equals the sum of all frequencies and so C = 1.

Assuming unrealistically that all haplotypes are equally frequent, a

first estimate of the total number of unique haplotypes N is

N�1~D=C� ð2Þ

where the coverage defined in (1) is estimated as

C�~1{f1=n: ð3Þ

The latter estimate is also valid without the assumption of equal

frequency but f1 should be large for it to be accurate; the accuracy

increases with increasing f1 according to Good [15], who first

presented the formula giving credit to the famous mathematician

and computer scientist Alan Turing. Moreover, the probability

that the next haplotype is new in the sense that it is not in the

database is 1-C = f1/n. If all haplotypes of the database appear

exactly once, this probability is 1 since then f1 = n. It is intuitively

reasonable that this probability should be close to 1 in this case,

but perhaps not identical to 1, and [15] presents improved results

that account for this. However, for our purposes these improved

results are of little relevance and formula in (3) appears to solve the

problem well. A similar comment applies to the opposite extreme

occurring when f1 = 0.

A corollary to Theorem 1 of [17] gives the following asymptotic

1{að Þ confidence interval for C

1{f1=n+za=2 f1z2f2ð Þ=n{ f1=nð Þ2
h i.

n
� �1=2

ð4Þ

where za=2 is the usual percentile based on the normal distribution.

Below we use a~0:05 and z0:025~1:96.

We next present extensions based on Proposition 1 in [14]. The

initial estimate (2) is increased by a term depending on the

distribution of the class frequencies as measured by c, the squared

coefficient of variation. In [14] it is shown that reasonable

estimators are of the form

N�1 z
n 1{C�ð Þ

C�
c~N�1z

f1

C�
c ð5Þ

and the authors propose estimators, denoted N�2 and N�3 , based on

two different estimators of c defined in Equations (2.12) and (2.13)

of [14] respectively and reproduced below

c�~max N0

X?
i~1

i i{1ð Þf
,

n n{1ð Þ½ �{1,0

( )
ð6Þ

c*~max c� 1zf1

X?
i~1

i i{1ð Þf
,

n n{1ð Þ½ �{1

 !
,0

( )
: ð7Þ

The estimator (2) may work well in cases where there are few

prevalent haplotypes while the majority of them are rare. A

standard trick described in [18] improves on (2) and also the two

other estimators. The idea is to separate the observed haplotypes

into two groups: abundant and rare. Abundant haplotypes are those

that are observed more than k times and that are likely to appear

in any reasonable sample. There appears to be a consensus on

setting k = 10 [13,18]. The rare haplotypes are those that occur less

often. With obvious notation, we may then write D = Dabun+Drare.

Note that n~
P

iw~1

ifi. Following this approach n in (3) is replaced

by nrare~
Pk
i~1

ifi and the sums in Equations (6) and (7) are stopped

at k. The estimator (2) then becomes

DabunzDrare

�
C�rare~DabunzN0 ð8Þ

implying modifications for the two other estimators as well. The

practical importance of this modification is that the estimators

become more stable and robust.

Example 1. The data for this example are shown in Table S1

(supplementary data). There are four binary sites and 30

Coverage of Databases
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haplotypes. The first haplotype, haplo1, is a singleton, the second

is the most prevalent occurring 12 times while there are four copies

of the third (haplotypes 3,4,16 and 18). We will use this data to

exemplify the previous formulae and also our freeware

implementation http://folk.uio.no/thoree/nhap/. There is too

little data for this example to have any practical interest and in

addition, the asymptotics are not likely to work. If examples of this

magnitude are of practical interest, approaches following [10] may

be better suited. The basic input data should be a matrix where

lines correspond to haplotypes and columns to sites. The data in

this example is in binary format but the sites could also be

arbitrary integers, as is the case for the Y-chromosome data of

supplementary Table S2. There are also other parameters, but the

default values can and will be used for this example. This in

particular implies that k = 10, i.e., haplotypes occurring less than

10 times (haplo2 in our data) are considered rare. There are 30

haplotypes, nine of which are unique. These nine unique

haplotypes consist of Drare = 8 rare haplotypes and Dabund = 1.

There are 12 copies of the abundant haplotypes (the one occurring

12 times). Furthermore

f1~5, f2~f3~0, f4~2, f5~1, f5~ . . . ~f11~0, f12~1:

Consider first the coverage estimate in (3), i.e., C�~1{f1=n. If

there is no cut-off, then n = 30. In our case the cut-off is 10 and the

sample size corresponding to those haplotypes occurring 10 times

at the most is 30212 = 18. The coverage estimate therefore

becomes 12(5/18) = 0.72. The 95% confidence interval can be

calculated from (4) as

1{f1=n+za=2 f1z2f2ð Þ=n{ f1=nð Þ2
h i.

n
� �1=2

~0:72+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
5=18ð Þ{ 5=18ð Þ2

� �.
18

r
~ 0:52,0:93ð Þ:

The first abundance estimator, N1 is given by (8) when there is a

cut-off, i.e.,

DabunzDrare

�
C�rare~1zN0~1z8=0:72~12:1:

It remains only to demonstrate the last two abundance

estimates. For this purpose, we first find c�~0:59 using (6). From

this,

N�2~N�1 z
f1

C�
c �~12:1z5 � 0:59=0:72~16:2

Finally, c*~1:18 based on (7) and

N�3 ~N�1z
f1

C�
c*~12:1z5 � 1:18=0:72~16:2~20:3:

In this example there are at most 24 = 16 different haplotypes

and we see that N�2 is close to this value. However, as mentioned

previously, this example is too small to serve anything but

illustration purposes.
Example 2. The next example uses simulated data based on

the coalescent, see [19] for a review. 5000 mtDNA profiles were

simulated under varying assumptions using Marchini’s R-package

popgen (http://www.r-project.org/). The mutation rate (h= 2Em;

where m is the mutation rate per gene per generation and E is the

effective population size) was varied in the treesim function. We

consider these 5000 profiles to be complete data, i.e., all

individuals have been typed. Then, for various sample sizes (50,

100, 400 and 1600) the number of unique haplotypes was

estimated using the estimators N1, N2 and N3, and the resulting

estimators were compared to the true value based on the 5000

profiles. The result of a single arbitrarily selected simulation is

provided in Table 1. For instance, the last line of this table shows

that the sample of 5000 contains N = 412 different haplotypes.

The coverage is estimated at 0.87. The N�1 , N�2 and N�3 estimates

are 349, 410 and 444 respectively. This reveals a general and

expected feature summarized by N�1ƒN�2 ƒN�3 , but these

inequalities do not hold generally. For small sample sizes, all

estimators underestimate and N�1 almost always underestimates.

Table 2 compares accuracy using the root mean squared error

based on 100 simulations.

Table S2 presents an example based on Y-chromosome data

that shows that large data sets can be easily handled and sites need

not be binary.

Example 3. This example considers the ten databases of

Table 3: Germany (n = 1314; [20,21]), Iceland (n = 396; [22]),

Mozambique (n = 306; [1]), Portugal (n = 540; [23,24]), Basque

(n = 171; [25,26,27]), Catalonia (n = 118; [28]), and Galicia

(n = 135; [24,29]). For instance, there are 1314 German samples

and the coverage is estimated as explained above at 0.59. On the

other hand, there are 396 Icelandic samples and the

corresponding coverage is 0.77. So the Icelandic sample

provides better coverage than the German sample despite being

smaller (but not smaller compared to population size and perhaps

population heterogeneity).

A useful result [11] is available along different lines. Assume we

extend the sample by a fraction t. Then the expected number of

Table 1. Performance of different approaches to the
estimation of the number of different haplotypes based on
simulated data.

h N Sample N*
1 N*

2 N*
3 D C*

10 66 50 23 26 28 19 0.84

10 66 100 33 45 56 28 0.84

10 66 400 50 57 62 45 0.88

10 66 1600 67 74 79 61 0.84

50 222 50 64 91 124 33 0.52

50 222 100 72 90 103 52 0.72

50 222 400 136 162 178 115 0.83

50 222 1600 191 215 227 175 0.89

100 412 50 215 506 1173 43 0.20

100 412 100 148 172 194 71 0.48

100 412 400 234 293 339 179 0.76

100 412 1600 349 410 444 311 0.87

A total of n = 5000 profiles were sampled from the coalescent for varying h
( = 2Em where m is the mutation rate per gene per generation and E the effective
population size). The column ‘N’ gives the number of different haplotypes in
this sample, the quantity to be estimated. The column ‘Sample’ shows the
sample sizes used. Next follows the estimators N�1 , N�2 and N�3 . D gives the
number of different observed haplotypes and is followed by the coverage
estimate.
doi:10.1371/journal.pone.0003988.t001
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new haplotypes is

D tð Þ~f1t{f2t2zf3t3{ . . . :

where, as previously, fj is the number of haplotypes seen precisely j

times. The formula is valid for t#1 and t = 1 corresponds to a

doubling. The above formula is studied in greater detail in [30].

Example 4. Consider Table 3. There are 540 Portuguese

samples of which 242 are unique. Doubling the database to 1080

corresponds to inserting t = 1 into the above formula. The

expected number of new haplotypes becomes

D 1ð Þ~162{43z16{6z6{2z0{1{0{2z1{1z0{1~129

and so based on a sample of 1080 we would expect to see

242+129 = 371 different haplotypes. The above calculation excludes

the most prevalent haplotype, the one occurring 113 times.

Rare or unseen haplotypes
Estimation of unseen haplotype frequencies: general

considerations. We would like to make the database

sufficiently large to include all haplotypes having frequency q or

higher. The simplest mathematical solution can be provided in

case no data have been collected and there is no prior information

we can use. Although this is not the case (since data are actually

available), Plaza et al. [31] went ahead with a simplistic solution in

a case of a mtDNA study carried out in an Angolan sample;

briefly, the authors aimed to provide an upper bound of Khoisan

(historical) demographic influence in their typically bantu Angolan

populations given the fact that no Khoisan specific lineages have

been detected in their sample: ‘‘the probability of not finding a particular

lineage that is present in a population at frequency of f in a sample of size n is

given by a = (12f)n’’. For a given f, n can be determined to ensure

that a exceeds a specified lower limit, say 0.95. According to

[31]‘‘…the maximum contribution of Khoisan lineages to Angolans is

compatible with the observation that the absence of L0d and L0k in a sample of

44 Angolans would be less than 10.8% (for a = 0.95)’’. This estimate is

however too simplistic. For instance, any unseen lineage takes the

same value, so we would obtain the same probability estimate for a

Khoisan lineage as for e.g. an East Asian or European one in the

Angolan population. This estimate is also strongly dependent on

sample size. In general, there is no way to know how close this

value is to the true one, but upper limits can still be useful.

Classical approaches to the estimation of unseen

haplotype frequencies. If a haplotype is never seen in the

database, the classical frequentistic estimate will be 0 and will

typically lead to unreasonable or impossible statistical analysis. For

instance, in forensics, likelihood ratios may become infinite. For

association studies, odds ratios may similarly be impossible to

calculate. Different suggestions have been proposed in the

literature to avoid such unfortunate consequences. If all

haplotypes appear in the database, there are no unseen

haplotypes and there is no problem. In practical cases, coverage

is not complete and the ultimate goal is to provide an estimate as

close as possible to the one we would observe in the hypothetical

situation of complete coverage. A practical proposal is to let

wi~ xizlð Þ= nzlð Þ, 1w0 ð8Þ

where the haplotype is observed xi times in a database of size n. The

choice l = 1 amounts to adding the unseen haplotype to the database

while l = 2 corresponds to adding both the defendant and culprit

profile. This topic is discussed in Section 6.3.1 of [32] and in [33]. At

any rate, the specific choice for l should be of minor importance. The

frequencies must add up to unity as ensured by (8).

It is also possible to estimate the frequency of an unseen

haplotype (or any haplotype for that matter) by simulating from

the coalescent. The examples performed [34] indicate that the

estimator (8) works well with l = 1. However, (8) tends to

overestimate the true value for rare haplotypes by a relatively

large amount since (8) corresponds to the case where the unseen

haplotype appears as the next sample.

The problem of unseen haplotypes can be approached based on

the above methods in a way which allows phylogeographic

Table 3. Haplotype estimates from several population
datasets.

pop n D n.single C N*
1 N*

2 N*
3

Andalucia 50 39 33 0.34 115 254 541

Basques 171 68 46 0.59 114 195 313

Catalonia 118 79 67 0.32 248 398 620

Galicia 135 76 58 0.43 177 217 256

Germany 1314 462 309 0.59 772 1333 2142

Icelandic 396 111 59 0.77 142 210 283

Mozambique 306 111 72 0.63 174 295 462

PortCent 160 93 74 0.42 219 378 621

PortNorth 184 106 79 0.45 234 288 342

PortSouth 196 113 88 0.43 260 392 564

Spain 474 203 147 0.55 365 695 1241

Portugal 540 242 162 0.58 411 632 903

Iberia 1014 383 261 0.58 650 1018 1488

The first sample (Andalucia) consists of 50 mtDNA HVS-I profiles, of which 39
are different. There are 33 singletons and so the fraction of unseen haplotypes
is estimated as 33/50 = 0.66 and the coverage is 0.34. N�1 , N�2 and N�3 are
different estimates of the number of haplotypes as explained in the text. The
last three lines lump data from previous lines.
doi:10.1371/journal.pone.0003988.t003

Table 2. Accuracy of estimators of the number of different
haplotypes measured by the root of the mean squared error
assessed by 100 simulations.

Sample N*
1 N*

2 N*
3

50 39.5 34.5 34.2

100 34 28.3 26.1

400 21.8 17.3 16.2

1600 8.7 6.4 10.3

50 159.65 143.76 131.87

100 148.38 123.47 105.3

400 100.58 71.44 54.09

1600 38.33 17.29 18.84

50 269.71 250.71 265.69

100 252.11 215.64 186.23

400 188.13 128.37 86.92

1600 73.58 23.75 33.31

Each simulation was carried out as in Table 1.
doi:10.1371/journal.pone.0003988.t002
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knowledge to be incorporated and this is discussed in the next

section. Here, we mention briefly a simplistic approach: Assume

the coverage is C and that there are u unknown haplotypes with

unknown frequencies p1,…,pu. If these unknown frequencies are all

the same, then their common estimate is 1{Cð Þ=u. It may appear

unreasonable to assign higher frequency to an unseen haplotype

than one seen once and some modification may be required and

min 1{Cð Þ=u,1=nf g seems reasonable.

Principal Component Analysis applied to the estimation

of haplotype frequencies. Estimation of haplotype frequencies

depends heavily on the sample size, and ignoring phylogenetic or

phylogeographic circumstances could lead to overestimation. For

example, a typical sub-Saharan haplotype is probably rare in

Andalucia (South Spain) in comparison with many other haplotypes

that are probably relatively common in this region but that still

remain unsampled due to the stochastic nature of the sampling

process. Thus, based on the previous classical approach, we estimate

the fraction of unseen haplotypes in a sample of 50 Andalucians as

0.66 (Table 3), but note that any unseen sample, either belonging to

some typical European haplogroup or sub-Saharan one, will receive

the same frequency, namely approximately 1%. For a European

haplotype, this frequency could be realistic, but probably not for a

typical Asian or sub-Saharan one.

In a typical forensic genetic context, a common scenario could be

that of an immigrant suspect carrying a very rare haplotype with

respect to the reference population where the crime was committed.

The use of the local database, in which the haplotype carried by the

suspect is very uncommon, will probably overestimate its frequency.

It could be argued that the use of local databases is always

conservative in this context, and this would benefit the suspect

(benefiting therefore his/her innocent presumption). However, such

a conservative interpretation could also be unfair if the suspect is

responsible for the crime. ‘Extreme’ interpretations of the DNA test

in forensic genetics are always undesirable, and here we just propose

an alternative way that could contribute (among other medical and

population genetics applications) to improve the evaluation of the

DNA test, but not without warning potential users about the fact that

there is probably not a single universal solution for routine casework,

and that every single case will probably require particular treatment.

Therefore, these estimates have to be taken with caution. Two

intuitive considerations could help to interpret these estimates: i) a

certain threshold for the fraction of unseen haplotypes (e.g. 10%)

could be required beforehand in order to consider that the frequency

estimate of a given haplotype is reliable, and ii) phylogenetic and

phylogeographic information could be useful in order to evaluate

how far the unseen haplotype is (in some sense) from the database. It

would in fact be desirable to ‘weight’ the haplotype frequency

estimate by incorporating phylogenetic considerations into a

mathematical model, but the most intuitive way, namely, the use

of genetic distances, is not straightforward for e.g. mtDNA data. In

[35] a distance based on the minimal number of mutational steps

was proposed for Y-chromosome data. We here propose a method

based on Principal Component Analysis (PCA).

Assume the frequency of an unseen haplotype is

pi~K=di, i~1, . . . ,u, ð9Þ

where K is a constant determined by the requirement that these

frequencies should add up to 1-C, di is the distance, in some sense,

from the haplotype to the ‘population’ and u is the number of unseen

haplotypes. Some assumptions and modelling are required to

calculate these distances and we will use PCA. We explained and

exemplified PCA on similar data for different applications in [36] and

we refer to that paper for background and more general references.

We will use ordinary Euclidean distance in the PCA space, i.e.,

d2
i ~
Xn:c
j~1

hj{mj

� �2

,
n:c ð10Þ

where n.c is the number of principal components; hj and mj are the j-th

coordinate of the haplotype and the mean in PCA-space respectively.

For the simple case when there are two principal components (n.c = 2)

there is a simple geometrical interpretation corresponding to the

usual distance measure. Our practical PCA implementation uses the

prcomp function of R.

If the distances based on all unseen haplotypes are available

(which is unlikely), K can be calculated as

K~ 1{Cð Þ
,Xu

i~1

1=di

and the required frequency is readily available from (9). The

problem is also solved if
Pu
i~1

1=di and thus K can be estimated by

other means. Unfortunately, such solutions will normally not be

available and in the example below we instead choose a pragmatic

solution. Our basic assumption is that the naı̈ve upper bound

should not be exceeded. If the distance from the haplotype for

which a frequency estimate is required is below the average of the

internal PCA distances, d̄, we use this upper bound, i.e., 1/(1+n),

and otherwise we use the following version of (9):

pi~

_
d

di

1

nz1ð Þ : ð11Þ

The above equation has an intuitively appealing interpretation

as the traditional estimate is corrected by a factor accounting for

phylogeographical features through PCA-distances.
Example 5. The first part of this example is based on

simulated data. The data is simulated to share some features with

the real data of the latter part of the example. Two populations are

simulated, each with n (50,100 and 400) individuals. There are 100

sites that may vary, so a haplotype is a binary vector of length 100,

e.g., (0,1,0,…,1). There are various ways such data can be

simulated. In Example 2 we used the coalescent. Here a simpler

approach is more convenient: 0 and 1 are simply simulated

independently with probabilities 1-q and q. In this way it is easier

to describe and characterise the data. We consider here three

scenarios. For the first scenario there is a relatively small difference

between the populations (q = 0.1 and 0.3 respectively) whereas the

difference between the populations is larger for scenario 2 (q = 0.1

and 0.5) and scenario 3 (q = 0.1 and 0.9). The results of the

simulations are summarised in Table 4. The naı̈ve bound provides

a comparison with what we consider to be the most usual

alternative to the approach we have described, namely the

estimate 1/(n+1). Next there is a need for unseen haplotypes, test

data. For the columns ‘fraction1’ and ‘median1’ we have

considered haplotypes in population 2 which are unseen in

population 1. The estimate of the unseen frequency is calculated

according to (11). The frequency of these estimates which are below

the naı̈ve bound is given in the column ‘fraction1’ whereas the

median values of the frequency estimates are in the following. The

next two columns contain similar information, but for a different test

set. This time all singletons of population 1 are considered. The

rationale is that singletons are likely candidates for unseen
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haplotypes; in a different sample of the same population these are

likely candidates for not being sampled. To be specific, consider

Table 4 and the case n = 50. The naı̈ve bound is 1/51 = 0.0196. The

‘median1’ estimates are below this value and decreases as gradually

more distant test sets are considered corresponding to Scenario 1–3.

The singleton test leads to a lower fraction of haplotypes below the

threshold 1/(n+1) and to higher frequency estimates (‘median2’); the

reason is that these samples are closer to the population for which

they are considered unseen. For the singleton test set there should be

no systematic differences depending on scenario and only small

stochastic differences are observed. The estimates are relatively

stable for both test data (unseen and singletons) and increasingly

stable as larger data sets are being used. The precise figures are by

necessity somewhat speculative and there will also be some small

difference depending on parameter settings

We next apply the methods to real data summarised in Table 3.

For this purpose we used the Iberian database and the

Mozambique haplotypes not seen in the Iberian database. We

divided the Iberian database into two parts: Ib.singles (261

haplotypes occurring only once) and Ib.rest (the remaining 755

haplotypes). We performed PCA based on Ib.rest and the number

of principal components was 18, following a requirement to

explain 80% of the variance. The average distance based on the

PCA-transformed Ib.rest haplotypes was d̄ = 0.22, where we used

the distance defined in (10). There were 286 Mozambiquan

haplotypes not seen in the Iberian database. For 238 of the 286

haplotypes (83.2%) the distance exceeded the average and we

estimated the probabilities from (11). Figure 1 shows the

distribution of the probabilities. In the upper panel, distances

are based on the samples from Mozambique while the lower panel

is based on singletons from the Iberian database. As expected, the

probabilities were lower for the samples from Mozambique.

Alternative approaches including saturation curves
There are many different approaches that can be tried in

addition to those we have presented. We will not discuss what we

consider to be minor variants that may or may not work better for

specific data, but rather discuss approaches differing more

substantially. A proposal based on saturation curves was

formulated in [37]. Similar approaches have been suggested in

various applications, see [16] for a review of some of these. The

saturation approach may be parametric as in [37] where f(x) = ax/

(b+x) is used (this corresponds to the Michaelis-Menten function,

but this name is of no relevance to our application and is not

mentioned in [37]). The interpretation of the function is as follows:

for a sample of size x, the number of different haplotypes is

estimated as f(x). The parameters a and b must be estimated from

the observed saturation curve and we have used the nls (nonlinear

least squares) function in R. The saturation depends on the order

of the haplotypes as do the parameter estimates. A practical

solution to this problem is to repeat estimation for a number of

randomly permutated orderings and present average values.

Example 6. For this example, we will use the 540 haplotypes

in the Portuguese database (Table 3). This allows comparison with

[37], as the data differs only slightly. We permutated the order of

the haplotypes 100 times and each time we estimated the a and b

of f(x) = ax/(b+x). The average estimate of a was 584.7 and this is a

reasonable abundance estimate since it corresponds to the limit as

x approaches infinity and because this value is also almost obtained

for large, but finite values such as x = 100000. Our other estimates

are N�2 ~632 and N�3 ~903. The estimate for a depends crucially

on the order of the haplotypes, and values between 441 and 857

were obtained for the simulations. The resulting function with

extrapolation up to 3200 is shown in Figure 2.

There is also an extensive general literature related to the

problem of detecting a new species. Several recent papers extend

the so-called Starr estimator introduced in [38]. Some more

specific calculations related to haplotypes are provided by C.

Brenner http://dna-view.com/haplofreq.htm.

Discussion

We aimed to explore several statistical problems concerning

databases of haplotype data (particularly, mtDNA and Y-

chromosome) that can be useful for population, clinical, and

forensic genetic applications. To our knowledge this is the first

attempt to provide pragmatic solutions to these problems. We

have facilitated software that implements these approaches and we

also offer recommendations for particularly common situations in

several genetic contexts. In particular, three estimators for

Table 4. Summary of the results of the simulation part of
Example 5.

n
naı̈ve
bound fraction1 median1 fraction2 median2

Scenario 1 50 0.0196 0.87 0.01698 0.52 0.01858

Scenario 2 50 0.0196 1.00 0.01187 0.52 0.01861

Scenario 3 50 0.0196 1.00 0.00906 0.54 0.01861

Scenario 1 100 0.0099 1.00 0.00718 0.52 0.00939

Scenario 2 100 0.0099 1.00 0.00524 0.52 0.00940

Scenario 3 100 0.0099 1.00 0.00418 0.52 0.00940

Scenario 1 400 0.0025 1.00 0.00155 0.52 0.00237

Scenario 2 400 0.0025 1.00 0.00119 0.52 0.00237

Scenario 3 400 0.0025 1.00 0.00099 0.52 0.00237

The naı̈ve bound, the estimate 1/(n+1), provides for a classical alternative to the
estimates given in columns ‘median1’(based on unseen haplotypes generated
from a different population) and ‘median2’ (based on singletons). Further
details are provided in text.
doi:10.1371/journal.pone.0003988.t004

Figure 1. Estimates of frequencies of unseen Iberian haplo-
types. The values were calculated following the PCA approach. The
test set for the upper panel are those haplotypes of the Mozambique
database which are unseen in the Iberian. The singletons in the Iberian
database are used as the test set in the lower panel.
doi:10.1371/journal.pone.0003988.g001

Coverage of Databases

PLoS ONE | www.plosone.org 6 December 2008 | Volume 3 | Issue 12 | e3988



haplotype abundance were proposed and tested. N�2 and N�3
perform better than N�1 whereas the difference between N�2 and

N�3 is smaller; the latter normally leads to higher estimates and

appears to be better based on a simulation experiment reported in

Tables 1 and 2.

One could use the approach proposed here to determine a

lower bound on the fraction of unseen haplotypes in terms of the

number of singletons f1. Sampling should then continue until

1{f1=n exceeds some prescribed lower level. Similar methods can

also be used a posteriori to evaluate the coverage of a sample with

respect to the reference population, and again, we may wish to set

a threshold for the fraction of unseen haplotypes.

The saturation approach exemplified in Example 6 may work well

in some cases, particularly if there is a justification for the

parameterization of the saturation curve. However, these approaches

have been criticized [9]. The methods may share the intrinsic

problems of all extrapolation-based predictions: If extrapolation is

carried beyond the validity of the model, ridiculous predictions may

result. This may also be apparent from Figure 2: most of the data

points lie on a relatively steep part of the curve and extrapolation of the

curve depends crucially on the parameterization, which may be

somewhat arbitrary. For instance, it is said that in some countries (e.g.

Spain), women smoke progressively more cigarettes now than a

decade ago in comparison to men for the same period of time;

extrapolation would indicate that women will smoke considerably

more than men in the near future; this conclusion sounds however very

naı̈ve.

Capture-recapture methods can be used to estimate coverage and

abundance in much the same way as in classical studies designed to

estimate the abundance of a specific species: A random sample of

individuals is sampled and their mtDNA profiles are obtained. Next,

a new sample is obtained from the population and based on the

number of new haplotypes in this sample, estimates can be obtained.

Although this approach is theoretically attractive, it is not practical in

real life. There has been an explosion of methodological research in

this area starting around 1985 according to [16].

A number of other useful applications based on coverage and

abundance estimates can be listed and discussed. Here we only

briefly add some comments on haplotype diversity. This and similar

measures are frequently reported in the field of population genetics

and molecular anthropology. However, these estimators require

the number of haplotypes and the corresponding frequencies to be

known, and as we have argued above, this is rarely the case.

Rather we can represent the haplotype diversity as

H~1{
XN

i~1

p2
i ~1{

XD

i~1

p2
i {

XN

i~Dz1

p2
i :

The last sum cannot be computed since it depends on the

frequencies of the unseen haplotypes. However, based on our

approach we can estimate H.

To sum-up, we have proposed different pragmatic approaches

for estimating the coverage of databases and abundance of

haplotypes and the frequency of unseen haplotypes. We have also

discussed previous proposals. The methods discussed here have

been tested on simulated and real data. We have also laid the

foundations for other potential approaches based for instance on

coalescence. The latter is however computationally demanding

while the methods proposed here are easily implemented in

conventional statistical packages such as R.

Supporting Information

Table S1 Data set used for Example 1. There are four binary

sites and 30 haplotypes. The first haplotype, haplo1, is a singleton,

the second is the most prevalent occurring 12 times while there are

four copies of the third (haplotypes 3,4, 16 and 18).

Found at: doi:10.1371/journal.pone.0003988.s001 (0.04 MB

DOC)

Table S2 The table is based on a large database of Y-

chromosome data [2].There are 12727 haplotypes from 91

populations. Three different haplotypes are shown in followed

by the most frequent haplotype occurring 661 times (5.2%). There

are 2489 different haplotypes. The number of singletons is

f1 = 1397 while the number of rare haplotypes, i.e., those

occurring at most 10 times, is 4649. From these numbers the

coverage is estimated as 121397/4649 = 0.7 with a 95%

confidence interval ranging from 0.68 to 0.72.

Found at: doi:10.1371/journal.pone.0003988.s002 (0.03 MB

DOC)
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