

## Protocol

An efficient and cost-effective purification protocol for Staphylococcus aureus Cas9 nuclease



Here, we describe a protocol for purifying functional clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) from Staphylococcus aureus within 24 h and over 90% purity. SaCas9 purification begins with immobilized metal affinity chromatography, followed by cation exchange chromatography, and ended with centrifugal concentrators. The simplicity, cost-effectiveness, and reproducibility of such protocols will enable general labs to produce a sizable amount of Cas9 proteins, further accelerating CRISPR research.

Publisher's note: Undertaking any experimental protocol requires adherence to local institutional guidelines for laboratory safety and ethics.

Allen C.T. Teng, Marjan Tavassoli, Suja Shrestha, ..., Ronald Cohn, J. Paul Santerre, Anthony

allen.teng@utoronto.ca anthony.gramolini@ utoronto.ca (A.O.G.)

A robust protocol for isolating SaCas9

Isolate over 10 mg proteins from 4 L of bacterial culture with 90% purity within 24 h

Step-by-step guide for an efficient protein expression and

In-gel protein staining and rapid (5 min) protein visualization

Teng et al., STAR Protocols 4, 101933 March 17, 2023 © 2022 The Authors. https://doi.org/10.1016/ j.xpro.2022.101933

### Protocol

# An efficient and cost-effective purification protocol for *Staphylococcus aureus* Cas9 nuclease

Allen C.T. Teng,<sup>1,2,8,\*</sup> Marjan Tavassoli,<sup>1,2</sup> Suja Shrestha,<sup>1,3</sup> Ryan M. Marks,<sup>4,5</sup> Meghan J. McFadden,<sup>1,6</sup> Sonia L. Evagelou,<sup>5</sup> Kyle Lindsay,<sup>5</sup> Ava Vandenbelt,<sup>1,7</sup> Wenping Li,<sup>1,2</sup> Evgueni Ivakine,<sup>2,5</sup> Ronald Cohn,<sup>4,5</sup> J. Paul Santerre,<sup>1,3,6</sup> and Anthony O. Gramolini<sup>1,2,9,\*</sup>

<sup>1</sup>Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, 661 University Avenue, 14th Floor, Toronto, ON M5G 1M1, Canada

<sup>2</sup>Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada

<sup>3</sup>Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1X3, Canada

<sup>4</sup>Department of Molecular Genetics, Faculty of Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada

<sup>5</sup>Program in Genetics and Genome Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada

<sup>6</sup>Institute of Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada

<sup>7</sup>Faculty of Kinesiology & Physical Education, University of Toronto, Toronto, ON M5S 2W6, Canada

<sup>8</sup>Technical contact: allen.teng@utoronto.ca

<sup>9</sup>Lead contact: anthony.gramolini@utoronto.ca

\*Correspondence: allen.teng@utoronto.ca (A.C.T.T.), anthony.gramolini@utoronto.ca (A.O.G.) https://doi.org/10.1016/j.xpro.2022.101933

### SUMMARY

Here, we describe a protocol for purifying functional clustered regularly interspaced short palindromic repeats (CRISPR)-associated protein 9 (Cas9) from *Staphylococcus aureus* within 24 h and over 90% purity. SaCas9 purification begins with immobilized metal affinity chromatography, followed by cation exchange chromatography, and ended with centrifugal concentrators. The simplicity, cost-effectiveness, and reproducibility of such protocols will enable general labs to produce a sizable amount of Cas9 proteins, further accelerating CRISPR research.

### **BEFORE YOU BEGIN**

Precise editing of genomic DNA remained challenging until the advent of the CRISPR-Cas system. Of the many identified Cas9 proteins, Cas9 from Staphylococcus aureus (SaCas9) has emerged as a preferred genetic editing tool, because of its smaller size (1053 amino acids) allowing for an efficient encapsulation into transfecting complexes or transducing viral DNA.<sup>1,2</sup> For example, SaCas9 has been extensively used as a genome editing tool for developing an array of therapeutic strategies investigating human inherited diseases in animal models.<sup>3,4</sup> However, acquiring this protein remains a challenge for many laboratories that are not adequately equipped for protein purification.<sup>5-9</sup> For instance, fast protein liquid chromatography was used for purifying Cas9 proteins in several studies and the equipment requires a hefty initial investment.<sup>6-8</sup> Here, we report an advancement of the purification methods for SaCas9 from bacterial cells. A major advantage of this methodology is to achieve over 90% purity, at large batch sizes (concentrations at 1 mg/L) within a day. Purified SaCas9 can be directly used for in vitro applications. The new methodology is superior to the majority of conventional approaches, which rely on expensive infrastructure (E.g., French press, high frequency sonicator, or fast protein liquid chromatography),<sup>5–8</sup> and thereby rendering SaCas9 production more cost-efficient. The average cost for the production of 10 mg of SaCas9 proteins is 86.36 USD (Table 1), significantly lesser than several commercial sources, without compromising the quality of the enzyme itself. Other advantages of this protocol

1



|                                                                      | Unit price in USD |
|----------------------------------------------------------------------|-------------------|
| HisTrap column (GE, 17524802)                                        | 185.00            |
| HiTrap column (GE, 17115401)                                         | 82.40             |
| Amicon Ultra Centrifugal Filter Unit (Sigma, UFC901024)              | 332.50            |
| LB broth (Bioshop Canada, LBL405)                                    | 68.76             |
| LJB autolysis cells (Zymo Research Corporation, 50-444-646)          | 21.90             |
| PES Bottle Top Filters (Fisher Scientifics, FB12566511)              | 73.00             |
| Miscellaneous (Salt, glass bottles, carbenicillin, arabinose, etc)   | 100.00            |
| Total cost for 100 mg of 8×His-TEV-SaCas9 proteins                   | 863.56            |
| Cost per 10 mg of 8×His-TEV-SaCas9 proteins                          | 86.36             |
| On average, it costs 86.36 USD for the production of 10 mg proteins. |                   |

include completion of protein purification within 8 h. The setup of the protocol is illustrated in Figure 1.

### Institutional permissions

Not applicable.

### Prepare SDS-PAGE gels for a rapid in-gel protein visualization

### © Timing: 30 min

- 1. Prepare 10% sodium dodecyl sulfate (SDS)-polyacrylamide gel (SDS-PAGE) with 2, 2, 2-Trichloroethanol (TCE) staining agent.
  - a. For the running phase, mix 4.0 mL of ddH<sub>2</sub>O, 3.3 mL of 30% acrylamide mix, 2.5 mL of 1.5 M Tris-HCl (pH 8.8), 200  $\mu$ L of TCE (100%) solution, 100  $\mu$ L of 10% SDS, 100  $\mu$ L of 10% ammonium persulfate (APS), and 4  $\mu$ L Tetramethylethylenediamine (TEMED) and transfer a cast mode.
  - b. Overlay the gel with 400  $\mu L\,ddH_2O.$
  - c. Remove ddH<sub>2</sub>O once the gel polymerizes completely.

 $\triangle$  CRITICAL: TCE is not readily soluble in the polyacrylamide mixture and should be fully dissolved in ddH<sub>2</sub>O with vigorous shaking before adding other ingredients.

d. For the stacking phase, mix 3.4 mL ddH<sub>2</sub>O, 830 μL 30% acrylamide mix, 1.0 M Tris-HCl (pH 6.8), 50 μL of 10% SDS, 50 μL of 10% APS, and 5 μL TEMED. Transfer solution on top of the gel and insert a gel comb. Wait until the gel is fully polymerized.



#### Figure 1. Schematic illustration for protein purification setup

A 50-mL syringe (item # 2) is included for holding protein samples or buffer. The delivery of samples at a consistent speed is controlled by a syringe pump (item # 1). Protein loading, exchange, and elution are completed within columns (item # 3). Eluted proteins in fractions (item # 4) can then be analyzed by rapid in-gel imaging.



△ CRITICAL: SDS-PAGE gel can be prepared a week ahead of experiments, provided that it is properly stored in a 4°C fridge.

### Prepare LB broth (Lennox) and terrific broth

© Timing: 90 min

- 2. Completely dissolve LB broth (Lennox) and Terrific broth base in ddH<sub>2</sub>O as per manufacturer's instruction.
- 3. Autoclave solution and set aside to cool off before usage.

△ CRITICAL: Broth can be stored at 4°C for 6 months. Look for turbidity or precipitation as a sign of contamination.

### Prepare LB broth (Lennox) agar plates

### © Timing: 1 day

- 4. Completely dissolve LB broth (Lennox) agar base in ddH<sub>2</sub>O as per manufacturer's instruction.
- 5. Autoclave solution to dissolve agar.
- 6. Cool off LB agar broth to  $40^{\circ}$ C in water bath. Add carbenicillin to the final concentration of  $100 \ \mu$ g/mL and mix thoroughly.

*Note:* Be very gentle when mixing carbenicillin. Air dissolved in the agar solution can lead to trapped air bubbles.

*Note:* Other competent cells encoding  $\lambda$  lysozymes can also be used for this protocol.

7. Transfer 20 mL LB agar solution to a petri-dish. Leave agar plates in a tissue culture hood overnight.

▲ CRITICAL: This step assists in moisture removal in a sterile environment. Do not turn on tissue culture hood.

8. Store agar dishes to a 4°C fridge.

 $\triangle$  CRITICAL: Agar plates are stable in fridges for up to 2 months.

### Prepare gRNA and template DNA for Cas9 activity assessment

### © Timing: 1 day

 Digest pX601 vector with Bsal enzymes by mixing the following reagents and incubate at 37°C for 30 min.

3 μg pX601.

- 2 μL NEB CutSmart® buffer.
- 1  $\mu L$  Bsal enzyme (20 units/ $\mu L$ ).
- $ddH_2O$  up to 20  $\mu L$  of volume.
  - a. Heat-inactivate enzymes at  $65^\circ C$  for 20 min.





- Subclone double stranded DNA encoding gRNA (5'-CAC CAT GAA ACC ATG GCA AGT AAG-3', Fwd. primer; 5'-CTT ACT TGC CAT GGT TTC ATC AAA-3', Rev. primer) against the 55<sup>th</sup> intronic (in55) of mouse dystrophin gene into pX601 vector via ligation.
  - a. Selection of this gRNA was previously described.<sup>10</sup>
  - b. Mix the following ingredients and incubate at 16°C overnight.

15  $\mu$ L ddH<sub>2</sub>O.

- 1 μL Bsal-digested pX601 (0.02 pmol/μL).
- 1  $\mu L$  double stranded DNA encoding gRNA (0.02 pmol/ $\mu L$ ).
- 2 μL T4 DNA ligase buffer.

1  $\mu$ L T4 DNA ligase (20 units/ $\mu$ L).

- 11. Transform ligated products in DH5'a competent cells (other competent cells, including XL1-blue and DH10B can be used instead).
  - a. Transfer 1  $\mu L$  ligated DNA solution to a 50  $\mu L$  DH5  $\alpha$  competent cells and incubate on ice for 30 min.
  - b. Heat shock bacteria at  $42^\circ\text{C}$  for 45 s and back on ice for 2 min.
  - c. Add 950  $\mu L$  antibiotic-free LB broth and inoculate in a bacterial incubator at 37°C and 250 rpm for 1 h.
  - d. Transfer 100  $\mu$ L to carbenicillin-resist agar plate (final carbenicillin concentration on agar plate is 100  $\mu$ g/mL), spread out bacteria with sterilized glass beads.
    - i. Incubate the agar plate upside down overnight in a  $37^\circ\text{C}$  incubator.
- 12. Pick bacterial colonies.
  - a. Transfer 3 mL LB broth, supplemented with 100  $\mu\text{g/mL}$  ampicillin, to each of 8 inoculation tubes.
  - b. Pick a bacterial colony by dabbing each colony with a sterilized p200 pipette tip, which is dropped into an inoculation tube.
  - c. Inoculate bacteria in a bacterial shaker overnight at 37°C/250 rpm.
- 13. Extract DNA plasmids via QIAprep Spin Miniprep kit according to the manufacturer's instruction.
  - a. Confirm the identity of each plasmid by Sanger Sequencing.
  - b. Repeat steps 11–13 until a successful clone is obtained).

**Note:** Purified template DNA (DNA optical densitometry ratio (260/280 nm is 1.7–1.9) can be stored at  $-20^{\circ}$ C for short term (2 weeks) storage. Alternatively, DNA can be stored at  $-80^{\circ}$ C for long term (> 1 month) storage.

- 14. For generating gRNA, the In55 gRNA-encoding DNA is amplified by Q5 high-fidelity polymerase with the following reagents and cycling parameters.
  - a. Reagent mix.

| PCR reagents                                                                          | Final concentration | Amount |
|---------------------------------------------------------------------------------------|---------------------|--------|
| Q5 High-Fidelity 2× Master mix                                                        | 1x                  | 25 μL  |
| 10 μM Fwd. primer (5'-TAA TAC<br>GAC TCA CTA TAG GGA TGA<br>AAC CAT GGC AAG TAA G-3') | 0.5 μΜ              | 1 μL   |
| 10 μM Rev. Primer (5'-AAA ATC<br>TCG CCA ACA AGT TG-3')                               | 0.5 μΜ              | 1 μL   |
| Purified template DNA (pX601-in55<br>plasmid, 1 ng/µL)                                | 2 ng                | 2 μL   |
| ddH <sub>2</sub> O                                                                    |                     | 21 µL  |
| Total volume                                                                          |                     | 50 μL  |





### b. Cycling parameters.

| Steps                | Temperature | Time         | Cycles |
|----------------------|-------------|--------------|--------|
| Initial denaturation | 98°C        | 30 s         | 1      |
| Denaturation         | 98°C        | 10 s         | 30     |
| Annealing            | 52°C        | 30 s         |        |
| Extension            | 72°C        | 20 s         |        |
| Final extension      | 72°C        | 2 min        | 1      |
| Hold                 | 4°C         | Indefinitely |        |

- 15. Purify PCR amplicons via the QIA quick PCR purification kit according to the manufacturer's instruction.
- 16. Transcribe gRNA from purified amplicon with MEGAshortscript T7 transcription kit and purify gRNA with RNEasy Mini kit according to the manufacturer's instructions.

*Note:* Purified gRNA (RNA optical densitometry ratio (260/280 nm) is greater than 1.9) can be stored at  $-20^{\circ}$ C for short term (2 weeks) storage or at  $-80^{\circ}$ C for long term (> 1 month) storage.

*Note:* RNA is labile and sensitive to ambient temperature. It is imperative to leave all RNA samples on ice at all times. To avoid RNase contamination, gloves should be worn, and filter pipet tips should be used. RNaseZap wipes should be applied for cleaning benches and equipment before work.

| REAGENT or RESOURCE                                                                                                       | SOURCE        | IDENTIFIER                                  |
|---------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------------|
| Bacterial and virus strains                                                                                               |               |                                             |
| Escherichia coli DH5α competent cells                                                                                     | Invitrogen    | Cat# 18265017                               |
| XJb (DE3) autolysis competent cells (F-ompT hsdSB(rB- mB-) gal dcm<br>ΔaraB:: λ, cat (CmR), λ (DE3)                       | ZYMO Research | Cat# T3051                                  |
| Recombinant DNA                                                                                                           |               |                                             |
| 8×His-TEV-SaCas9 expression plasmid (The plasmid map is displayed in Figure 2).                                           | Homemade      | The plasmid will be available upon request. |
| pX601-AAV-CMV::NLS-SaCas9-NLS-3×HA-bGHpA;U6::Bsal-sgRNA                                                                   | Addgene       | Cat# 61591                                  |
| Chemicals and recombinant proteins                                                                                        |               |                                             |
| Terrific broth                                                                                                            | BioShop       | Cat# TER409.1                               |
| LB (Lennox) broth                                                                                                         | BioShop       | Cat# LBL405.1                               |
| Carbenicillin                                                                                                             | BioShop       | Cat# CAR544.1                               |
| Isopropyl-b-D-thiogalactopyranoside (IPTG)                                                                                | BioShop       | Cat# IPT001.5                               |
| L-arabinose                                                                                                               | BioShop       | Cat# ARB220.50                              |
| Magnesium chloride anhydrous                                                                                              | Sigma-Aldrich | Cat# M8266                                  |
| Dithiothreitol (DTT)                                                                                                      | BioShop       | Cat# DTT001.10.1                            |
| Imidazole                                                                                                                 | BioShop       | Cat# IMD510.250                             |
| Phenylmethylsulfonyl fluoride (PMSF)                                                                                      | BioShop       | Cat# PMS123.50                              |
| N-(2-Hydroxyethyl) piperazine-N'-(2-ethanesulfonic acid), 4-(2-<br>Hydroxyethyl) piperazine-1-ethanesulfonic acid (HEPES) | Sigma-Aldrich | Cat# H3375                                  |
| Potassium chloride                                                                                                        | Sigma-Aldrich | Cat# P3811                                  |
| Sodium chloride                                                                                                           | Sigma-Aldrich | Cat# \$9888                                 |
| Glycerol                                                                                                                  | Sigma-Aldrich | Cat# G5516                                  |
| Benzonase                                                                                                                 | Sigma-Aldrich | Cat# E1014                                  |
| 30% acrylamide/bis-acrylamide solution                                                                                    | Bio-Rad       | Cat# 1610158                                |
| N,N,N',N'-Tetramethylethylenediamine (TEMED)                                                                              | Sigma-Aldrich | Cat# T9281                                  |
|                                                                                                                           |               |                                             |

### **KEY RESOURCES TABLE**

(Continued on next page)

### CellPress OPEN ACCESS

### STAR Protocols Protocol

| Continued                                                                                       |                          |                  |
|-------------------------------------------------------------------------------------------------|--------------------------|------------------|
| REAGENT or RESOURCE                                                                             | SOURCE                   | IDENTIFIER       |
| Sodium dodecyl sulfate (SDS)                                                                    | Sigma-Aldrich            | Cat# L3771       |
| Ammonium persulfate                                                                             | Sigma-Aldrich            | Cat# A3678       |
| Trizma                                                                                          | Sigma-Aldrich            | Cat# T1503       |
| 2,2,2-Trichloroethanol (TCE)                                                                    | Sigma-Aldrich            | Cat# T54801      |
| Recombinant shrimp alkaline phosphatase                                                         | New England Biolabs      | Cat# M0371S      |
| Oligonucleotides                                                                                |                          |                  |
| DMDs Intron 51 gRNA Fwd. primer (5'-CAC CAT<br>GAA ACC ATG GCA AGT AAG-3')                      | This paper               |                  |
| DMDs Intron 51 gRNA Fwd. primer (5'-CTT ACT<br>TGC CAT GGT TTC ATC AAA-3')                      | This paper               |                  |
| In55 amplification Fwd. primer (5'-TAA TAC GAC<br>TCA CTA TAG GGA TGA AAC CAT GGC AAG TAA G-3') | This paper               |                  |
| In55 amplification Rev. primer<br>5'-AAA ATC TCG CCA ACA AGT TG-3'                              | This paper               |                  |
| Other                                                                                           |                          |                  |
| Amicon Ultra-15 centrifugal filter units                                                        | Sigma-Aldrich            | Cat# UFC910008   |
| PES bottle top filters                                                                          | Fisher Scientifics       | Cat# FB12566511  |
| HisTrap high performance columns                                                                | Cytiva                   | Cat# 29-0510-21  |
| HiTrap SP high performance columns                                                              | Cytiva                   | Cat# 29-0513-24  |
| Millex GF syringe filter (0.22 μm size)                                                         | Sigma-Aldrich            | Cat# SLGPR33RS   |
| QIA prep Spin Miniprep Kit                                                                      | Qiagen                   | Cat# 27104       |
| Q5 High-Fidelity 2× Master Mix                                                                  | New England Biolabs      | Cat# M0492S      |
| QIA quick PCR purification kit                                                                  | Qiagen                   | Cat# 28104       |
| MEGAshortscript T7 transcription kit                                                            | Thermo Fisher Scientific | Cat# AM1354      |
| RNEasy Mini kit                                                                                 | Qiagen                   | Cat# 74104       |
| Syringe pump                                                                                    | Harvard Apparatus        | Cat# MS-ACC-0400 |
| Mini-PROTEAN Tetra Handcast Systems                                                             | Bio-Rad                  | Cat# 1658006FC   |
| PowerPac Basic Power Supply                                                                     | Bio-Rad                  | Cat# 1645050     |
| ChemiDoc imager                                                                                 | Bio-Rad                  | Cat# 17001401    |
| Digital general-purpose water bath                                                              | Thermo Fisher Scientific | Cat# 51221046    |
| New Brunswick I26 incubator shaker                                                              | Eppendorf                | Cat# M1324-0000  |
| Centrifuge                                                                                      | Eppendorf                | Cat# 5804R       |
| Rotor                                                                                           | Eppendorf                | Cat# FA-45-6-30  |

### MATERIALS AND EQUIPMENT

| Buffer A (stored in a 4°C fridge for up to 1 month) |                     |
|-----------------------------------------------------|---------------------|
| Chemicals                                           | Final concentration |
| HEPES, pH7.5                                        | 20 mM               |
| NaCl                                                | 300 mM              |
| Imidazole                                           | 25 mM               |
|                                                     |                     |
| Buffer B (stored in a 4°C fridge for up to 1 month) |                     |
| Chemicals                                           | Final concentration |
| HEPES, pH7.5                                        | 20 mM               |
| NaCl                                                | 300 mM              |
| Imidazole                                           | 250 mM              |

| Buffer C (stored in a 4°C fridge for up to 1 month) |                     |  |
|-----------------------------------------------------|---------------------|--|
| Chemicals                                           | Final concentration |  |
| HEPES, pH7.5                                        | 20 mM               |  |
| KCI                                                 | 200 mM              |  |
| MgCl <sub>2</sub>                                   | 10 mM               |  |

Protocol



| Buffer D (stored in a 4°C fridge for up to 1 month) |                     |
|-----------------------------------------------------|---------------------|
| Chemicals                                           | Final concentration |
| HEPES, pH 7.5                                       | 20 mM               |
| KCI                                                 | 1 M                 |
| MgCl <sub>2</sub>                                   | 10 mM               |

| SaCa9 storage buffer (stored in a –20°C freezer for up to 6 months) |                     |  |
|---------------------------------------------------------------------|---------------------|--|
| Chemicals                                                           | Final concentration |  |
| Tris-HCl, pH 7.4                                                    | 10 mM               |  |
| NaCl                                                                | 300 mM              |  |
| EDTA                                                                | 0.1 mM              |  |
| DTT                                                                 | 1 mM                |  |
| Glycerol (v/v)                                                      | 50%                 |  |

| SaCas9 digestion buffer (stored in a –20°C freezer for up to 6 months) |                     |  |
|------------------------------------------------------------------------|---------------------|--|
| Chemicals                                                              | Final concentration |  |
| HEPES, pH 7.4                                                          | 20 mM               |  |
| KCI                                                                    | 150 mM              |  |
| Glycerol (v/v)                                                         | 10%                 |  |
| DTT                                                                    | 1 mM                |  |

| 4× protein loading dye (stored at room temperature for up to 6 months) |                     |  |
|------------------------------------------------------------------------|---------------------|--|
| Chemicals                                                              | Final concentration |  |
| Tris-HCl, pH6.8                                                        | 200 mM              |  |
| SDS (w/v)                                                              | 8%                  |  |
| Bromophenol (w/v)                                                      | 0.4%                |  |
| Glycerol (v/v)                                                         | 40%                 |  |

| 1× Electrophoresis running buffer (made fresh for each use) |                     |
|-------------------------------------------------------------|---------------------|
| Chemicals                                                   | Final concentration |
| Tris-HCl                                                    | 250 mM              |
| Glycine                                                     | 2 M                 |
| SDS                                                         | 35 mM               |

### **STEP-BY-STEP METHOD DETAILS**

Transformation of 8×His-TEV-SaCas9 expression plasmid in XJb (DE3) competent cells

() Timing: 2 days (for step 1)

The objective is to transform competent cells with 8×His-TEV-SaCas9 plasmids.

1. Transfer 5 ng of 8×His-TEV-SaCas9 plasmid to one tube of XJb (DE3) competent cells. Mix together plasmid and bacteria by finger flicking. Incubate the mixture on ice for 30 min.

*Note:* Too much starting plasmid will result in the crowding of bacterial colonies on agar plates.

Note: Each aliquot of XJb (DE3) competent cells is 100  $\mu L$  in volume from the manufacturer.





#### Figure 2. Schematic illustration of 8×His-TEV-SaCas9 plasmid

The expression of 8×His-TEV-SaCas9 is driven by T7 promoter and translation assisted by Shine-Dalgarno sequence (also known as ribosome binding site, RBS). The construct also contains 2 tandem nuclear localization signals from simian virus (SV40 NLS).

- 2. Heat shock competent cells at 42°C for 1 min and then cool on ice for 2 min.
- 3. Transfer 950 μL fresh LB broth (Lennox) to competent cells and grow bacteria for 1 h in a bacterial shaker at 37°C and 250 rpm.
- 4. Evenly distribute 100 μL bacterial culture on a LB (Lennox) agar, supplemented with 100 μg/mL Carbenicillin. Grow bacterial colonies overnight in an incubator at 37°C.

**II Pause point:** The agar plate containing bacterial colonies can be stored at 4°C for no more than 1 month. Each plate needs to be sealed with parafilm to prevent culture contamination.

### Inoculating and expending bacterial culture

### © Timing: 2 days (for step 5)

This step is to expend culture for 8×His-TEV-SaCas9-containing competent cells.

- 5. Select 2 bacterial colonies from LB (Lennox) agar and grow each colony in 3 mL LB (Lennox) broth, supplemented with 100  $\mu$ g/mL carbenicillin, in a bacterial shaker overnight at 37°C and 250 rpm. Troubleshooting problem 1.
- 6. Expand the overnight culture in a 50 mL LB broth (Lennox) culture, supplemented with 100  $\mu$ g/mL carbenicillin, in a bacterial shaker overnight at 37°C and 250 rpm.

 $\hbox{II}$  Pause point: Individual bacterial culture can be stored at 4°C for no more than 3 days.

### 8×His-TEV-SaCas9 protein induction

© Timing: 2 days (for step 7)



This step is to induce 8×His-TEV-SaCas9 protein expression with IPTG.

7. Transfer 10 mL bacterial culture from step 6. into 4  $\times$  1 L terrific broth, supplemented with 100  $\mu$ g/mL carbenicillin. Grow bacteria in a shaker at 37°C and 250 rpm until optical density of 0.6–0.8.

*Note:* It usually takes 2–2.5 h to reach the specified optical density.

 Induce 8×His-TEV-SaCas9 protein expression with 0.5 mM IPTG, 1.5 mM L-arabinose, and 0.5 mM MgCl<sub>2</sub> (final concentration). Shake for 30 h at 18°C and 250 rpm.

*Note:* L-arabinose and MgCl<sub>2</sub> are added for inducing lysozyme expression.

 Harvest bacteria by centrifugation at 6,000 × g for 5 min at 4°C. Decant the supernatant and resuspend cells in buffer A, supplemented with 1 mM PMSF. Freeze cells at −80°C until protein purification.

*Note:* The wet weight of bacterial pellet is typically 1.5–1.7 g per liter of induced bacterial culture.

*Note:* The ratio of buffer A and bacteria pellet wet weight is set at 1:10 (v:w). i.e., 10 mL buffer for 1 g bacteria pellet.

II Pause point: Suspended bacteria solution can be stored in a  $-80^{\circ}$ C freezer for no more than 6 months.

# Immobilized metal affinity chromatography-assisted enrichment of 8×His-TEV-SaCas9 proteins

(9 Timing: 90 min (for step 10)

This step is for an initial capture of  $8 \times$  His-TEV-SaCas9 proteins with a Ni<sup>2+</sup>-NTA column.

10. Lyse cells by freeze and thaw between liquid nitrogen and 37°C water bath 2 times.

*Note:* A successful lysis procedure can be observed when liquid viscosity is transformed from runny to an egg white consistency. Troubleshooting problem 2.

 Remove ribonucleic acids with benzonase at 37°C for 30 min (0.5 μL benzonase (250 unit/μL) per 10 mL bacterial lysate).

*Note:* Adding too much benzonase will lead to benzonase contamination and adverse effects in SaCas9 enzymatic analysis.

- 12. Spin down the insoluble fraction at 15,000  $\times$  g at 4°C for 30 min.
  - a. Filter and degas soluble proteins (soluble fraction) via a 0.22  $\mu$ m filter unit.
  - b. Set aside 100  $\mu L$  protein lysate in a microtube labeled cell-free lysate. Troubleshooting problem 3.

Note: All protein fractions and buffers need to be chilled from this point onward.



13. Set up chromatography as demonstrated in Figure 1. Equilibrate a 5-mL HisTrap high performance column with 25 mL ddH<sub>2</sub>O, 25 mL buffer B, and 25 mL buffer A (in this order) with a syringe pump at the rate of 2 mL/min.

**STAR Protocols** 

Protocol

- 14. Perform His-tag protein purification by loading degassed samples through HisTrap column via a syringe pump at the rate of 2 mL/min.
  - a. Collect unbound proteins in a clean bottle and set aside 100  $\mu L$  protein lysate in a microtube labeled flow through.

*Note:* Do not exceed 150 mL of precleared, degassed cell-free lysate per batch purification.

 Wash off unbound proteins once with 50 mL buffer A and once more with 50 mL of 20% buffer B (40 mL buffer A and 10 mL buffer B). Collect washed off proteins in a clean bottle and set aside 100 μL protein lysate in a microtube labeled wash-off.

**Note:** Figure 3A shows many non-specific bacteria proteins were effectively washed off with 20% buffer B.8×His-TEV-SaCas9 protein elution was accompanied with  $Ni^{2+}$  ion binding proteins (*E.g.*, ion transporters) that would be systematically removed during ion exchange chromatography.

- 16. Elute  $8 \times$  His-TEV-SaCas9 with 100% buffer B in 6 consecutive fractions, 5 mL per fraction. Set aside 100  $\mu$ L protein lysate from each fraction and label each tube with corresponding fraction numbers.
- 17. Analyze enriched 8×His-TEV-SaCas9 proteins on a 10% SDS-PAGE gel prepared in section D.
  - a. Dilute protein lysates from steps 12, 14, 15, and 16 in  $4 \times$  loading dye + 100 mM DTT.
  - b. In a 10% SDS-PAGE gel, load 20  $\mu$ L sample mixture to each well. Start electrophoresis at 90 V before the dye front reaches the end of stacking phase (about 10–15 min) and 120 V for the running phase (45–60 min).
- 18. Remove the polyacrylamide gel from a gel case and soak in  $ddH_2O$  for 5 s.
- 19. Visualizing 8×His-TEV-SaCas9 proteins in a ChemiDoc imager with the following settings.
  - a. Image size -> medium. Application -> protein gels -> stain-free gel. Exposure -> gel activation -> 45 s.
  - b. Combine fractions that contain 8×His-TEV-SaCas9 proteins and dilute with buffer C by 3 folds. Troubleshooting problem 4.

# Cation exchange chromatography for the intermediate purification of $8\times His\text{-}TEV\text{-}SaCas9$ proteins

#### © Timing: 90 min (for step 20)

This step works as an intermediate purification of 8×His-TEV-SaCas9 proteins.

- 20. Equilibrate cation exchange chromatography column with 25 mL ddH<sub>2</sub>O, 25 mL buffer D, and 25 mL buffer C (in this order) with a syringe pump, at the rate of 2.0 mL/min.
- 21. Based on the SDS-PAGE gel results from step 19, combined all protein fractions containing 8×His-TEV-SaCas9 in step 16.
  - a. Dilute combined protein lysate with  $3\times$  the volume of solution C and filter lysate via a 0.22  $\mu m$  syringe filter.
  - b. Load the equilibrated column with protein lysates via a syringe pump at the rate of 2.0 mL/  $\,$  min.
  - c. Collect flow through solution and set aside 100  $\mu L$  in a microcentrifuge tube for analysis (Flow through fraction).

Protocol





# Figure 3. Analyses of Coomassie brilliant blue (CBB) and TCE stained SDS-PAGE gels for purified 8×His-TEV-SaCas9 proteins

(A) Affinity purification of 8×His-TEV-SaCas9. CBB- and TCE-stained SDS-PAGE gels display 8×His-TEV-SaCas9 protein elution with an increasing imidazole gradient (10%–100% solution B) from a Ni<sup>2+</sup>-NTA column. These empirical results demonstrate that 8×His-TEV-SaCas9 proteins can be enriched in an isocratic fashion – 20% solution B for washing off impurities and protein elution in 30 mL (5 mL per fraction and 6 fractions in total) of 100% buffer B. Top panel, CBB staining; Bottom panel, TCE staining.

(B) Intermediate purification of 8×His-TEV-SaCas9 with CIEX. 8×His-TEV-SaCas9 proteins from Ni<sup>2+</sup>-NTA-based affinity purification were further fractionated by CIEX. CBB- and TCE-stained SDS-PAGE gels display 8×His-TEV-SaCas9 protein elution with an increasing salt gradient (10%–100% solution D) from a CIEX column. These empirical results demonstrate that 8×His-TEV-SaCas9 proteins can be enriched in an isocratic fashion – 20% solution D for washing off impurities and protein elution in 30 mL (5 mL per fraction and 6 fractions in total) of 30% buffer D. Top panel, CBB staining; Bottom panel, TCE staining.

(C) A representative image of sequentially purified 8×His-TEV-SaCas9 proteins. Total proteins from cell-free lysate, Ni<sup>2+</sup>-NTA elution, and centrifugal filtration were visualized on a Coomassie brilliant blue-stained SDS-PAGE gel. Top panel, CBB staining; Bottom panel, TCE staining. CFL, cell-free lysate; FT, flow through; \*, 8×His-TEV-SaCas9.

- 22. Wash off unbound proteins once with 50 mL buffer C and once more with 50 mL of 20% buffer D (40 mL buffer C and 10 mL buffer D). Collect wash off solution and set aside 100 μL in a micro-centrifuge tube for analysis (wash off fraction).
- Elute 8×His-TEV-SaCas9 proteins with 30% buffer D (35 mL buffer C and 15 mL buffer D) in 6 consecutive fractions, 5 mL per fraction. Set aside 100 μL protein lysate from each fraction and label each tube with corresponding fraction numbers.





**Note:** Figure 2B shows that 30% buffer B eluted mostly 8×His-TEV-SaCas9 with minimal contaminating proteins.

- 24. Analyze enriched 8×His-TEV-SaCas9 proteins on a 10% SDS-PAGE gel.
  - a. Dilute protein lysates from steps 16, 21, 22, and 23 in  $4 \times$  loading dye + 100 mM DTT.
  - b. In a 10% SDS-PAGE gel, load 20  $\mu$ L sample mixture to each well. Start electrophoresis at 90 V for samples to reach the end of stacking phase (about 10–15 min) and 120 V for the running phase (45–60 min).
- 25. Remove the polyacrylamide gel from a gel case and soak in  $ddH_2O$  for 5 s.
- 26. Visualizing 8×His-TEV-SaCas9 proteins in a ChemiDoc imager with the following settings. Image size -> medium. Application -> protein gels -> stain-free gel. Exposure -> gel activation -> 45 s. Combine fractions that contain 8×His-TEV-SaCas9 proteins.

*Note:* The gradual purification process of 8×His-TEV-SaCas9 from crude lysate to final products can be visualized in Figure 3C.

### Concentration and buffer exchange of 8×His-TEV-SaCas9 proteins

© Timing: 120 min (for step 27)

Purified 8×His-TEV-SaCas9 proteins are concentrated, and buffer exchanged for storage.

27. According to step 26, combined all fractions containing purified 8×His-TEV-SaCas9 proteins.
a. Filter purified 8×His-TEV-SaCas9 proteins through a 0.22-μm syringe filter. Mix purified His<sub>8</sub>-SaCas9 proteins with Cas9 storage buffer in a 1:1 ratio.

**Note:** All actions from this step onward need to be performed in a sterile laminar flow hood to avoid pathogen contamination if enzymes are used for *in vivo* applications.

- 28. Equilibrate an Amicon ultra-15 centrifugal filter unit with 10 mL of Cas9 storage buffer. Set aside for 10 min. Centrifuge for 10 min at 3,000 × g.
- 29. Transfer 15 mL of 8×His-TEV-SaCas9 to centrifugal filter unit and centrifuge at 3,000 × g, 4°C until 1 mL of solution remains.
  - a. Repeat this process until all 8×His-TEV-SaCas9 solution has been filtered.
- 30. Wash the filter unit with 15 mL of storage buffer and repeat 2 more times.
- 31. Transfer the retentate containing 8×His-TEV-SaCas9 proteins in the upper unit of a centrifuge filter to a new microtube, labeled purified 8×His-TEV-SaCas9 proteins.
- 32. Measure protein concentration via Bradford assays and dilute proteins to the final concentration of 5 mg/mL.

*Note:* The purity and integrity of homemade 8×His-TEV-SaCas9 is comparable to 2 commercially available enzymes as demonstrated in Figure 4A.

### Determine 8×His-TEV-SaCas9 enzymatic activity

© Timing: 30 min (for step 33)

Test the enzymatic activity of purified 8×His-TEV-SaCas9 proteins.

- 33. Digestion set up is listed in Table 2.
  - a. Mix together digestion ingredients as outlined in Table 2, vortex, spin down, and incubate at 37°C for 60 min.

Protocol





#### Figure 4. Comparison of homemade 8×His-TEV-SaCas9 to commercial sources

(A) Homemade 8×His-TEV-SaCas9 purification procedure achieves 90% purity, which is comparable to commercial suppliers. The purity of *de novo* 8×His-TEV-SaCas9 proteins (1) was visualized side-by-side with 2 other commercial sources (2 & 3) on either CBB or TCE-stained SDS-PAGE gels. The average cost of 8×His-TEV-SaCas9 proteins purified according to the reported method is 8.64 USD/mg.

(B) Purified 8×His-TEV-SaCas9 efficiently digested double stranded DNA. 8×His-TEV-SaCas9-mediated DNA digestion was analyzed on a 1% agarose gel. A full-length (undigested) template DNA and gRNA were detected in lanes 1 and 2, respectively. A complete digestion of template DNA with commercially supplied 8×His-TEV-SaCas9 was included as a positive control and showed 2 separate fragments (2 and 1 kilobase pairs) in lane 3. A complete digestion of template DNA with homemade 8×His-TEV-SaCas9 was also observed as 2 fragments in lane 4.

**Note:** Listed in Table 2 includes template DNA only control, gRNA only control, mocked digestion control (template DNA + gRNA), and digestion test (template DNA + gRNA + 8×His-TEV-SaCas9).

34. Heat inactivates enzymes at 65°C for 10 min and assesses digestion results on a 1% agarose gel.

*Note:* Successful DNA digestion results in 2 DNA fragments (1,000 bps and 3,000 bps) as demonstrated in Figure 4B. Undigested plasmid DNA is 4,000 bps in length.

### **EXPECTED OUTCOMES**

A successful purification procedure should produce 2–4 mg (from 4 L of bacterial culture) of functional, high quality 8×His-TEV-SaCas9 proteins within 24 h. Enriched 8×His-TEV-SaCas9 can be detected as a 135 kDa protein fragment on an SDS-PAGE gel (Figures 3 and 4). The typical yield

| Table 2. Experimental setups for testing 8×His-TEV-SaCas9 enzymatic activity |                              |                  |                         |                                  |                         |
|------------------------------------------------------------------------------|------------------------------|------------------|-------------------------|----------------------------------|-------------------------|
|                                                                              | 8×His-TEV-SaCas9 (500 ng/µL) | gRNA (300 ng/µL) | Template DNA (60 ng/µL) | $10 \times$ reaction buffer (µL) | ddH <sub>2</sub> O (µL) |
| Template DNA only                                                            |                              |                  | 1                       | 2                                | 17                      |
| gRNA only                                                                    |                              | 1                |                         | 2                                | 17                      |
| Mock digestion                                                               |                              | 1                | 1                       | 2                                | 16                      |
| Digestion                                                                    | 1                            | 1                | 1                       | 2                                | 15                      |





from 1 L of bacterial culture is 0.5–1.0 mg total proteins at 90% purity (Figure 3C). Purified proteins are comparable to commercial sources in terms of purity and enzymatic function (Figure 4). Routine enzymatic analyses suggest that 500 ng of total proteins are sufficient for digesting DNA Template within 15 min *in vitro* (Figure 4B).

### LIMITATIONS

This easy-to-use protocol enables non-biochemistry labs to purify high quality 8×His-TEV-SaCas9 proteins in a sizable quantity for downstream applications. One limitation to the protocol is the use of Bio-Rad ChemiDoc imaging system for visualizing in-gel proteins. In the absence of the machine, protein labeling and protein visualization may not be achievable within 5 min. Alternatively, we recommend Coomassie brilliant blue protein staining, which captures in-gel 8×His-TEV-SaCas9 proteins as demonstrated in *Results*. Another limitation is the scalability for protein production. Each syringe pump generates a set amount of mechanical pressure for consistent liquid delivery. Stacking 2 × 5 mL columns in an end-to-end fashion would create too much resistance for the pump pressure to overcome. As such, protein production needs to be completed in batches (no more than 150 mL filtered and degassed bacterial lysate per batch). Finally, it cannot be ruled out that the presence of both 8×His tag and NLS/TEV sites has no impact on DNA digestion *in vitro*. This is especially true that 8×His tag has some affinities for interacting and aggregating with other proteins if purification procedures are not done properly.

### TROUBLESHOOTING

**Problem 1** No bacteria growth (step 5).

### **Potential solution**

Incorrect antibiotic concentration is used. Some antibiotics are delivered in the form of effect unit per mass (i.e., UI/mg). Follow the manufacturer's instructions when preparing working antibiotic solutions.

#### Problem 2

Incomplete bacterial lysis (step 10).

### **Potential solution**

90% bacterial lysis can be achieved by 1 round of freeze and thaw. To achieve > 95% lysis, repeat freeze and thaw step 2 more times.

#### **Problem 3**

Difficulty in bottle top filtration (step 12).

### **Potential solution**

Filter units are clogged and need to change often. Each 0.22  $\mu$ m filter unit is capable of filtering about 50–70 mL bacteria lysate.

### Problem 4

8×His-TEV-SaCas9 protein is not detected on SDS-PAGE gels (step 19).

### **Potential solution**

Each Ni<sup>2+</sup>-NTA column in theory enriches 200 mg of 8×His-TEV-SaCas9 proteins. There are a few reasons to account for reduced protein enrichment. 1. Low quantity of 8×His-TEV-SaCas9 proteins is expressed in bacteria. Go back to protein induction step and ensure IPTG induction has been optimized. 0.5 mM IPTG is a good starting point, but IPTG purity may vary from supplier to supplier. When preparing IPTG stock solution, chemical purity should be considered. In addition, avoid repeated freezing and thawing IPTG. It is a good practice to aliquot working solution. The imidazole



concentration in solution A is too high, reducing 8×His-TEV-SaCas9 protein affinity to the column. Readjust imidazole solution concentration. 3. Ni<sup>2+</sup>-NTA column is clogged with proteins impurities. Perform rounds of column purging according to manufacturer's instruction before protein purification.

### **RESOURCE AVAILABILITY**

### Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Anthony Gramolini, anthony.gramolini@utoronto.ca.

### **Materials availability**

All unique/stable reagents generated in this study are available from the lead contact without restriction. Further information and requests for resources and reagents should be directed to and will be fulfilled by the lead contact, Anthony Gramolini, anthony.gramolini@utoronto.ca.

### Data and code availability

This paper does not report Standardized data types. All data reported in this paper will be shared by the lead contact upon request. No original code was generated in this study.

### **ACKNOWLEDGMENTS**

This study was supported by a Medicine by Design New Ideas Fund (MBDNI-201), Jesse's Journey— The Foundation for Gene and Cell Therapy (#507052), and the Translational Biology and Engineering Program (University of Toronto) seed grant.

### **AUTHOR CONTRIBUTIONS**

A.C.T.T., M.T., M.J.M., and A.O.G. conceived initial ideas for 8× His-TEV-SaCas9 protein purification. A.C.T.T., M.T., A.V., and W.L. performed 8×His-TEV-SaCas9 purification, data acquisition, and analysis. R.M.M., E.I., and R.C. conceived initial ideas for gRNA design and experimentation. S.L.E. and K.L. performed gRNA cloning, *in vitro* transcription, and purification. S.S. performed 8×His-TEV-SaCas9 digestion tests. A.C.T.T., M.T., E.I., J.P.S., and A.O.G. prepared manuscript for submission.

### **DECLARATION OF INTERESTS**

The authors declare no competing interests.

#### REFERENCES

- Lu, B., Javidi-Parsijani, P., Makani, V., Mehraein-Ghomi, F., Sarhan, W.M., Sun, D., Yoo, K.W., Atala, Z.P., Lyu, P., and Atala, A. (2019). Delivering SaCas9 mRNA by lentivirus-like bionanoparticles for transient expression and efficient genome editing. Nucleic Acids Res. 47, e44.
- Xie, H., Ge, X., Yang, F., Wang, B., Li, S., Duan, J., Lv, X., Cheng, C., Song, Z., Liu, C., et al. (2020). High-fidelity SaCas9 identified by directional screening in human cells. PLoS Biol. 18, e3000747.
- Kemaladewi, D.U., Bassi, P.S., Erwood, S., Al-Basha, D., Gawlik, K.I., Lindsay, K., Hyatt, E., Kember, R., Place, K.M., Marks, R.M., et al. (2019). A mutation-independent approach for muscular dystrophy via upregulation of a modifier gene. Nature 572, 125–130.
- 4. Kemaladewi, D.U., Maino, E., Hyatt, E., Hou, H., Ding, M., Place, K.M., Zhu, X., Bassi, P.,

Baghestani, Z., Deshwar, A.G., et al. (2017). Correction of a splicing defect in a mouse model of congenital muscular dystrophy type 1A using a homology-directed-repair-independent mechanism. Nat. Med. 23, 984–989.

- Carmignotto, G.P., and Azzoni, A.R. (2019). On the expression of recombinant Cas9 protein in E. coli BL21(DE3) and BL21(DE3) Rosetta strains. J. Biotechnol. 306, 62–70.
- Flottmann, F., Pohl, G.M., Gummert, J., Milting, H., and Brodehl, A. (2022). A detailed protocol for expression, purification, and activity determination of recombinant SaCas9. STAR Protoc. 3, 101276.
- Murugan, K., Suresh, S.K., Seetharam, A.S., Severin, A.J., and Sashital, D.G. (2021). Systematic in vitro specificity profiling reveals nicking defects in natural and engineered

CRISPR-Cas9 variants. Nucleic Acids Res. 49, 4037–4053.

- Nishimasu, H., Cong, L., Yan, W.X., Ran, F.A., Zetsche, B., Li, Y., Kurabayashi, A., Ishitani, R., Zhang, F., and Nureki, O. (2015). Crystal structure of Staphyloccoccus aureus Cas9. Cell 162, 1113–1126.
- Rajagopalan, N., Kagale, S., Bhowmik, P., and Song, H. (2018). A two-step method for obtaining highly pure Cas9 nuclease for genome editing, biophysical, and structural studies. Methods Protoc. 1, 17.
- Li, Y., Liu, Z., OuYang, S., Zhu, Y., Wang, L., and Wu, J. (2016). Distribution of dystrophin gene deletions in a Chinese population. J. Int. Med. Res. 44, 99–108.